forked from Minki/linux
aab61cc0d2
KVM's nopage handler calls gfn_to_page() which acquires the mmap_sem when calling out to get_user_pages(). nopage handlers are already invoked with the mmap_sem held though. Introduce a __gfn_to_page() for use by the nopage handler which requires the lock to already be held. This was noticed by tglx. Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
3120 lines
68 KiB
C
3120 lines
68 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "kvm.h"
|
|
#include "x86.h"
|
|
#include "x86_emulate.h"
|
|
#include "irq.h"
|
|
|
|
#include <linux/kvm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/file.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/kvm_para.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mman.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/desc.h>
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static DEFINE_SPINLOCK(kvm_lock);
|
|
static LIST_HEAD(vm_list);
|
|
|
|
static cpumask_t cpus_hardware_enabled;
|
|
|
|
struct kvm_x86_ops *kvm_x86_ops;
|
|
struct kmem_cache *kvm_vcpu_cache;
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
|
|
|
|
static __read_mostly struct preempt_ops kvm_preempt_ops;
|
|
|
|
#define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
|
|
|
|
static struct kvm_stats_debugfs_item {
|
|
const char *name;
|
|
int offset;
|
|
struct dentry *dentry;
|
|
} debugfs_entries[] = {
|
|
{ "pf_fixed", STAT_OFFSET(pf_fixed) },
|
|
{ "pf_guest", STAT_OFFSET(pf_guest) },
|
|
{ "tlb_flush", STAT_OFFSET(tlb_flush) },
|
|
{ "invlpg", STAT_OFFSET(invlpg) },
|
|
{ "exits", STAT_OFFSET(exits) },
|
|
{ "io_exits", STAT_OFFSET(io_exits) },
|
|
{ "mmio_exits", STAT_OFFSET(mmio_exits) },
|
|
{ "signal_exits", STAT_OFFSET(signal_exits) },
|
|
{ "irq_window", STAT_OFFSET(irq_window_exits) },
|
|
{ "halt_exits", STAT_OFFSET(halt_exits) },
|
|
{ "halt_wakeup", STAT_OFFSET(halt_wakeup) },
|
|
{ "request_irq", STAT_OFFSET(request_irq_exits) },
|
|
{ "irq_exits", STAT_OFFSET(irq_exits) },
|
|
{ "light_exits", STAT_OFFSET(light_exits) },
|
|
{ "efer_reload", STAT_OFFSET(efer_reload) },
|
|
{ NULL }
|
|
};
|
|
|
|
static struct dentry *debugfs_dir;
|
|
|
|
#define EFER_RESERVED_BITS 0xfffffffffffff2fe
|
|
|
|
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
|
|
unsigned long arg);
|
|
|
|
static inline int valid_vcpu(int n)
|
|
{
|
|
return likely(n >= 0 && n < KVM_MAX_VCPUS);
|
|
}
|
|
|
|
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
|
|
return;
|
|
|
|
vcpu->guest_fpu_loaded = 1;
|
|
fx_save(&vcpu->host_fx_image);
|
|
fx_restore(&vcpu->guest_fx_image);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
|
|
|
|
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->guest_fpu_loaded)
|
|
return;
|
|
|
|
vcpu->guest_fpu_loaded = 0;
|
|
fx_save(&vcpu->guest_fx_image);
|
|
fx_restore(&vcpu->host_fx_image);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
|
|
|
|
/*
|
|
* Switches to specified vcpu, until a matching vcpu_put()
|
|
*/
|
|
void vcpu_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu;
|
|
|
|
mutex_lock(&vcpu->mutex);
|
|
cpu = get_cpu();
|
|
preempt_notifier_register(&vcpu->preempt_notifier);
|
|
kvm_arch_vcpu_load(vcpu, cpu);
|
|
put_cpu();
|
|
}
|
|
|
|
void vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
kvm_arch_vcpu_put(vcpu);
|
|
preempt_notifier_unregister(&vcpu->preempt_notifier);
|
|
preempt_enable();
|
|
mutex_unlock(&vcpu->mutex);
|
|
}
|
|
|
|
static void ack_flush(void *_completed)
|
|
{
|
|
}
|
|
|
|
void kvm_flush_remote_tlbs(struct kvm *kvm)
|
|
{
|
|
int i, cpu;
|
|
cpumask_t cpus;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
cpus_clear(cpus);
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
vcpu = kvm->vcpus[i];
|
|
if (!vcpu)
|
|
continue;
|
|
if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
|
|
continue;
|
|
cpu = vcpu->cpu;
|
|
if (cpu != -1 && cpu != raw_smp_processor_id())
|
|
cpu_set(cpu, cpus);
|
|
}
|
|
smp_call_function_mask(cpus, ack_flush, NULL, 1);
|
|
}
|
|
|
|
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
|
|
{
|
|
struct page *page;
|
|
int r;
|
|
|
|
mutex_init(&vcpu->mutex);
|
|
vcpu->cpu = -1;
|
|
vcpu->mmu.root_hpa = INVALID_PAGE;
|
|
vcpu->kvm = kvm;
|
|
vcpu->vcpu_id = id;
|
|
if (!irqchip_in_kernel(kvm) || id == 0)
|
|
vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
|
|
else
|
|
vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
|
|
init_waitqueue_head(&vcpu->wq);
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page) {
|
|
r = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
vcpu->run = page_address(page);
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page) {
|
|
r = -ENOMEM;
|
|
goto fail_free_run;
|
|
}
|
|
vcpu->pio_data = page_address(page);
|
|
|
|
r = kvm_mmu_create(vcpu);
|
|
if (r < 0)
|
|
goto fail_free_pio_data;
|
|
|
|
if (irqchip_in_kernel(kvm)) {
|
|
r = kvm_create_lapic(vcpu);
|
|
if (r < 0)
|
|
goto fail_mmu_destroy;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_mmu_destroy:
|
|
kvm_mmu_destroy(vcpu);
|
|
fail_free_pio_data:
|
|
free_page((unsigned long)vcpu->pio_data);
|
|
fail_free_run:
|
|
free_page((unsigned long)vcpu->run);
|
|
fail:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_init);
|
|
|
|
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_free_lapic(vcpu);
|
|
kvm_mmu_destroy(vcpu);
|
|
free_page((unsigned long)vcpu->pio_data);
|
|
free_page((unsigned long)vcpu->run);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
|
|
|
|
static struct kvm *kvm_create_vm(void)
|
|
{
|
|
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
|
|
|
|
if (!kvm)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
kvm_io_bus_init(&kvm->pio_bus);
|
|
mutex_init(&kvm->lock);
|
|
INIT_LIST_HEAD(&kvm->active_mmu_pages);
|
|
kvm_io_bus_init(&kvm->mmio_bus);
|
|
spin_lock(&kvm_lock);
|
|
list_add(&kvm->vm_list, &vm_list);
|
|
spin_unlock(&kvm_lock);
|
|
return kvm;
|
|
}
|
|
|
|
/*
|
|
* Free any memory in @free but not in @dont.
|
|
*/
|
|
static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
if (!dont || free->rmap != dont->rmap)
|
|
vfree(free->rmap);
|
|
|
|
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
|
|
vfree(free->dirty_bitmap);
|
|
|
|
free->npages = 0;
|
|
free->dirty_bitmap = NULL;
|
|
free->rmap = NULL;
|
|
}
|
|
|
|
static void kvm_free_physmem(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < kvm->nmemslots; ++i)
|
|
kvm_free_physmem_slot(&kvm->memslots[i], NULL);
|
|
}
|
|
|
|
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
|
|
if (vcpu->pio.guest_pages[i]) {
|
|
kvm_release_page(vcpu->pio.guest_pages[i]);
|
|
vcpu->pio.guest_pages[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu_load(vcpu);
|
|
kvm_mmu_unload(vcpu);
|
|
vcpu_put(vcpu);
|
|
}
|
|
|
|
static void kvm_free_vcpus(struct kvm *kvm)
|
|
{
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Unpin any mmu pages first.
|
|
*/
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i)
|
|
if (kvm->vcpus[i])
|
|
kvm_unload_vcpu_mmu(kvm->vcpus[i]);
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
if (kvm->vcpus[i]) {
|
|
kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
|
|
kvm->vcpus[i] = NULL;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void kvm_destroy_vm(struct kvm *kvm)
|
|
{
|
|
spin_lock(&kvm_lock);
|
|
list_del(&kvm->vm_list);
|
|
spin_unlock(&kvm_lock);
|
|
kvm_io_bus_destroy(&kvm->pio_bus);
|
|
kvm_io_bus_destroy(&kvm->mmio_bus);
|
|
kfree(kvm->vpic);
|
|
kfree(kvm->vioapic);
|
|
kvm_free_vcpus(kvm);
|
|
kvm_free_physmem(kvm);
|
|
kfree(kvm);
|
|
}
|
|
|
|
static int kvm_vm_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
|
|
kvm_destroy_vm(kvm);
|
|
return 0;
|
|
}
|
|
|
|
static void inject_gp(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_x86_ops->inject_gp(vcpu, 0);
|
|
}
|
|
|
|
void fx_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned after_mxcsr_mask;
|
|
|
|
/* Initialize guest FPU by resetting ours and saving into guest's */
|
|
preempt_disable();
|
|
fx_save(&vcpu->host_fx_image);
|
|
fpu_init();
|
|
fx_save(&vcpu->guest_fx_image);
|
|
fx_restore(&vcpu->host_fx_image);
|
|
preempt_enable();
|
|
|
|
vcpu->cr0 |= X86_CR0_ET;
|
|
after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
|
|
vcpu->guest_fx_image.mxcsr = 0x1f80;
|
|
memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
|
|
0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fx_init);
|
|
|
|
/*
|
|
* Allocate some memory and give it an address in the guest physical address
|
|
* space.
|
|
*
|
|
* Discontiguous memory is allowed, mostly for framebuffers.
|
|
*
|
|
* Must be called holding kvm->lock.
|
|
*/
|
|
int __kvm_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
int user_alloc)
|
|
{
|
|
int r;
|
|
gfn_t base_gfn;
|
|
unsigned long npages;
|
|
unsigned long i;
|
|
struct kvm_memory_slot *memslot;
|
|
struct kvm_memory_slot old, new;
|
|
|
|
r = -EINVAL;
|
|
/* General sanity checks */
|
|
if (mem->memory_size & (PAGE_SIZE - 1))
|
|
goto out;
|
|
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
|
|
goto out;
|
|
if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
|
|
goto out;
|
|
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
|
|
goto out;
|
|
|
|
memslot = &kvm->memslots[mem->slot];
|
|
base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
|
|
npages = mem->memory_size >> PAGE_SHIFT;
|
|
|
|
if (!npages)
|
|
mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
|
|
|
|
new = old = *memslot;
|
|
|
|
new.base_gfn = base_gfn;
|
|
new.npages = npages;
|
|
new.flags = mem->flags;
|
|
|
|
/* Disallow changing a memory slot's size. */
|
|
r = -EINVAL;
|
|
if (npages && old.npages && npages != old.npages)
|
|
goto out_free;
|
|
|
|
/* Check for overlaps */
|
|
r = -EEXIST;
|
|
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
|
|
struct kvm_memory_slot *s = &kvm->memslots[i];
|
|
|
|
if (s == memslot)
|
|
continue;
|
|
if (!((base_gfn + npages <= s->base_gfn) ||
|
|
(base_gfn >= s->base_gfn + s->npages)))
|
|
goto out_free;
|
|
}
|
|
|
|
/* Free page dirty bitmap if unneeded */
|
|
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
|
|
new.dirty_bitmap = NULL;
|
|
|
|
r = -ENOMEM;
|
|
|
|
/* Allocate if a slot is being created */
|
|
if (npages && !new.rmap) {
|
|
new.rmap = vmalloc(npages * sizeof(struct page *));
|
|
|
|
if (!new.rmap)
|
|
goto out_free;
|
|
|
|
memset(new.rmap, 0, npages * sizeof(*new.rmap));
|
|
|
|
new.user_alloc = user_alloc;
|
|
if (user_alloc)
|
|
new.userspace_addr = mem->userspace_addr;
|
|
else {
|
|
down_write(¤t->mm->mmap_sem);
|
|
new.userspace_addr = do_mmap(NULL, 0,
|
|
npages * PAGE_SIZE,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_ANONYMOUS,
|
|
0);
|
|
up_write(¤t->mm->mmap_sem);
|
|
|
|
if (IS_ERR((void *)new.userspace_addr))
|
|
goto out_free;
|
|
}
|
|
} else {
|
|
if (!old.user_alloc && old.rmap) {
|
|
int ret;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
ret = do_munmap(current->mm, old.userspace_addr,
|
|
old.npages * PAGE_SIZE);
|
|
up_write(¤t->mm->mmap_sem);
|
|
if (ret < 0)
|
|
printk(KERN_WARNING
|
|
"kvm_vm_ioctl_set_memory_region: "
|
|
"failed to munmap memory\n");
|
|
}
|
|
}
|
|
|
|
/* Allocate page dirty bitmap if needed */
|
|
if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
|
|
unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
|
|
|
|
new.dirty_bitmap = vmalloc(dirty_bytes);
|
|
if (!new.dirty_bitmap)
|
|
goto out_free;
|
|
memset(new.dirty_bitmap, 0, dirty_bytes);
|
|
}
|
|
|
|
if (mem->slot >= kvm->nmemslots)
|
|
kvm->nmemslots = mem->slot + 1;
|
|
|
|
if (!kvm->n_requested_mmu_pages) {
|
|
unsigned int n_pages;
|
|
|
|
if (npages) {
|
|
n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
|
|
kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
|
|
n_pages);
|
|
} else {
|
|
unsigned int nr_mmu_pages;
|
|
|
|
n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
|
|
nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
|
|
nr_mmu_pages = max(nr_mmu_pages,
|
|
(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
|
|
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
|
|
}
|
|
}
|
|
|
|
*memslot = new;
|
|
|
|
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
kvm_free_physmem_slot(&old, &new);
|
|
return 0;
|
|
|
|
out_free:
|
|
kvm_free_physmem_slot(&new, &old);
|
|
out:
|
|
return r;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
|
|
|
|
int kvm_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
int user_alloc)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
r = __kvm_set_memory_region(kvm, mem, user_alloc);
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_memory_region);
|
|
|
|
int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
|
|
struct
|
|
kvm_userspace_memory_region *mem,
|
|
int user_alloc)
|
|
{
|
|
if (mem->slot >= KVM_MEMORY_SLOTS)
|
|
return -EINVAL;
|
|
return kvm_set_memory_region(kvm, mem, user_alloc);
|
|
}
|
|
|
|
/*
|
|
* Get (and clear) the dirty memory log for a memory slot.
|
|
*/
|
|
static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
|
|
struct kvm_dirty_log *log)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
int r, i;
|
|
int n;
|
|
unsigned long any = 0;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
r = -EINVAL;
|
|
if (log->slot >= KVM_MEMORY_SLOTS)
|
|
goto out;
|
|
|
|
memslot = &kvm->memslots[log->slot];
|
|
r = -ENOENT;
|
|
if (!memslot->dirty_bitmap)
|
|
goto out;
|
|
|
|
n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
|
|
|
|
for (i = 0; !any && i < n/sizeof(long); ++i)
|
|
any = memslot->dirty_bitmap[i];
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
|
|
goto out;
|
|
|
|
/* If nothing is dirty, don't bother messing with page tables. */
|
|
if (any) {
|
|
kvm_mmu_slot_remove_write_access(kvm, log->slot);
|
|
kvm_flush_remote_tlbs(kvm);
|
|
memset(memslot->dirty_bitmap, 0, n);
|
|
}
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
int is_error_page(struct page *page)
|
|
{
|
|
return page == bad_page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_error_page);
|
|
|
|
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
int i;
|
|
struct kvm_mem_alias *alias;
|
|
|
|
for (i = 0; i < kvm->naliases; ++i) {
|
|
alias = &kvm->aliases[i];
|
|
if (gfn >= alias->base_gfn
|
|
&& gfn < alias->base_gfn + alias->npages)
|
|
return alias->target_gfn + gfn - alias->base_gfn;
|
|
}
|
|
return gfn;
|
|
}
|
|
|
|
static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < kvm->nmemslots; ++i) {
|
|
struct kvm_memory_slot *memslot = &kvm->memslots[i];
|
|
|
|
if (gfn >= memslot->base_gfn
|
|
&& gfn < memslot->base_gfn + memslot->npages)
|
|
return memslot;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
gfn = unalias_gfn(kvm, gfn);
|
|
return __gfn_to_memslot(kvm, gfn);
|
|
}
|
|
|
|
int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
int i;
|
|
|
|
gfn = unalias_gfn(kvm, gfn);
|
|
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
|
|
struct kvm_memory_slot *memslot = &kvm->memslots[i];
|
|
|
|
if (gfn >= memslot->base_gfn
|
|
&& gfn < memslot->base_gfn + memslot->npages)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
|
|
|
|
/*
|
|
* Requires current->mm->mmap_sem to be held
|
|
*/
|
|
static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *slot;
|
|
struct page *page[1];
|
|
int npages;
|
|
|
|
might_sleep();
|
|
|
|
gfn = unalias_gfn(kvm, gfn);
|
|
slot = __gfn_to_memslot(kvm, gfn);
|
|
if (!slot) {
|
|
get_page(bad_page);
|
|
return bad_page;
|
|
}
|
|
|
|
npages = get_user_pages(current, current->mm,
|
|
slot->userspace_addr
|
|
+ (gfn - slot->base_gfn) * PAGE_SIZE, 1,
|
|
1, 1, page, NULL);
|
|
if (npages != 1) {
|
|
get_page(bad_page);
|
|
return bad_page;
|
|
}
|
|
|
|
return page[0];
|
|
}
|
|
|
|
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct page *page;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
page = __gfn_to_page(kvm, gfn);
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
return page;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(gfn_to_page);
|
|
|
|
void kvm_release_page(struct page *page)
|
|
{
|
|
if (!PageReserved(page))
|
|
SetPageDirty(page);
|
|
put_page(page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_page);
|
|
|
|
static int next_segment(unsigned long len, int offset)
|
|
{
|
|
if (len > PAGE_SIZE - offset)
|
|
return PAGE_SIZE - offset;
|
|
else
|
|
return len;
|
|
}
|
|
|
|
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
|
|
int len)
|
|
{
|
|
void *page_virt;
|
|
struct page *page;
|
|
|
|
page = gfn_to_page(kvm, gfn);
|
|
if (is_error_page(page)) {
|
|
kvm_release_page(page);
|
|
return -EFAULT;
|
|
}
|
|
page_virt = kmap_atomic(page, KM_USER0);
|
|
|
|
memcpy(data, page_virt + offset, len);
|
|
|
|
kunmap_atomic(page_virt, KM_USER0);
|
|
kvm_release_page(page);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
|
|
|
|
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest);
|
|
|
|
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
|
|
int offset, int len)
|
|
{
|
|
void *page_virt;
|
|
struct page *page;
|
|
|
|
page = gfn_to_page(kvm, gfn);
|
|
if (is_error_page(page)) {
|
|
kvm_release_page(page);
|
|
return -EFAULT;
|
|
}
|
|
page_virt = kmap_atomic(page, KM_USER0);
|
|
|
|
memcpy(page_virt + offset, data, len);
|
|
|
|
kunmap_atomic(page_virt, KM_USER0);
|
|
mark_page_dirty(kvm, gfn);
|
|
kvm_release_page(page);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
|
|
|
|
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
|
|
unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
|
|
{
|
|
void *page_virt;
|
|
struct page *page;
|
|
|
|
page = gfn_to_page(kvm, gfn);
|
|
if (is_error_page(page)) {
|
|
kvm_release_page(page);
|
|
return -EFAULT;
|
|
}
|
|
page_virt = kmap_atomic(page, KM_USER0);
|
|
|
|
memset(page_virt + offset, 0, len);
|
|
|
|
kunmap_atomic(page_virt, KM_USER0);
|
|
kvm_release_page(page);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
|
|
|
|
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_clear_guest);
|
|
|
|
/* WARNING: Does not work on aliased pages. */
|
|
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
memslot = __gfn_to_memslot(kvm, gfn);
|
|
if (memslot && memslot->dirty_bitmap) {
|
|
unsigned long rel_gfn = gfn - memslot->base_gfn;
|
|
|
|
/* avoid RMW */
|
|
if (!test_bit(rel_gfn, memslot->dirty_bitmap))
|
|
set_bit(rel_gfn, memslot->dirty_bitmap);
|
|
}
|
|
}
|
|
|
|
int emulator_read_std(unsigned long addr,
|
|
void *val,
|
|
unsigned int bytes,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
void *data = val;
|
|
|
|
while (bytes) {
|
|
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
|
|
unsigned offset = addr & (PAGE_SIZE-1);
|
|
unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
|
|
int ret;
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
|
|
if (ret < 0)
|
|
return X86EMUL_UNHANDLEABLE;
|
|
|
|
bytes -= tocopy;
|
|
data += tocopy;
|
|
addr += tocopy;
|
|
}
|
|
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(emulator_read_std);
|
|
|
|
static int emulator_write_std(unsigned long addr,
|
|
const void *val,
|
|
unsigned int bytes,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
|
|
return X86EMUL_UNHANDLEABLE;
|
|
}
|
|
|
|
/*
|
|
* Only apic need an MMIO device hook, so shortcut now..
|
|
*/
|
|
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
|
|
gpa_t addr)
|
|
{
|
|
struct kvm_io_device *dev;
|
|
|
|
if (vcpu->apic) {
|
|
dev = &vcpu->apic->dev;
|
|
if (dev->in_range(dev, addr))
|
|
return dev;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
|
|
gpa_t addr)
|
|
{
|
|
struct kvm_io_device *dev;
|
|
|
|
dev = vcpu_find_pervcpu_dev(vcpu, addr);
|
|
if (dev == NULL)
|
|
dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
|
|
return dev;
|
|
}
|
|
|
|
static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
|
|
gpa_t addr)
|
|
{
|
|
return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
|
|
}
|
|
|
|
static int emulator_read_emulated(unsigned long addr,
|
|
void *val,
|
|
unsigned int bytes,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_io_device *mmio_dev;
|
|
gpa_t gpa;
|
|
|
|
if (vcpu->mmio_read_completed) {
|
|
memcpy(val, vcpu->mmio_data, bytes);
|
|
vcpu->mmio_read_completed = 0;
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
|
|
|
|
/* For APIC access vmexit */
|
|
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
goto mmio;
|
|
|
|
if (emulator_read_std(addr, val, bytes, vcpu)
|
|
== X86EMUL_CONTINUE)
|
|
return X86EMUL_CONTINUE;
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
|
|
mmio:
|
|
/*
|
|
* Is this MMIO handled locally?
|
|
*/
|
|
mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
|
|
if (mmio_dev) {
|
|
kvm_iodevice_read(mmio_dev, gpa, bytes, val);
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_phys_addr = gpa;
|
|
vcpu->mmio_size = bytes;
|
|
vcpu->mmio_is_write = 0;
|
|
|
|
return X86EMUL_UNHANDLEABLE;
|
|
}
|
|
|
|
static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
const void *val, int bytes)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
|
|
if (ret < 0)
|
|
return 0;
|
|
kvm_mmu_pte_write(vcpu, gpa, val, bytes);
|
|
return 1;
|
|
}
|
|
|
|
static int emulator_write_emulated_onepage(unsigned long addr,
|
|
const void *val,
|
|
unsigned int bytes,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_io_device *mmio_dev;
|
|
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
|
|
|
|
if (gpa == UNMAPPED_GVA) {
|
|
kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
}
|
|
|
|
/* For APIC access vmexit */
|
|
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
goto mmio;
|
|
|
|
if (emulator_write_phys(vcpu, gpa, val, bytes))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
mmio:
|
|
/*
|
|
* Is this MMIO handled locally?
|
|
*/
|
|
mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
|
|
if (mmio_dev) {
|
|
kvm_iodevice_write(mmio_dev, gpa, bytes, val);
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_phys_addr = gpa;
|
|
vcpu->mmio_size = bytes;
|
|
vcpu->mmio_is_write = 1;
|
|
memcpy(vcpu->mmio_data, val, bytes);
|
|
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int emulator_write_emulated(unsigned long addr,
|
|
const void *val,
|
|
unsigned int bytes,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Crossing a page boundary? */
|
|
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
|
|
int rc, now;
|
|
|
|
now = -addr & ~PAGE_MASK;
|
|
rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
|
|
if (rc != X86EMUL_CONTINUE)
|
|
return rc;
|
|
addr += now;
|
|
val += now;
|
|
bytes -= now;
|
|
}
|
|
return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(emulator_write_emulated);
|
|
|
|
static int emulator_cmpxchg_emulated(unsigned long addr,
|
|
const void *old,
|
|
const void *new,
|
|
unsigned int bytes,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
static int reported;
|
|
|
|
if (!reported) {
|
|
reported = 1;
|
|
printk(KERN_WARNING "kvm: emulating exchange as write\n");
|
|
}
|
|
return emulator_write_emulated(addr, new, bytes, vcpu);
|
|
}
|
|
|
|
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
return kvm_x86_ops->get_segment_base(vcpu, seg);
|
|
}
|
|
|
|
int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
|
|
{
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int emulate_clts(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
|
|
{
|
|
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
|
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
*dest = kvm_x86_ops->get_dr(vcpu, dr);
|
|
return X86EMUL_CONTINUE;
|
|
default:
|
|
pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
|
|
return X86EMUL_UNHANDLEABLE;
|
|
}
|
|
}
|
|
|
|
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
|
|
{
|
|
unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
|
|
int exception;
|
|
|
|
kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
|
|
if (exception) {
|
|
/* FIXME: better handling */
|
|
return X86EMUL_UNHANDLEABLE;
|
|
}
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
|
|
{
|
|
static int reported;
|
|
u8 opcodes[4];
|
|
unsigned long rip = vcpu->rip;
|
|
unsigned long rip_linear;
|
|
|
|
rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
|
|
|
|
if (reported)
|
|
return;
|
|
|
|
emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
|
|
|
|
printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
|
|
context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
|
|
reported = 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
|
|
|
|
struct x86_emulate_ops emulate_ops = {
|
|
.read_std = emulator_read_std,
|
|
.write_std = emulator_write_std,
|
|
.read_emulated = emulator_read_emulated,
|
|
.write_emulated = emulator_write_emulated,
|
|
.cmpxchg_emulated = emulator_cmpxchg_emulated,
|
|
};
|
|
|
|
int emulate_instruction(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *run,
|
|
unsigned long cr2,
|
|
u16 error_code,
|
|
int no_decode)
|
|
{
|
|
int r;
|
|
|
|
vcpu->mmio_fault_cr2 = cr2;
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
|
|
vcpu->mmio_is_write = 0;
|
|
vcpu->pio.string = 0;
|
|
|
|
if (!no_decode) {
|
|
int cs_db, cs_l;
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
|
|
vcpu->emulate_ctxt.vcpu = vcpu;
|
|
vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
|
|
vcpu->emulate_ctxt.cr2 = cr2;
|
|
vcpu->emulate_ctxt.mode =
|
|
(vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
|
|
? X86EMUL_MODE_REAL : cs_l
|
|
? X86EMUL_MODE_PROT64 : cs_db
|
|
? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
|
|
|
|
if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
|
|
vcpu->emulate_ctxt.cs_base = 0;
|
|
vcpu->emulate_ctxt.ds_base = 0;
|
|
vcpu->emulate_ctxt.es_base = 0;
|
|
vcpu->emulate_ctxt.ss_base = 0;
|
|
} else {
|
|
vcpu->emulate_ctxt.cs_base =
|
|
get_segment_base(vcpu, VCPU_SREG_CS);
|
|
vcpu->emulate_ctxt.ds_base =
|
|
get_segment_base(vcpu, VCPU_SREG_DS);
|
|
vcpu->emulate_ctxt.es_base =
|
|
get_segment_base(vcpu, VCPU_SREG_ES);
|
|
vcpu->emulate_ctxt.ss_base =
|
|
get_segment_base(vcpu, VCPU_SREG_SS);
|
|
}
|
|
|
|
vcpu->emulate_ctxt.gs_base =
|
|
get_segment_base(vcpu, VCPU_SREG_GS);
|
|
vcpu->emulate_ctxt.fs_base =
|
|
get_segment_base(vcpu, VCPU_SREG_FS);
|
|
|
|
r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
|
|
if (r) {
|
|
if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
|
|
return EMULATE_DONE;
|
|
return EMULATE_FAIL;
|
|
}
|
|
}
|
|
|
|
r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
|
|
|
|
if (vcpu->pio.string)
|
|
return EMULATE_DO_MMIO;
|
|
|
|
if ((r || vcpu->mmio_is_write) && run) {
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
run->mmio.phys_addr = vcpu->mmio_phys_addr;
|
|
memcpy(run->mmio.data, vcpu->mmio_data, 8);
|
|
run->mmio.len = vcpu->mmio_size;
|
|
run->mmio.is_write = vcpu->mmio_is_write;
|
|
}
|
|
|
|
if (r) {
|
|
if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
|
|
return EMULATE_DONE;
|
|
if (!vcpu->mmio_needed) {
|
|
kvm_report_emulation_failure(vcpu, "mmio");
|
|
return EMULATE_FAIL;
|
|
}
|
|
return EMULATE_DO_MMIO;
|
|
}
|
|
|
|
kvm_x86_ops->decache_regs(vcpu);
|
|
kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
|
|
|
|
if (vcpu->mmio_is_write) {
|
|
vcpu->mmio_needed = 0;
|
|
return EMULATE_DO_MMIO;
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(emulate_instruction);
|
|
|
|
/*
|
|
* The vCPU has executed a HLT instruction with in-kernel mode enabled.
|
|
*/
|
|
static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
add_wait_queue(&vcpu->wq, &wait);
|
|
|
|
/*
|
|
* We will block until either an interrupt or a signal wakes us up
|
|
*/
|
|
while (!kvm_cpu_has_interrupt(vcpu)
|
|
&& !signal_pending(current)
|
|
&& vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
|
|
&& vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
vcpu_put(vcpu);
|
|
schedule();
|
|
vcpu_load(vcpu);
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&vcpu->wq, &wait);
|
|
}
|
|
|
|
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
|
|
{
|
|
++vcpu->stat.halt_exits;
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
vcpu->mp_state = VCPU_MP_STATE_HALTED;
|
|
kvm_vcpu_block(vcpu);
|
|
if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
|
|
return -EINTR;
|
|
return 1;
|
|
} else {
|
|
vcpu->run->exit_reason = KVM_EXIT_HLT;
|
|
return 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
|
|
|
|
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long nr, a0, a1, a2, a3, ret;
|
|
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
|
|
nr = vcpu->regs[VCPU_REGS_RAX];
|
|
a0 = vcpu->regs[VCPU_REGS_RBX];
|
|
a1 = vcpu->regs[VCPU_REGS_RCX];
|
|
a2 = vcpu->regs[VCPU_REGS_RDX];
|
|
a3 = vcpu->regs[VCPU_REGS_RSI];
|
|
|
|
if (!is_long_mode(vcpu)) {
|
|
nr &= 0xFFFFFFFF;
|
|
a0 &= 0xFFFFFFFF;
|
|
a1 &= 0xFFFFFFFF;
|
|
a2 &= 0xFFFFFFFF;
|
|
a3 &= 0xFFFFFFFF;
|
|
}
|
|
|
|
switch (nr) {
|
|
default:
|
|
ret = -KVM_ENOSYS;
|
|
break;
|
|
}
|
|
vcpu->regs[VCPU_REGS_RAX] = ret;
|
|
kvm_x86_ops->decache_regs(vcpu);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
|
|
|
|
int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
char instruction[3];
|
|
int ret = 0;
|
|
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
|
|
/*
|
|
* Blow out the MMU to ensure that no other VCPU has an active mapping
|
|
* to ensure that the updated hypercall appears atomically across all
|
|
* VCPUs.
|
|
*/
|
|
kvm_mmu_zap_all(vcpu->kvm);
|
|
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
kvm_x86_ops->patch_hypercall(vcpu, instruction);
|
|
if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
|
|
!= X86EMUL_CONTINUE)
|
|
ret = -EFAULT;
|
|
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
|
|
{
|
|
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
|
|
}
|
|
|
|
void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
|
|
{
|
|
struct descriptor_table dt = { limit, base };
|
|
|
|
kvm_x86_ops->set_gdt(vcpu, &dt);
|
|
}
|
|
|
|
void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
|
|
{
|
|
struct descriptor_table dt = { limit, base };
|
|
|
|
kvm_x86_ops->set_idt(vcpu, &dt);
|
|
}
|
|
|
|
void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
|
|
unsigned long *rflags)
|
|
{
|
|
lmsw(vcpu, msw);
|
|
*rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
}
|
|
|
|
unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
|
|
{
|
|
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
|
|
switch (cr) {
|
|
case 0:
|
|
return vcpu->cr0;
|
|
case 2:
|
|
return vcpu->cr2;
|
|
case 3:
|
|
return vcpu->cr3;
|
|
case 4:
|
|
return vcpu->cr4;
|
|
default:
|
|
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
|
|
unsigned long *rflags)
|
|
{
|
|
switch (cr) {
|
|
case 0:
|
|
set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
|
|
*rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
break;
|
|
case 2:
|
|
vcpu->cr2 = val;
|
|
break;
|
|
case 3:
|
|
set_cr3(vcpu, val);
|
|
break;
|
|
case 4:
|
|
set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
|
|
break;
|
|
default:
|
|
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
|
|
}
|
|
}
|
|
|
|
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data;
|
|
|
|
switch (msr) {
|
|
case 0xc0010010: /* SYSCFG */
|
|
case 0xc0010015: /* HWCR */
|
|
case MSR_IA32_PLATFORM_ID:
|
|
case MSR_IA32_P5_MC_ADDR:
|
|
case MSR_IA32_P5_MC_TYPE:
|
|
case MSR_IA32_MC0_CTL:
|
|
case MSR_IA32_MCG_STATUS:
|
|
case MSR_IA32_MCG_CAP:
|
|
case MSR_IA32_MC0_MISC:
|
|
case MSR_IA32_MC0_MISC+4:
|
|
case MSR_IA32_MC0_MISC+8:
|
|
case MSR_IA32_MC0_MISC+12:
|
|
case MSR_IA32_MC0_MISC+16:
|
|
case MSR_IA32_UCODE_REV:
|
|
case MSR_IA32_PERF_STATUS:
|
|
case MSR_IA32_EBL_CR_POWERON:
|
|
/* MTRR registers */
|
|
case 0xfe:
|
|
case 0x200 ... 0x2ff:
|
|
data = 0;
|
|
break;
|
|
case 0xcd: /* fsb frequency */
|
|
data = 3;
|
|
break;
|
|
case MSR_IA32_APICBASE:
|
|
data = kvm_get_apic_base(vcpu);
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
data = vcpu->ia32_misc_enable_msr;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_EFER:
|
|
data = vcpu->shadow_efer;
|
|
break;
|
|
#endif
|
|
default:
|
|
pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
|
|
return 1;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
|
|
|
|
/*
|
|
* Reads an msr value (of 'msr_index') into 'pdata'.
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
|
|
{
|
|
return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
if (efer & EFER_RESERVED_BITS) {
|
|
printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
|
|
efer);
|
|
inject_gp(vcpu);
|
|
return;
|
|
}
|
|
|
|
if (is_paging(vcpu)
|
|
&& (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
|
|
printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
|
|
inject_gp(vcpu);
|
|
return;
|
|
}
|
|
|
|
kvm_x86_ops->set_efer(vcpu, efer);
|
|
|
|
efer &= ~EFER_LMA;
|
|
efer |= vcpu->shadow_efer & EFER_LMA;
|
|
|
|
vcpu->shadow_efer = efer;
|
|
}
|
|
|
|
#endif
|
|
|
|
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
switch (msr) {
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_EFER:
|
|
set_efer(vcpu, data);
|
|
break;
|
|
#endif
|
|
case MSR_IA32_MC0_STATUS:
|
|
pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
|
|
__FUNCTION__, data);
|
|
break;
|
|
case MSR_IA32_MCG_STATUS:
|
|
pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
|
|
__FUNCTION__, data);
|
|
break;
|
|
case MSR_IA32_UCODE_REV:
|
|
case MSR_IA32_UCODE_WRITE:
|
|
case 0x200 ... 0x2ff: /* MTRRs */
|
|
break;
|
|
case MSR_IA32_APICBASE:
|
|
kvm_set_apic_base(vcpu, data);
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
vcpu->ia32_misc_enable_msr = data;
|
|
break;
|
|
default:
|
|
pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
|
|
|
|
/*
|
|
* Writes msr value into into the appropriate "register".
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
|
|
{
|
|
return kvm_x86_ops->set_msr(vcpu, msr_index, data);
|
|
}
|
|
|
|
void kvm_resched(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!need_resched())
|
|
return;
|
|
cond_resched();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_resched);
|
|
|
|
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
u32 function;
|
|
struct kvm_cpuid_entry *e, *best;
|
|
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
function = vcpu->regs[VCPU_REGS_RAX];
|
|
vcpu->regs[VCPU_REGS_RAX] = 0;
|
|
vcpu->regs[VCPU_REGS_RBX] = 0;
|
|
vcpu->regs[VCPU_REGS_RCX] = 0;
|
|
vcpu->regs[VCPU_REGS_RDX] = 0;
|
|
best = NULL;
|
|
for (i = 0; i < vcpu->cpuid_nent; ++i) {
|
|
e = &vcpu->cpuid_entries[i];
|
|
if (e->function == function) {
|
|
best = e;
|
|
break;
|
|
}
|
|
/*
|
|
* Both basic or both extended?
|
|
*/
|
|
if (((e->function ^ function) & 0x80000000) == 0)
|
|
if (!best || e->function > best->function)
|
|
best = e;
|
|
}
|
|
if (best) {
|
|
vcpu->regs[VCPU_REGS_RAX] = best->eax;
|
|
vcpu->regs[VCPU_REGS_RBX] = best->ebx;
|
|
vcpu->regs[VCPU_REGS_RCX] = best->ecx;
|
|
vcpu->regs[VCPU_REGS_RDX] = best->edx;
|
|
}
|
|
kvm_x86_ops->decache_regs(vcpu);
|
|
kvm_x86_ops->skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|
|
|
|
static int pio_copy_data(struct kvm_vcpu *vcpu)
|
|
{
|
|
void *p = vcpu->pio_data;
|
|
void *q;
|
|
unsigned bytes;
|
|
int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
|
|
|
|
q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
|
|
PAGE_KERNEL);
|
|
if (!q) {
|
|
free_pio_guest_pages(vcpu);
|
|
return -ENOMEM;
|
|
}
|
|
q += vcpu->pio.guest_page_offset;
|
|
bytes = vcpu->pio.size * vcpu->pio.cur_count;
|
|
if (vcpu->pio.in)
|
|
memcpy(q, p, bytes);
|
|
else
|
|
memcpy(p, q, bytes);
|
|
q -= vcpu->pio.guest_page_offset;
|
|
vunmap(q);
|
|
free_pio_guest_pages(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int complete_pio(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pio_request *io = &vcpu->pio;
|
|
long delta;
|
|
int r;
|
|
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
|
|
if (!io->string) {
|
|
if (io->in)
|
|
memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
|
|
io->size);
|
|
} else {
|
|
if (io->in) {
|
|
r = pio_copy_data(vcpu);
|
|
if (r) {
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
delta = 1;
|
|
if (io->rep) {
|
|
delta *= io->cur_count;
|
|
/*
|
|
* The size of the register should really depend on
|
|
* current address size.
|
|
*/
|
|
vcpu->regs[VCPU_REGS_RCX] -= delta;
|
|
}
|
|
if (io->down)
|
|
delta = -delta;
|
|
delta *= io->size;
|
|
if (io->in)
|
|
vcpu->regs[VCPU_REGS_RDI] += delta;
|
|
else
|
|
vcpu->regs[VCPU_REGS_RSI] += delta;
|
|
}
|
|
|
|
kvm_x86_ops->decache_regs(vcpu);
|
|
|
|
io->count -= io->cur_count;
|
|
io->cur_count = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kernel_pio(struct kvm_io_device *pio_dev,
|
|
struct kvm_vcpu *vcpu,
|
|
void *pd)
|
|
{
|
|
/* TODO: String I/O for in kernel device */
|
|
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
if (vcpu->pio.in)
|
|
kvm_iodevice_read(pio_dev, vcpu->pio.port,
|
|
vcpu->pio.size,
|
|
pd);
|
|
else
|
|
kvm_iodevice_write(pio_dev, vcpu->pio.port,
|
|
vcpu->pio.size,
|
|
pd);
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
}
|
|
|
|
static void pio_string_write(struct kvm_io_device *pio_dev,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pio_request *io = &vcpu->pio;
|
|
void *pd = vcpu->pio_data;
|
|
int i;
|
|
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
for (i = 0; i < io->cur_count; i++) {
|
|
kvm_iodevice_write(pio_dev, io->port,
|
|
io->size,
|
|
pd);
|
|
pd += io->size;
|
|
}
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
}
|
|
|
|
int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
|
|
int size, unsigned port)
|
|
{
|
|
struct kvm_io_device *pio_dev;
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_IO;
|
|
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
|
|
vcpu->run->io.size = vcpu->pio.size = size;
|
|
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
|
|
vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
|
|
vcpu->run->io.port = vcpu->pio.port = port;
|
|
vcpu->pio.in = in;
|
|
vcpu->pio.string = 0;
|
|
vcpu->pio.down = 0;
|
|
vcpu->pio.guest_page_offset = 0;
|
|
vcpu->pio.rep = 0;
|
|
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
|
|
kvm_x86_ops->decache_regs(vcpu);
|
|
|
|
kvm_x86_ops->skip_emulated_instruction(vcpu);
|
|
|
|
pio_dev = vcpu_find_pio_dev(vcpu, port);
|
|
if (pio_dev) {
|
|
kernel_pio(pio_dev, vcpu, vcpu->pio_data);
|
|
complete_pio(vcpu);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_pio);
|
|
|
|
int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
|
|
int size, unsigned long count, int down,
|
|
gva_t address, int rep, unsigned port)
|
|
{
|
|
unsigned now, in_page;
|
|
int i, ret = 0;
|
|
int nr_pages = 1;
|
|
struct page *page;
|
|
struct kvm_io_device *pio_dev;
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_IO;
|
|
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
|
|
vcpu->run->io.size = vcpu->pio.size = size;
|
|
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
|
|
vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
|
|
vcpu->run->io.port = vcpu->pio.port = port;
|
|
vcpu->pio.in = in;
|
|
vcpu->pio.string = 1;
|
|
vcpu->pio.down = down;
|
|
vcpu->pio.guest_page_offset = offset_in_page(address);
|
|
vcpu->pio.rep = rep;
|
|
|
|
if (!count) {
|
|
kvm_x86_ops->skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
if (!down)
|
|
in_page = PAGE_SIZE - offset_in_page(address);
|
|
else
|
|
in_page = offset_in_page(address) + size;
|
|
now = min(count, (unsigned long)in_page / size);
|
|
if (!now) {
|
|
/*
|
|
* String I/O straddles page boundary. Pin two guest pages
|
|
* so that we satisfy atomicity constraints. Do just one
|
|
* transaction to avoid complexity.
|
|
*/
|
|
nr_pages = 2;
|
|
now = 1;
|
|
}
|
|
if (down) {
|
|
/*
|
|
* String I/O in reverse. Yuck. Kill the guest, fix later.
|
|
*/
|
|
pr_unimpl(vcpu, "guest string pio down\n");
|
|
inject_gp(vcpu);
|
|
return 1;
|
|
}
|
|
vcpu->run->io.count = now;
|
|
vcpu->pio.cur_count = now;
|
|
|
|
if (vcpu->pio.cur_count == vcpu->pio.count)
|
|
kvm_x86_ops->skip_emulated_instruction(vcpu);
|
|
|
|
for (i = 0; i < nr_pages; ++i) {
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
page = gva_to_page(vcpu, address + i * PAGE_SIZE);
|
|
vcpu->pio.guest_pages[i] = page;
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
if (!page) {
|
|
inject_gp(vcpu);
|
|
free_pio_guest_pages(vcpu);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
pio_dev = vcpu_find_pio_dev(vcpu, port);
|
|
if (!vcpu->pio.in) {
|
|
/* string PIO write */
|
|
ret = pio_copy_data(vcpu);
|
|
if (ret >= 0 && pio_dev) {
|
|
pio_string_write(pio_dev, vcpu);
|
|
complete_pio(vcpu);
|
|
if (vcpu->pio.count == 0)
|
|
ret = 1;
|
|
}
|
|
} else if (pio_dev)
|
|
pr_unimpl(vcpu, "no string pio read support yet, "
|
|
"port %x size %d count %ld\n",
|
|
port, size, count);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
|
|
|
|
/*
|
|
* Check if userspace requested an interrupt window, and that the
|
|
* interrupt window is open.
|
|
*
|
|
* No need to exit to userspace if we already have an interrupt queued.
|
|
*/
|
|
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
return (!vcpu->irq_summary &&
|
|
kvm_run->request_interrupt_window &&
|
|
vcpu->interrupt_window_open &&
|
|
(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
|
|
}
|
|
|
|
static void post_kvm_run_save(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
|
|
kvm_run->cr8 = get_cr8(vcpu);
|
|
kvm_run->apic_base = kvm_get_apic_base(vcpu);
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
kvm_run->ready_for_interrupt_injection = 1;
|
|
else
|
|
kvm_run->ready_for_interrupt_injection =
|
|
(vcpu->interrupt_window_open &&
|
|
vcpu->irq_summary == 0);
|
|
}
|
|
|
|
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
int r;
|
|
|
|
if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
|
|
pr_debug("vcpu %d received sipi with vector # %x\n",
|
|
vcpu->vcpu_id, vcpu->sipi_vector);
|
|
kvm_lapic_reset(vcpu);
|
|
r = kvm_x86_ops->vcpu_reset(vcpu);
|
|
if (r)
|
|
return r;
|
|
vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
|
|
}
|
|
|
|
preempted:
|
|
if (vcpu->guest_debug.enabled)
|
|
kvm_x86_ops->guest_debug_pre(vcpu);
|
|
|
|
again:
|
|
r = kvm_mmu_reload(vcpu);
|
|
if (unlikely(r))
|
|
goto out;
|
|
|
|
kvm_inject_pending_timer_irqs(vcpu);
|
|
|
|
preempt_disable();
|
|
|
|
kvm_x86_ops->prepare_guest_switch(vcpu);
|
|
kvm_load_guest_fpu(vcpu);
|
|
|
|
local_irq_disable();
|
|
|
|
if (signal_pending(current)) {
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
r = -EINTR;
|
|
kvm_run->exit_reason = KVM_EXIT_INTR;
|
|
++vcpu->stat.signal_exits;
|
|
goto out;
|
|
}
|
|
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
kvm_x86_ops->inject_pending_irq(vcpu);
|
|
else if (!vcpu->mmio_read_completed)
|
|
kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
|
|
|
|
vcpu->guest_mode = 1;
|
|
kvm_guest_enter();
|
|
|
|
if (vcpu->requests)
|
|
if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
|
|
kvm_x86_ops->tlb_flush(vcpu);
|
|
|
|
kvm_x86_ops->run(vcpu, kvm_run);
|
|
|
|
vcpu->guest_mode = 0;
|
|
local_irq_enable();
|
|
|
|
++vcpu->stat.exits;
|
|
|
|
/*
|
|
* We must have an instruction between local_irq_enable() and
|
|
* kvm_guest_exit(), so the timer interrupt isn't delayed by
|
|
* the interrupt shadow. The stat.exits increment will do nicely.
|
|
* But we need to prevent reordering, hence this barrier():
|
|
*/
|
|
barrier();
|
|
|
|
kvm_guest_exit();
|
|
|
|
preempt_enable();
|
|
|
|
/*
|
|
* Profile KVM exit RIPs:
|
|
*/
|
|
if (unlikely(prof_on == KVM_PROFILING)) {
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
profile_hit(KVM_PROFILING, (void *)vcpu->rip);
|
|
}
|
|
|
|
r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
|
|
|
|
if (r > 0) {
|
|
if (dm_request_for_irq_injection(vcpu, kvm_run)) {
|
|
r = -EINTR;
|
|
kvm_run->exit_reason = KVM_EXIT_INTR;
|
|
++vcpu->stat.request_irq_exits;
|
|
goto out;
|
|
}
|
|
if (!need_resched()) {
|
|
++vcpu->stat.light_exits;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (r > 0) {
|
|
kvm_resched(vcpu);
|
|
goto preempted;
|
|
}
|
|
|
|
post_kvm_run_save(vcpu, kvm_run);
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
int r;
|
|
sigset_t sigsaved;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
|
|
kvm_vcpu_block(vcpu);
|
|
vcpu_put(vcpu);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
|
|
|
|
/* re-sync apic's tpr */
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
set_cr8(vcpu, kvm_run->cr8);
|
|
|
|
if (vcpu->pio.cur_count) {
|
|
r = complete_pio(vcpu);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
#if CONFIG_HAS_IOMEM
|
|
if (vcpu->mmio_needed) {
|
|
memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
|
|
vcpu->mmio_read_completed = 1;
|
|
vcpu->mmio_needed = 0;
|
|
r = emulate_instruction(vcpu, kvm_run,
|
|
vcpu->mmio_fault_cr2, 0, 1);
|
|
if (r == EMULATE_DO_MMIO) {
|
|
/*
|
|
* Read-modify-write. Back to userspace.
|
|
*/
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
#endif
|
|
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
|
|
kvm_x86_ops->decache_regs(vcpu);
|
|
}
|
|
|
|
r = __vcpu_run(vcpu, kvm_run);
|
|
|
|
out:
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
vcpu_put(vcpu);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
|
|
struct kvm_regs *regs)
|
|
{
|
|
vcpu_load(vcpu);
|
|
|
|
kvm_x86_ops->cache_regs(vcpu);
|
|
|
|
regs->rax = vcpu->regs[VCPU_REGS_RAX];
|
|
regs->rbx = vcpu->regs[VCPU_REGS_RBX];
|
|
regs->rcx = vcpu->regs[VCPU_REGS_RCX];
|
|
regs->rdx = vcpu->regs[VCPU_REGS_RDX];
|
|
regs->rsi = vcpu->regs[VCPU_REGS_RSI];
|
|
regs->rdi = vcpu->regs[VCPU_REGS_RDI];
|
|
regs->rsp = vcpu->regs[VCPU_REGS_RSP];
|
|
regs->rbp = vcpu->regs[VCPU_REGS_RBP];
|
|
#ifdef CONFIG_X86_64
|
|
regs->r8 = vcpu->regs[VCPU_REGS_R8];
|
|
regs->r9 = vcpu->regs[VCPU_REGS_R9];
|
|
regs->r10 = vcpu->regs[VCPU_REGS_R10];
|
|
regs->r11 = vcpu->regs[VCPU_REGS_R11];
|
|
regs->r12 = vcpu->regs[VCPU_REGS_R12];
|
|
regs->r13 = vcpu->regs[VCPU_REGS_R13];
|
|
regs->r14 = vcpu->regs[VCPU_REGS_R14];
|
|
regs->r15 = vcpu->regs[VCPU_REGS_R15];
|
|
#endif
|
|
|
|
regs->rip = vcpu->rip;
|
|
regs->rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
|
|
/*
|
|
* Don't leak debug flags in case they were set for guest debugging
|
|
*/
|
|
if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
|
|
regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
|
|
struct kvm_regs *regs)
|
|
{
|
|
vcpu_load(vcpu);
|
|
|
|
vcpu->regs[VCPU_REGS_RAX] = regs->rax;
|
|
vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
|
|
vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
|
|
vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
|
|
vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
|
|
vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
|
|
vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
|
|
vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
|
|
#ifdef CONFIG_X86_64
|
|
vcpu->regs[VCPU_REGS_R8] = regs->r8;
|
|
vcpu->regs[VCPU_REGS_R9] = regs->r9;
|
|
vcpu->regs[VCPU_REGS_R10] = regs->r10;
|
|
vcpu->regs[VCPU_REGS_R11] = regs->r11;
|
|
vcpu->regs[VCPU_REGS_R12] = regs->r12;
|
|
vcpu->regs[VCPU_REGS_R13] = regs->r13;
|
|
vcpu->regs[VCPU_REGS_R14] = regs->r14;
|
|
vcpu->regs[VCPU_REGS_R15] = regs->r15;
|
|
#endif
|
|
|
|
vcpu->rip = regs->rip;
|
|
kvm_x86_ops->set_rflags(vcpu, regs->rflags);
|
|
|
|
kvm_x86_ops->decache_regs(vcpu);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
return kvm_x86_ops->get_segment(vcpu, var, seg);
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct descriptor_table dt;
|
|
int pending_vec;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
|
|
get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
|
|
get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
|
|
get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
|
|
get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
|
|
get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
|
|
|
|
get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
|
|
get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
|
|
|
|
kvm_x86_ops->get_idt(vcpu, &dt);
|
|
sregs->idt.limit = dt.limit;
|
|
sregs->idt.base = dt.base;
|
|
kvm_x86_ops->get_gdt(vcpu, &dt);
|
|
sregs->gdt.limit = dt.limit;
|
|
sregs->gdt.base = dt.base;
|
|
|
|
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
|
|
sregs->cr0 = vcpu->cr0;
|
|
sregs->cr2 = vcpu->cr2;
|
|
sregs->cr3 = vcpu->cr3;
|
|
sregs->cr4 = vcpu->cr4;
|
|
sregs->cr8 = get_cr8(vcpu);
|
|
sregs->efer = vcpu->shadow_efer;
|
|
sregs->apic_base = kvm_get_apic_base(vcpu);
|
|
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
memset(sregs->interrupt_bitmap, 0,
|
|
sizeof sregs->interrupt_bitmap);
|
|
pending_vec = kvm_x86_ops->get_irq(vcpu);
|
|
if (pending_vec >= 0)
|
|
set_bit(pending_vec,
|
|
(unsigned long *)sregs->interrupt_bitmap);
|
|
} else
|
|
memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
|
|
sizeof sregs->interrupt_bitmap);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
return kvm_x86_ops->set_segment(vcpu, var, seg);
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
int mmu_reset_needed = 0;
|
|
int i, pending_vec, max_bits;
|
|
struct descriptor_table dt;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
dt.limit = sregs->idt.limit;
|
|
dt.base = sregs->idt.base;
|
|
kvm_x86_ops->set_idt(vcpu, &dt);
|
|
dt.limit = sregs->gdt.limit;
|
|
dt.base = sregs->gdt.base;
|
|
kvm_x86_ops->set_gdt(vcpu, &dt);
|
|
|
|
vcpu->cr2 = sregs->cr2;
|
|
mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
|
|
vcpu->cr3 = sregs->cr3;
|
|
|
|
set_cr8(vcpu, sregs->cr8);
|
|
|
|
mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
|
|
#ifdef CONFIG_X86_64
|
|
kvm_x86_ops->set_efer(vcpu, sregs->efer);
|
|
#endif
|
|
kvm_set_apic_base(vcpu, sregs->apic_base);
|
|
|
|
kvm_x86_ops->decache_cr4_guest_bits(vcpu);
|
|
|
|
mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
|
|
vcpu->cr0 = sregs->cr0;
|
|
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
|
|
|
|
mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
|
|
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
|
|
if (!is_long_mode(vcpu) && is_pae(vcpu))
|
|
load_pdptrs(vcpu, vcpu->cr3);
|
|
|
|
if (mmu_reset_needed)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm)) {
|
|
memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
|
|
sizeof vcpu->irq_pending);
|
|
vcpu->irq_summary = 0;
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
|
|
if (vcpu->irq_pending[i])
|
|
__set_bit(i, &vcpu->irq_summary);
|
|
} else {
|
|
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
|
|
pending_vec = find_first_bit(
|
|
(const unsigned long *)sregs->interrupt_bitmap,
|
|
max_bits);
|
|
/* Only pending external irq is handled here */
|
|
if (pending_vec < max_bits) {
|
|
kvm_x86_ops->set_irq(vcpu, pending_vec);
|
|
pr_debug("Set back pending irq %d\n",
|
|
pending_vec);
|
|
}
|
|
}
|
|
|
|
set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
|
|
set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
|
|
set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
|
|
set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
|
|
set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
|
|
set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
|
|
|
|
set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
|
|
set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
|
|
{
|
|
struct kvm_segment cs;
|
|
|
|
get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
*db = cs.db;
|
|
*l = cs.l;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
|
|
|
|
/*
|
|
* Translate a guest virtual address to a guest physical address.
|
|
*/
|
|
static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
|
|
struct kvm_translation *tr)
|
|
{
|
|
unsigned long vaddr = tr->linear_address;
|
|
gpa_t gpa;
|
|
|
|
vcpu_load(vcpu);
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
|
|
tr->physical_address = gpa;
|
|
tr->valid = gpa != UNMAPPED_GVA;
|
|
tr->writeable = 1;
|
|
tr->usermode = 0;
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
|
|
struct kvm_interrupt *irq)
|
|
{
|
|
if (irq->irq < 0 || irq->irq >= 256)
|
|
return -EINVAL;
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
return -ENXIO;
|
|
vcpu_load(vcpu);
|
|
|
|
set_bit(irq->irq, vcpu->irq_pending);
|
|
set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
|
|
struct kvm_debug_guest *dbg)
|
|
{
|
|
int r;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return r;
|
|
}
|
|
|
|
static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
int *type)
|
|
{
|
|
struct kvm_vcpu *vcpu = vma->vm_file->private_data;
|
|
unsigned long pgoff;
|
|
struct page *page;
|
|
|
|
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
|
|
if (pgoff == 0)
|
|
page = virt_to_page(vcpu->run);
|
|
else if (pgoff == KVM_PIO_PAGE_OFFSET)
|
|
page = virt_to_page(vcpu->pio_data);
|
|
else
|
|
return NOPAGE_SIGBUS;
|
|
get_page(page);
|
|
if (type != NULL)
|
|
*type = VM_FAULT_MINOR;
|
|
|
|
return page;
|
|
}
|
|
|
|
static struct vm_operations_struct kvm_vcpu_vm_ops = {
|
|
.nopage = kvm_vcpu_nopage,
|
|
};
|
|
|
|
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_ops = &kvm_vcpu_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
|
|
fput(vcpu->kvm->filp);
|
|
return 0;
|
|
}
|
|
|
|
static struct file_operations kvm_vcpu_fops = {
|
|
.release = kvm_vcpu_release,
|
|
.unlocked_ioctl = kvm_vcpu_ioctl,
|
|
.compat_ioctl = kvm_vcpu_ioctl,
|
|
.mmap = kvm_vcpu_mmap,
|
|
};
|
|
|
|
/*
|
|
* Allocates an inode for the vcpu.
|
|
*/
|
|
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
|
|
{
|
|
int fd, r;
|
|
struct inode *inode;
|
|
struct file *file;
|
|
|
|
r = anon_inode_getfd(&fd, &inode, &file,
|
|
"kvm-vcpu", &kvm_vcpu_fops, vcpu);
|
|
if (r)
|
|
return r;
|
|
atomic_inc(&vcpu->kvm->filp->f_count);
|
|
return fd;
|
|
}
|
|
|
|
/*
|
|
* Creates some virtual cpus. Good luck creating more than one.
|
|
*/
|
|
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
|
|
{
|
|
int r;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
if (!valid_vcpu(n))
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_x86_ops->vcpu_create(kvm, n);
|
|
if (IS_ERR(vcpu))
|
|
return PTR_ERR(vcpu);
|
|
|
|
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
|
|
|
|
/* We do fxsave: this must be aligned. */
|
|
BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
|
|
|
|
vcpu_load(vcpu);
|
|
r = kvm_x86_ops->vcpu_reset(vcpu);
|
|
if (r == 0)
|
|
r = kvm_mmu_setup(vcpu);
|
|
vcpu_put(vcpu);
|
|
if (r < 0)
|
|
goto free_vcpu;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (kvm->vcpus[n]) {
|
|
r = -EEXIST;
|
|
mutex_unlock(&kvm->lock);
|
|
goto mmu_unload;
|
|
}
|
|
kvm->vcpus[n] = vcpu;
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
/* Now it's all set up, let userspace reach it */
|
|
r = create_vcpu_fd(vcpu);
|
|
if (r < 0)
|
|
goto unlink;
|
|
return r;
|
|
|
|
unlink:
|
|
mutex_lock(&kvm->lock);
|
|
kvm->vcpus[n] = NULL;
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
mmu_unload:
|
|
vcpu_load(vcpu);
|
|
kvm_mmu_unload(vcpu);
|
|
vcpu_put(vcpu);
|
|
|
|
free_vcpu:
|
|
kvm_x86_ops->vcpu_free(vcpu);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
|
|
{
|
|
if (sigset) {
|
|
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
vcpu->sigset_active = 1;
|
|
vcpu->sigset = *sigset;
|
|
} else
|
|
vcpu->sigset_active = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fxsave fpu state. Taken from x86_64/processor.h. To be killed when
|
|
* we have asm/x86/processor.h
|
|
*/
|
|
struct fxsave {
|
|
u16 cwd;
|
|
u16 swd;
|
|
u16 twd;
|
|
u16 fop;
|
|
u64 rip;
|
|
u64 rdp;
|
|
u32 mxcsr;
|
|
u32 mxcsr_mask;
|
|
u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
|
|
#ifdef CONFIG_X86_64
|
|
u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
|
|
#else
|
|
u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
|
|
#endif
|
|
};
|
|
|
|
static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
memcpy(fpu->fpr, fxsave->st_space, 128);
|
|
fpu->fcw = fxsave->cwd;
|
|
fpu->fsw = fxsave->swd;
|
|
fpu->ftwx = fxsave->twd;
|
|
fpu->last_opcode = fxsave->fop;
|
|
fpu->last_ip = fxsave->rip;
|
|
fpu->last_dp = fxsave->rdp;
|
|
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
memcpy(fxsave->st_space, fpu->fpr, 128);
|
|
fxsave->cwd = fpu->fcw;
|
|
fxsave->swd = fpu->fsw;
|
|
fxsave->twd = fpu->ftwx;
|
|
fxsave->fop = fpu->last_opcode;
|
|
fxsave->rip = fpu->last_ip;
|
|
fxsave->rdp = fpu->last_dp;
|
|
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long kvm_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_RUN:
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
|
|
break;
|
|
case KVM_GET_REGS: {
|
|
struct kvm_regs kvm_regs;
|
|
|
|
memset(&kvm_regs, 0, sizeof kvm_regs);
|
|
r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_REGS: {
|
|
struct kvm_regs kvm_regs;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_SREGS: {
|
|
struct kvm_sregs kvm_sregs;
|
|
|
|
memset(&kvm_sregs, 0, sizeof kvm_sregs);
|
|
r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_SREGS: {
|
|
struct kvm_sregs kvm_sregs;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_TRANSLATE: {
|
|
struct kvm_translation tr;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&tr, argp, sizeof tr))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_translate(vcpu, &tr);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &tr, sizeof tr))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_INTERRUPT: {
|
|
struct kvm_interrupt irq;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&irq, argp, sizeof irq))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_DEBUG_GUEST: {
|
|
struct kvm_debug_guest dbg;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&dbg, argp, sizeof dbg))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_SIGNAL_MASK: {
|
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
|
struct kvm_signal_mask kvm_sigmask;
|
|
sigset_t sigset, *p;
|
|
|
|
p = NULL;
|
|
if (argp) {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_sigmask, argp,
|
|
sizeof kvm_sigmask))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm_sigmask.len != sizeof sigset)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&sigset, sigmask_arg->sigset,
|
|
sizeof sigset))
|
|
goto out;
|
|
p = &sigset;
|
|
}
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
|
|
break;
|
|
}
|
|
case KVM_GET_FPU: {
|
|
struct kvm_fpu fpu;
|
|
|
|
memset(&fpu, 0, sizeof fpu);
|
|
r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &fpu, sizeof fpu))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_FPU: {
|
|
struct kvm_fpu fpu;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&fpu, argp, sizeof fpu))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static long kvm_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_CREATE_VCPU:
|
|
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
|
|
if (r < 0)
|
|
goto out;
|
|
break;
|
|
case KVM_SET_USER_MEMORY_REGION: {
|
|
struct kvm_userspace_memory_region kvm_userspace_mem;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_userspace_mem, argp,
|
|
sizeof kvm_userspace_mem))
|
|
goto out;
|
|
|
|
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
case KVM_GET_DIRTY_LOG: {
|
|
struct kvm_dirty_log log;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&log, argp, sizeof log))
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
int *type)
|
|
{
|
|
struct kvm *kvm = vma->vm_file->private_data;
|
|
unsigned long pgoff;
|
|
struct page *page;
|
|
|
|
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
|
|
if (!kvm_is_visible_gfn(kvm, pgoff))
|
|
return NOPAGE_SIGBUS;
|
|
/* current->mm->mmap_sem is already held so call lockless version */
|
|
page = __gfn_to_page(kvm, pgoff);
|
|
if (is_error_page(page)) {
|
|
kvm_release_page(page);
|
|
return NOPAGE_SIGBUS;
|
|
}
|
|
if (type != NULL)
|
|
*type = VM_FAULT_MINOR;
|
|
|
|
return page;
|
|
}
|
|
|
|
static struct vm_operations_struct kvm_vm_vm_ops = {
|
|
.nopage = kvm_vm_nopage,
|
|
};
|
|
|
|
static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_ops = &kvm_vm_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_operations kvm_vm_fops = {
|
|
.release = kvm_vm_release,
|
|
.unlocked_ioctl = kvm_vm_ioctl,
|
|
.compat_ioctl = kvm_vm_ioctl,
|
|
.mmap = kvm_vm_mmap,
|
|
};
|
|
|
|
static int kvm_dev_ioctl_create_vm(void)
|
|
{
|
|
int fd, r;
|
|
struct inode *inode;
|
|
struct file *file;
|
|
struct kvm *kvm;
|
|
|
|
kvm = kvm_create_vm();
|
|
if (IS_ERR(kvm))
|
|
return PTR_ERR(kvm);
|
|
r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
|
|
if (r) {
|
|
kvm_destroy_vm(kvm);
|
|
return r;
|
|
}
|
|
|
|
kvm->filp = file;
|
|
|
|
return fd;
|
|
}
|
|
|
|
static long kvm_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
void __user *argp = (void __user *)arg;
|
|
long r = -EINVAL;
|
|
|
|
switch (ioctl) {
|
|
case KVM_GET_API_VERSION:
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
r = KVM_API_VERSION;
|
|
break;
|
|
case KVM_CREATE_VM:
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
r = kvm_dev_ioctl_create_vm();
|
|
break;
|
|
case KVM_CHECK_EXTENSION: {
|
|
int ext = (long)argp;
|
|
|
|
switch (ext) {
|
|
case KVM_CAP_IRQCHIP:
|
|
case KVM_CAP_HLT:
|
|
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_SET_TSS_ADDR:
|
|
r = 1;
|
|
break;
|
|
default:
|
|
r = 0;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case KVM_GET_VCPU_MMAP_SIZE:
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
r = 2 * PAGE_SIZE;
|
|
break;
|
|
default:
|
|
return kvm_arch_dev_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static struct file_operations kvm_chardev_ops = {
|
|
.unlocked_ioctl = kvm_dev_ioctl,
|
|
.compat_ioctl = kvm_dev_ioctl,
|
|
};
|
|
|
|
static struct miscdevice kvm_dev = {
|
|
KVM_MINOR,
|
|
"kvm",
|
|
&kvm_chardev_ops,
|
|
};
|
|
|
|
/*
|
|
* Make sure that a cpu that is being hot-unplugged does not have any vcpus
|
|
* cached on it.
|
|
*/
|
|
static void decache_vcpus_on_cpu(int cpu)
|
|
{
|
|
struct kvm *vm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
spin_lock(&kvm_lock);
|
|
list_for_each_entry(vm, &vm_list, vm_list)
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
vcpu = vm->vcpus[i];
|
|
if (!vcpu)
|
|
continue;
|
|
/*
|
|
* If the vcpu is locked, then it is running on some
|
|
* other cpu and therefore it is not cached on the
|
|
* cpu in question.
|
|
*
|
|
* If it's not locked, check the last cpu it executed
|
|
* on.
|
|
*/
|
|
if (mutex_trylock(&vcpu->mutex)) {
|
|
if (vcpu->cpu == cpu) {
|
|
kvm_x86_ops->vcpu_decache(vcpu);
|
|
vcpu->cpu = -1;
|
|
}
|
|
mutex_unlock(&vcpu->mutex);
|
|
}
|
|
}
|
|
spin_unlock(&kvm_lock);
|
|
}
|
|
|
|
static void hardware_enable(void *junk)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (cpu_isset(cpu, cpus_hardware_enabled))
|
|
return;
|
|
cpu_set(cpu, cpus_hardware_enabled);
|
|
kvm_x86_ops->hardware_enable(NULL);
|
|
}
|
|
|
|
static void hardware_disable(void *junk)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (!cpu_isset(cpu, cpus_hardware_enabled))
|
|
return;
|
|
cpu_clear(cpu, cpus_hardware_enabled);
|
|
decache_vcpus_on_cpu(cpu);
|
|
kvm_x86_ops->hardware_disable(NULL);
|
|
}
|
|
|
|
static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
|
|
void *v)
|
|
{
|
|
int cpu = (long)v;
|
|
|
|
switch (val) {
|
|
case CPU_DYING:
|
|
case CPU_DYING_FROZEN:
|
|
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
|
|
cpu);
|
|
hardware_disable(NULL);
|
|
break;
|
|
case CPU_UP_CANCELED:
|
|
case CPU_UP_CANCELED_FROZEN:
|
|
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
|
|
cpu);
|
|
smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
|
|
break;
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
|
|
cpu);
|
|
smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
|
|
void *v)
|
|
{
|
|
if (val == SYS_RESTART) {
|
|
/*
|
|
* Some (well, at least mine) BIOSes hang on reboot if
|
|
* in vmx root mode.
|
|
*/
|
|
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
|
|
on_each_cpu(hardware_disable, NULL, 0, 1);
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block kvm_reboot_notifier = {
|
|
.notifier_call = kvm_reboot,
|
|
.priority = 0,
|
|
};
|
|
|
|
void kvm_io_bus_init(struct kvm_io_bus *bus)
|
|
{
|
|
memset(bus, 0, sizeof(*bus));
|
|
}
|
|
|
|
void kvm_io_bus_destroy(struct kvm_io_bus *bus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bus->dev_count; i++) {
|
|
struct kvm_io_device *pos = bus->devs[i];
|
|
|
|
kvm_iodevice_destructor(pos);
|
|
}
|
|
}
|
|
|
|
struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bus->dev_count; i++) {
|
|
struct kvm_io_device *pos = bus->devs[i];
|
|
|
|
if (pos->in_range(pos, addr))
|
|
return pos;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
|
|
{
|
|
BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
|
|
|
|
bus->devs[bus->dev_count++] = dev;
|
|
}
|
|
|
|
static struct notifier_block kvm_cpu_notifier = {
|
|
.notifier_call = kvm_cpu_hotplug,
|
|
.priority = 20, /* must be > scheduler priority */
|
|
};
|
|
|
|
static u64 stat_get(void *_offset)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
u64 total = 0;
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
spin_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
vcpu = kvm->vcpus[i];
|
|
if (vcpu)
|
|
total += *(u32 *)((void *)vcpu + offset);
|
|
}
|
|
spin_unlock(&kvm_lock);
|
|
return total;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
|
|
|
|
static __init void kvm_init_debug(void)
|
|
{
|
|
struct kvm_stats_debugfs_item *p;
|
|
|
|
debugfs_dir = debugfs_create_dir("kvm", NULL);
|
|
for (p = debugfs_entries; p->name; ++p)
|
|
p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
|
|
(void *)(long)p->offset,
|
|
&stat_fops);
|
|
}
|
|
|
|
static void kvm_exit_debug(void)
|
|
{
|
|
struct kvm_stats_debugfs_item *p;
|
|
|
|
for (p = debugfs_entries; p->name; ++p)
|
|
debugfs_remove(p->dentry);
|
|
debugfs_remove(debugfs_dir);
|
|
}
|
|
|
|
static int kvm_suspend(struct sys_device *dev, pm_message_t state)
|
|
{
|
|
hardware_disable(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_resume(struct sys_device *dev)
|
|
{
|
|
hardware_enable(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static struct sysdev_class kvm_sysdev_class = {
|
|
.name = "kvm",
|
|
.suspend = kvm_suspend,
|
|
.resume = kvm_resume,
|
|
};
|
|
|
|
static struct sys_device kvm_sysdev = {
|
|
.id = 0,
|
|
.cls = &kvm_sysdev_class,
|
|
};
|
|
|
|
struct page *bad_page;
|
|
|
|
static inline
|
|
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
|
|
{
|
|
return container_of(pn, struct kvm_vcpu, preempt_notifier);
|
|
}
|
|
|
|
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
|
|
{
|
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
|
|
|
kvm_x86_ops->vcpu_load(vcpu, cpu);
|
|
}
|
|
|
|
static void kvm_sched_out(struct preempt_notifier *pn,
|
|
struct task_struct *next)
|
|
{
|
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
|
|
|
kvm_x86_ops->vcpu_put(vcpu);
|
|
}
|
|
|
|
int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
|
|
struct module *module)
|
|
{
|
|
int r;
|
|
int cpu;
|
|
|
|
if (kvm_x86_ops) {
|
|
printk(KERN_ERR "kvm: already loaded the other module\n");
|
|
return -EEXIST;
|
|
}
|
|
|
|
if (!ops->cpu_has_kvm_support()) {
|
|
printk(KERN_ERR "kvm: no hardware support\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
if (ops->disabled_by_bios()) {
|
|
printk(KERN_ERR "kvm: disabled by bios\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
kvm_x86_ops = ops;
|
|
|
|
r = kvm_x86_ops->hardware_setup();
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
smp_call_function_single(cpu,
|
|
kvm_x86_ops->check_processor_compatibility,
|
|
&r, 0, 1);
|
|
if (r < 0)
|
|
goto out_free_0;
|
|
}
|
|
|
|
on_each_cpu(hardware_enable, NULL, 0, 1);
|
|
r = register_cpu_notifier(&kvm_cpu_notifier);
|
|
if (r)
|
|
goto out_free_1;
|
|
register_reboot_notifier(&kvm_reboot_notifier);
|
|
|
|
r = sysdev_class_register(&kvm_sysdev_class);
|
|
if (r)
|
|
goto out_free_2;
|
|
|
|
r = sysdev_register(&kvm_sysdev);
|
|
if (r)
|
|
goto out_free_3;
|
|
|
|
/* A kmem cache lets us meet the alignment requirements of fx_save. */
|
|
kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
|
|
__alignof__(struct kvm_vcpu), 0, 0);
|
|
if (!kvm_vcpu_cache) {
|
|
r = -ENOMEM;
|
|
goto out_free_4;
|
|
}
|
|
|
|
kvm_chardev_ops.owner = module;
|
|
|
|
r = misc_register(&kvm_dev);
|
|
if (r) {
|
|
printk(KERN_ERR "kvm: misc device register failed\n");
|
|
goto out_free;
|
|
}
|
|
|
|
kvm_preempt_ops.sched_in = kvm_sched_in;
|
|
kvm_preempt_ops.sched_out = kvm_sched_out;
|
|
|
|
kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
kmem_cache_destroy(kvm_vcpu_cache);
|
|
out_free_4:
|
|
sysdev_unregister(&kvm_sysdev);
|
|
out_free_3:
|
|
sysdev_class_unregister(&kvm_sysdev_class);
|
|
out_free_2:
|
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
|
unregister_cpu_notifier(&kvm_cpu_notifier);
|
|
out_free_1:
|
|
on_each_cpu(hardware_disable, NULL, 0, 1);
|
|
out_free_0:
|
|
kvm_x86_ops->hardware_unsetup();
|
|
out:
|
|
kvm_x86_ops = NULL;
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_init_x86);
|
|
|
|
void kvm_exit_x86(void)
|
|
{
|
|
misc_deregister(&kvm_dev);
|
|
kmem_cache_destroy(kvm_vcpu_cache);
|
|
sysdev_unregister(&kvm_sysdev);
|
|
sysdev_class_unregister(&kvm_sysdev_class);
|
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
|
unregister_cpu_notifier(&kvm_cpu_notifier);
|
|
on_each_cpu(hardware_disable, NULL, 0, 1);
|
|
kvm_x86_ops->hardware_unsetup();
|
|
kvm_x86_ops = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_exit_x86);
|
|
|
|
static __init int kvm_init(void)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_mmu_module_init();
|
|
if (r)
|
|
goto out4;
|
|
|
|
kvm_init_debug();
|
|
|
|
kvm_arch_init();
|
|
|
|
bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
|
|
if (bad_page == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
kvm_exit_debug();
|
|
kvm_mmu_module_exit();
|
|
out4:
|
|
return r;
|
|
}
|
|
|
|
static __exit void kvm_exit(void)
|
|
{
|
|
kvm_exit_debug();
|
|
__free_page(bad_page);
|
|
kvm_mmu_module_exit();
|
|
}
|
|
|
|
module_init(kvm_init)
|
|
module_exit(kvm_exit)
|