linux/kernel/cgroup/cgroup.c
Shaohua Li aa81882534 kernfs: add exportfs operations
Now we have the facilities to implement exportfs operations. The idea is
cgroup can export the fhandle info to userspace, then userspace uses
fhandle to find the cgroup name. Another example is userspace can get
fhandle for a cgroup and BPF uses the fhandle to filter info for the
cgroup.

Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-29 09:00:03 -06:00

5183 lines
139 KiB
C

/*
* Generic process-grouping system.
*
* Based originally on the cpuset system, extracted by Paul Menage
* Copyright (C) 2006 Google, Inc
*
* Notifications support
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
* Copyright notices from the original cpuset code:
* --------------------------------------------------
* Copyright (C) 2003 BULL SA.
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
*
* Portions derived from Patrick Mochel's sysfs code.
* sysfs is Copyright (c) 2001-3 Patrick Mochel
*
* 2003-10-10 Written by Simon Derr.
* 2003-10-22 Updates by Stephen Hemminger.
* 2004 May-July Rework by Paul Jackson.
* ---------------------------------------------------
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "cgroup-internal.h"
#include <linux/cred.h>
#include <linux/errno.h>
#include <linux/init_task.h>
#include <linux/kernel.h>
#include <linux/magic.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/percpu-rwsem.h>
#include <linux/string.h>
#include <linux/hashtable.h>
#include <linux/idr.h>
#include <linux/kthread.h>
#include <linux/atomic.h>
#include <linux/cpuset.h>
#include <linux/proc_ns.h>
#include <linux/nsproxy.h>
#include <linux/file.h>
#include <net/sock.h>
#define CREATE_TRACE_POINTS
#include <trace/events/cgroup.h>
#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
MAX_CFTYPE_NAME + 2)
/*
* cgroup_mutex is the master lock. Any modification to cgroup or its
* hierarchy must be performed while holding it.
*
* css_set_lock protects task->cgroups pointer, the list of css_set
* objects, and the chain of tasks off each css_set.
*
* These locks are exported if CONFIG_PROVE_RCU so that accessors in
* cgroup.h can use them for lockdep annotations.
*/
DEFINE_MUTEX(cgroup_mutex);
DEFINE_SPINLOCK(css_set_lock);
#ifdef CONFIG_PROVE_RCU
EXPORT_SYMBOL_GPL(cgroup_mutex);
EXPORT_SYMBOL_GPL(css_set_lock);
#endif
/*
* Protects cgroup_idr and css_idr so that IDs can be released without
* grabbing cgroup_mutex.
*/
static DEFINE_SPINLOCK(cgroup_idr_lock);
/*
* Protects cgroup_file->kn for !self csses. It synchronizes notifications
* against file removal/re-creation across css hiding.
*/
static DEFINE_SPINLOCK(cgroup_file_kn_lock);
struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
#define cgroup_assert_mutex_or_rcu_locked() \
RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
!lockdep_is_held(&cgroup_mutex), \
"cgroup_mutex or RCU read lock required");
/*
* cgroup destruction makes heavy use of work items and there can be a lot
* of concurrent destructions. Use a separate workqueue so that cgroup
* destruction work items don't end up filling up max_active of system_wq
* which may lead to deadlock.
*/
static struct workqueue_struct *cgroup_destroy_wq;
/* generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
struct cgroup_subsys *cgroup_subsys[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
/* array of cgroup subsystem names */
#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
static const char *cgroup_subsys_name[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
#define SUBSYS(_x) \
DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
#include <linux/cgroup_subsys.h>
#undef SUBSYS
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
static struct static_key_true *cgroup_subsys_enabled_key[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
/*
* The default hierarchy, reserved for the subsystems that are otherwise
* unattached - it never has more than a single cgroup, and all tasks are
* part of that cgroup.
*/
struct cgroup_root cgrp_dfl_root;
EXPORT_SYMBOL_GPL(cgrp_dfl_root);
/*
* The default hierarchy always exists but is hidden until mounted for the
* first time. This is for backward compatibility.
*/
static bool cgrp_dfl_visible;
/* some controllers are not supported in the default hierarchy */
static u16 cgrp_dfl_inhibit_ss_mask;
/* some controllers are implicitly enabled on the default hierarchy */
static u16 cgrp_dfl_implicit_ss_mask;
/* The list of hierarchy roots */
LIST_HEAD(cgroup_roots);
static int cgroup_root_count;
/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
static DEFINE_IDR(cgroup_hierarchy_idr);
/*
* Assign a monotonically increasing serial number to csses. It guarantees
* cgroups with bigger numbers are newer than those with smaller numbers.
* Also, as csses are always appended to the parent's ->children list, it
* guarantees that sibling csses are always sorted in the ascending serial
* number order on the list. Protected by cgroup_mutex.
*/
static u64 css_serial_nr_next = 1;
/*
* These bitmasks identify subsystems with specific features to avoid
* having to do iterative checks repeatedly.
*/
static u16 have_fork_callback __read_mostly;
static u16 have_exit_callback __read_mostly;
static u16 have_free_callback __read_mostly;
static u16 have_canfork_callback __read_mostly;
/* cgroup namespace for init task */
struct cgroup_namespace init_cgroup_ns = {
.count = REFCOUNT_INIT(2),
.user_ns = &init_user_ns,
.ns.ops = &cgroupns_operations,
.ns.inum = PROC_CGROUP_INIT_INO,
.root_cset = &init_css_set,
};
static struct file_system_type cgroup2_fs_type;
static struct cftype cgroup_base_files[];
static int cgroup_apply_control(struct cgroup *cgrp);
static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
static void css_task_iter_advance(struct css_task_iter *it);
static int cgroup_destroy_locked(struct cgroup *cgrp);
static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
struct cgroup_subsys *ss);
static void css_release(struct percpu_ref *ref);
static void kill_css(struct cgroup_subsys_state *css);
static int cgroup_addrm_files(struct cgroup_subsys_state *css,
struct cgroup *cgrp, struct cftype cfts[],
bool is_add);
/**
* cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
* @ssid: subsys ID of interest
*
* cgroup_subsys_enabled() can only be used with literal subsys names which
* is fine for individual subsystems but unsuitable for cgroup core. This
* is slower static_key_enabled() based test indexed by @ssid.
*/
bool cgroup_ssid_enabled(int ssid)
{
if (CGROUP_SUBSYS_COUNT == 0)
return false;
return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
}
/**
* cgroup_on_dfl - test whether a cgroup is on the default hierarchy
* @cgrp: the cgroup of interest
*
* The default hierarchy is the v2 interface of cgroup and this function
* can be used to test whether a cgroup is on the default hierarchy for
* cases where a subsystem should behave differnetly depending on the
* interface version.
*
* The set of behaviors which change on the default hierarchy are still
* being determined and the mount option is prefixed with __DEVEL__.
*
* List of changed behaviors:
*
* - Mount options "noprefix", "xattr", "clone_children", "release_agent"
* and "name" are disallowed.
*
* - When mounting an existing superblock, mount options should match.
*
* - Remount is disallowed.
*
* - rename(2) is disallowed.
*
* - "tasks" is removed. Everything should be at process granularity. Use
* "cgroup.procs" instead.
*
* - "cgroup.procs" is not sorted. pids will be unique unless they got
* recycled inbetween reads.
*
* - "release_agent" and "notify_on_release" are removed. Replacement
* notification mechanism will be implemented.
*
* - "cgroup.clone_children" is removed.
*
* - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
* and its descendants contain no task; otherwise, 1. The file also
* generates kernfs notification which can be monitored through poll and
* [di]notify when the value of the file changes.
*
* - cpuset: tasks will be kept in empty cpusets when hotplug happens and
* take masks of ancestors with non-empty cpus/mems, instead of being
* moved to an ancestor.
*
* - cpuset: a task can be moved into an empty cpuset, and again it takes
* masks of ancestors.
*
* - memcg: use_hierarchy is on by default and the cgroup file for the flag
* is not created.
*
* - blkcg: blk-throttle becomes properly hierarchical.
*
* - debug: disallowed on the default hierarchy.
*/
bool cgroup_on_dfl(const struct cgroup *cgrp)
{
return cgrp->root == &cgrp_dfl_root;
}
/* IDR wrappers which synchronize using cgroup_idr_lock */
static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
gfp_t gfp_mask)
{
int ret;
idr_preload(gfp_mask);
spin_lock_bh(&cgroup_idr_lock);
ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
spin_unlock_bh(&cgroup_idr_lock);
idr_preload_end();
return ret;
}
static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
{
void *ret;
spin_lock_bh(&cgroup_idr_lock);
ret = idr_replace(idr, ptr, id);
spin_unlock_bh(&cgroup_idr_lock);
return ret;
}
static void cgroup_idr_remove(struct idr *idr, int id)
{
spin_lock_bh(&cgroup_idr_lock);
idr_remove(idr, id);
spin_unlock_bh(&cgroup_idr_lock);
}
static struct cgroup *cgroup_parent(struct cgroup *cgrp)
{
struct cgroup_subsys_state *parent_css = cgrp->self.parent;
if (parent_css)
return container_of(parent_css, struct cgroup, self);
return NULL;
}
/* subsystems visibly enabled on a cgroup */
static u16 cgroup_control(struct cgroup *cgrp)
{
struct cgroup *parent = cgroup_parent(cgrp);
u16 root_ss_mask = cgrp->root->subsys_mask;
if (parent)
return parent->subtree_control;
if (cgroup_on_dfl(cgrp))
root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
cgrp_dfl_implicit_ss_mask);
return root_ss_mask;
}
/* subsystems enabled on a cgroup */
static u16 cgroup_ss_mask(struct cgroup *cgrp)
{
struct cgroup *parent = cgroup_parent(cgrp);
if (parent)
return parent->subtree_ss_mask;
return cgrp->root->subsys_mask;
}
/**
* cgroup_css - obtain a cgroup's css for the specified subsystem
* @cgrp: the cgroup of interest
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
*
* Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
* function must be called either under cgroup_mutex or rcu_read_lock() and
* the caller is responsible for pinning the returned css if it wants to
* keep accessing it outside the said locks. This function may return
* %NULL if @cgrp doesn't have @subsys_id enabled.
*/
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
struct cgroup_subsys *ss)
{
if (ss)
return rcu_dereference_check(cgrp->subsys[ss->id],
lockdep_is_held(&cgroup_mutex));
else
return &cgrp->self;
}
/**
* cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
* @cgrp: the cgroup of interest
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
*
* Similar to cgroup_css() but returns the effective css, which is defined
* as the matching css of the nearest ancestor including self which has @ss
* enabled. If @ss is associated with the hierarchy @cgrp is on, this
* function is guaranteed to return non-NULL css.
*/
static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
struct cgroup_subsys *ss)
{
lockdep_assert_held(&cgroup_mutex);
if (!ss)
return &cgrp->self;
/*
* This function is used while updating css associations and thus
* can't test the csses directly. Test ss_mask.
*/
while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
cgrp = cgroup_parent(cgrp);
if (!cgrp)
return NULL;
}
return cgroup_css(cgrp, ss);
}
/**
* cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
* @cgrp: the cgroup of interest
* @ss: the subsystem of interest
*
* Find and get the effective css of @cgrp for @ss. The effective css is
* defined as the matching css of the nearest ancestor including self which
* has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
* the root css is returned, so this function always returns a valid css.
* The returned css must be put using css_put().
*/
struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
struct cgroup_subsys *ss)
{
struct cgroup_subsys_state *css;
rcu_read_lock();
do {
css = cgroup_css(cgrp, ss);
if (css && css_tryget_online(css))
goto out_unlock;
cgrp = cgroup_parent(cgrp);
} while (cgrp);
css = init_css_set.subsys[ss->id];
css_get(css);
out_unlock:
rcu_read_unlock();
return css;
}
static void __maybe_unused cgroup_get(struct cgroup *cgrp)
{
css_get(&cgrp->self);
}
static void cgroup_get_live(struct cgroup *cgrp)
{
WARN_ON_ONCE(cgroup_is_dead(cgrp));
css_get(&cgrp->self);
}
static bool cgroup_tryget(struct cgroup *cgrp)
{
return css_tryget(&cgrp->self);
}
struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
{
struct cgroup *cgrp = of->kn->parent->priv;
struct cftype *cft = of_cft(of);
/*
* This is open and unprotected implementation of cgroup_css().
* seq_css() is only called from a kernfs file operation which has
* an active reference on the file. Because all the subsystem
* files are drained before a css is disassociated with a cgroup,
* the matching css from the cgroup's subsys table is guaranteed to
* be and stay valid until the enclosing operation is complete.
*/
if (cft->ss)
return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
else
return &cgrp->self;
}
EXPORT_SYMBOL_GPL(of_css);
/**
* for_each_css - iterate all css's of a cgroup
* @css: the iteration cursor
* @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
* @cgrp: the target cgroup to iterate css's of
*
* Should be called under cgroup_[tree_]mutex.
*/
#define for_each_css(css, ssid, cgrp) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
if (!((css) = rcu_dereference_check( \
(cgrp)->subsys[(ssid)], \
lockdep_is_held(&cgroup_mutex)))) { } \
else
/**
* for_each_e_css - iterate all effective css's of a cgroup
* @css: the iteration cursor
* @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
* @cgrp: the target cgroup to iterate css's of
*
* Should be called under cgroup_[tree_]mutex.
*/
#define for_each_e_css(css, ssid, cgrp) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
; \
else
/**
* do_each_subsys_mask - filter for_each_subsys with a bitmask
* @ss: the iteration cursor
* @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
* @ss_mask: the bitmask
*
* The block will only run for cases where the ssid-th bit (1 << ssid) of
* @ss_mask is set.
*/
#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
unsigned long __ss_mask = (ss_mask); \
if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
(ssid) = 0; \
break; \
} \
for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
(ss) = cgroup_subsys[ssid]; \
{
#define while_each_subsys_mask() \
} \
} \
} while (false)
/* iterate over child cgrps, lock should be held throughout iteration */
#define cgroup_for_each_live_child(child, cgrp) \
list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
if (({ lockdep_assert_held(&cgroup_mutex); \
cgroup_is_dead(child); })) \
; \
else
/* walk live descendants in preorder */
#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
if (({ lockdep_assert_held(&cgroup_mutex); \
(dsct) = (d_css)->cgroup; \
cgroup_is_dead(dsct); })) \
; \
else
/* walk live descendants in postorder */
#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
if (({ lockdep_assert_held(&cgroup_mutex); \
(dsct) = (d_css)->cgroup; \
cgroup_is_dead(dsct); })) \
; \
else
/*
* The default css_set - used by init and its children prior to any
* hierarchies being mounted. It contains a pointer to the root state
* for each subsystem. Also used to anchor the list of css_sets. Not
* reference-counted, to improve performance when child cgroups
* haven't been created.
*/
struct css_set init_css_set = {
.refcount = REFCOUNT_INIT(1),
.tasks = LIST_HEAD_INIT(init_css_set.tasks),
.mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
.task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
.cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
.mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
.mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
};
static int css_set_count = 1; /* 1 for init_css_set */
/**
* css_set_populated - does a css_set contain any tasks?
* @cset: target css_set
*
* css_set_populated() should be the same as !!cset->nr_tasks at steady
* state. However, css_set_populated() can be called while a task is being
* added to or removed from the linked list before the nr_tasks is
* properly updated. Hence, we can't just look at ->nr_tasks here.
*/
static bool css_set_populated(struct css_set *cset)
{
lockdep_assert_held(&css_set_lock);
return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
}
/**
* cgroup_update_populated - updated populated count of a cgroup
* @cgrp: the target cgroup
* @populated: inc or dec populated count
*
* One of the css_sets associated with @cgrp is either getting its first
* task or losing the last. Update @cgrp->populated_cnt accordingly. The
* count is propagated towards root so that a given cgroup's populated_cnt
* is zero iff the cgroup and all its descendants don't contain any tasks.
*
* @cgrp's interface file "cgroup.populated" is zero if
* @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
* changes from or to zero, userland is notified that the content of the
* interface file has changed. This can be used to detect when @cgrp and
* its descendants become populated or empty.
*/
static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
{
lockdep_assert_held(&css_set_lock);
do {
bool trigger;
if (populated)
trigger = !cgrp->populated_cnt++;
else
trigger = !--cgrp->populated_cnt;
if (!trigger)
break;
cgroup1_check_for_release(cgrp);
cgroup_file_notify(&cgrp->events_file);
cgrp = cgroup_parent(cgrp);
} while (cgrp);
}
/**
* css_set_update_populated - update populated state of a css_set
* @cset: target css_set
* @populated: whether @cset is populated or depopulated
*
* @cset is either getting the first task or losing the last. Update the
* ->populated_cnt of all associated cgroups accordingly.
*/
static void css_set_update_populated(struct css_set *cset, bool populated)
{
struct cgrp_cset_link *link;
lockdep_assert_held(&css_set_lock);
list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
cgroup_update_populated(link->cgrp, populated);
}
/**
* css_set_move_task - move a task from one css_set to another
* @task: task being moved
* @from_cset: css_set @task currently belongs to (may be NULL)
* @to_cset: new css_set @task is being moved to (may be NULL)
* @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
*
* Move @task from @from_cset to @to_cset. If @task didn't belong to any
* css_set, @from_cset can be NULL. If @task is being disassociated
* instead of moved, @to_cset can be NULL.
*
* This function automatically handles populated_cnt updates and
* css_task_iter adjustments but the caller is responsible for managing
* @from_cset and @to_cset's reference counts.
*/
static void css_set_move_task(struct task_struct *task,
struct css_set *from_cset, struct css_set *to_cset,
bool use_mg_tasks)
{
lockdep_assert_held(&css_set_lock);
if (to_cset && !css_set_populated(to_cset))
css_set_update_populated(to_cset, true);
if (from_cset) {
struct css_task_iter *it, *pos;
WARN_ON_ONCE(list_empty(&task->cg_list));
/*
* @task is leaving, advance task iterators which are
* pointing to it so that they can resume at the next
* position. Advancing an iterator might remove it from
* the list, use safe walk. See css_task_iter_advance*()
* for details.
*/
list_for_each_entry_safe(it, pos, &from_cset->task_iters,
iters_node)
if (it->task_pos == &task->cg_list)
css_task_iter_advance(it);
list_del_init(&task->cg_list);
if (!css_set_populated(from_cset))
css_set_update_populated(from_cset, false);
} else {
WARN_ON_ONCE(!list_empty(&task->cg_list));
}
if (to_cset) {
/*
* We are synchronized through cgroup_threadgroup_rwsem
* against PF_EXITING setting such that we can't race
* against cgroup_exit() changing the css_set to
* init_css_set and dropping the old one.
*/
WARN_ON_ONCE(task->flags & PF_EXITING);
rcu_assign_pointer(task->cgroups, to_cset);
list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
&to_cset->tasks);
}
}
/*
* hash table for cgroup groups. This improves the performance to find
* an existing css_set. This hash doesn't (currently) take into
* account cgroups in empty hierarchies.
*/
#define CSS_SET_HASH_BITS 7
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
{
unsigned long key = 0UL;
struct cgroup_subsys *ss;
int i;
for_each_subsys(ss, i)
key += (unsigned long)css[i];
key = (key >> 16) ^ key;
return key;
}
void put_css_set_locked(struct css_set *cset)
{
struct cgrp_cset_link *link, *tmp_link;
struct cgroup_subsys *ss;
int ssid;
lockdep_assert_held(&css_set_lock);
if (!refcount_dec_and_test(&cset->refcount))
return;
/* This css_set is dead. unlink it and release cgroup and css refs */
for_each_subsys(ss, ssid) {
list_del(&cset->e_cset_node[ssid]);
css_put(cset->subsys[ssid]);
}
hash_del(&cset->hlist);
css_set_count--;
list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
list_del(&link->cset_link);
list_del(&link->cgrp_link);
if (cgroup_parent(link->cgrp))
cgroup_put(link->cgrp);
kfree(link);
}
kfree_rcu(cset, rcu_head);
}
/**
* compare_css_sets - helper function for find_existing_css_set().
* @cset: candidate css_set being tested
* @old_cset: existing css_set for a task
* @new_cgrp: cgroup that's being entered by the task
* @template: desired set of css pointers in css_set (pre-calculated)
*
* Returns true if "cset" matches "old_cset" except for the hierarchy
* which "new_cgrp" belongs to, for which it should match "new_cgrp".
*/
static bool compare_css_sets(struct css_set *cset,
struct css_set *old_cset,
struct cgroup *new_cgrp,
struct cgroup_subsys_state *template[])
{
struct list_head *l1, *l2;
/*
* On the default hierarchy, there can be csets which are
* associated with the same set of cgroups but different csses.
* Let's first ensure that csses match.
*/
if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
return false;
/*
* Compare cgroup pointers in order to distinguish between
* different cgroups in hierarchies. As different cgroups may
* share the same effective css, this comparison is always
* necessary.
*/
l1 = &cset->cgrp_links;
l2 = &old_cset->cgrp_links;
while (1) {
struct cgrp_cset_link *link1, *link2;
struct cgroup *cgrp1, *cgrp2;
l1 = l1->next;
l2 = l2->next;
/* See if we reached the end - both lists are equal length. */
if (l1 == &cset->cgrp_links) {
BUG_ON(l2 != &old_cset->cgrp_links);
break;
} else {
BUG_ON(l2 == &old_cset->cgrp_links);
}
/* Locate the cgroups associated with these links. */
link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
cgrp1 = link1->cgrp;
cgrp2 = link2->cgrp;
/* Hierarchies should be linked in the same order. */
BUG_ON(cgrp1->root != cgrp2->root);
/*
* If this hierarchy is the hierarchy of the cgroup
* that's changing, then we need to check that this
* css_set points to the new cgroup; if it's any other
* hierarchy, then this css_set should point to the
* same cgroup as the old css_set.
*/
if (cgrp1->root == new_cgrp->root) {
if (cgrp1 != new_cgrp)
return false;
} else {
if (cgrp1 != cgrp2)
return false;
}
}
return true;
}
/**
* find_existing_css_set - init css array and find the matching css_set
* @old_cset: the css_set that we're using before the cgroup transition
* @cgrp: the cgroup that we're moving into
* @template: out param for the new set of csses, should be clear on entry
*/
static struct css_set *find_existing_css_set(struct css_set *old_cset,
struct cgroup *cgrp,
struct cgroup_subsys_state *template[])
{
struct cgroup_root *root = cgrp->root;
struct cgroup_subsys *ss;
struct css_set *cset;
unsigned long key;
int i;
/*
* Build the set of subsystem state objects that we want to see in the
* new css_set. while subsystems can change globally, the entries here
* won't change, so no need for locking.
*/
for_each_subsys(ss, i) {
if (root->subsys_mask & (1UL << i)) {
/*
* @ss is in this hierarchy, so we want the
* effective css from @cgrp.
*/
template[i] = cgroup_e_css(cgrp, ss);
} else {
/*
* @ss is not in this hierarchy, so we don't want
* to change the css.
*/
template[i] = old_cset->subsys[i];
}
}
key = css_set_hash(template);
hash_for_each_possible(css_set_table, cset, hlist, key) {
if (!compare_css_sets(cset, old_cset, cgrp, template))
continue;
/* This css_set matches what we need */
return cset;
}
/* No existing cgroup group matched */
return NULL;
}
static void free_cgrp_cset_links(struct list_head *links_to_free)
{
struct cgrp_cset_link *link, *tmp_link;
list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
list_del(&link->cset_link);
kfree(link);
}
}
/**
* allocate_cgrp_cset_links - allocate cgrp_cset_links
* @count: the number of links to allocate
* @tmp_links: list_head the allocated links are put on
*
* Allocate @count cgrp_cset_link structures and chain them on @tmp_links
* through ->cset_link. Returns 0 on success or -errno.
*/
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
{
struct cgrp_cset_link *link;
int i;
INIT_LIST_HEAD(tmp_links);
for (i = 0; i < count; i++) {
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link) {
free_cgrp_cset_links(tmp_links);
return -ENOMEM;
}
list_add(&link->cset_link, tmp_links);
}
return 0;
}
/**
* link_css_set - a helper function to link a css_set to a cgroup
* @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
* @cset: the css_set to be linked
* @cgrp: the destination cgroup
*/
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
struct cgroup *cgrp)
{
struct cgrp_cset_link *link;
BUG_ON(list_empty(tmp_links));
if (cgroup_on_dfl(cgrp))
cset->dfl_cgrp = cgrp;
link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
link->cset = cset;
link->cgrp = cgrp;
/*
* Always add links to the tail of the lists so that the lists are
* in choronological order.
*/
list_move_tail(&link->cset_link, &cgrp->cset_links);
list_add_tail(&link->cgrp_link, &cset->cgrp_links);
if (cgroup_parent(cgrp))
cgroup_get_live(cgrp);
}
/**
* find_css_set - return a new css_set with one cgroup updated
* @old_cset: the baseline css_set
* @cgrp: the cgroup to be updated
*
* Return a new css_set that's equivalent to @old_cset, but with @cgrp
* substituted into the appropriate hierarchy.
*/
static struct css_set *find_css_set(struct css_set *old_cset,
struct cgroup *cgrp)
{
struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
struct css_set *cset;
struct list_head tmp_links;
struct cgrp_cset_link *link;
struct cgroup_subsys *ss;
unsigned long key;
int ssid;
lockdep_assert_held(&cgroup_mutex);
/* First see if we already have a cgroup group that matches
* the desired set */
spin_lock_irq(&css_set_lock);
cset = find_existing_css_set(old_cset, cgrp, template);
if (cset)
get_css_set(cset);
spin_unlock_irq(&css_set_lock);
if (cset)
return cset;
cset = kzalloc(sizeof(*cset), GFP_KERNEL);
if (!cset)
return NULL;
/* Allocate all the cgrp_cset_link objects that we'll need */
if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
kfree(cset);
return NULL;
}
refcount_set(&cset->refcount, 1);
INIT_LIST_HEAD(&cset->tasks);
INIT_LIST_HEAD(&cset->mg_tasks);
INIT_LIST_HEAD(&cset->task_iters);
INIT_HLIST_NODE(&cset->hlist);
INIT_LIST_HEAD(&cset->cgrp_links);
INIT_LIST_HEAD(&cset->mg_preload_node);
INIT_LIST_HEAD(&cset->mg_node);
/* Copy the set of subsystem state objects generated in
* find_existing_css_set() */
memcpy(cset->subsys, template, sizeof(cset->subsys));
spin_lock_irq(&css_set_lock);
/* Add reference counts and links from the new css_set. */
list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
if (c->root == cgrp->root)
c = cgrp;
link_css_set(&tmp_links, cset, c);
}
BUG_ON(!list_empty(&tmp_links));
css_set_count++;
/* Add @cset to the hash table */
key = css_set_hash(cset->subsys);
hash_add(css_set_table, &cset->hlist, key);
for_each_subsys(ss, ssid) {
struct cgroup_subsys_state *css = cset->subsys[ssid];
list_add_tail(&cset->e_cset_node[ssid],
&css->cgroup->e_csets[ssid]);
css_get(css);
}
spin_unlock_irq(&css_set_lock);
return cset;
}
struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
{
struct cgroup *root_cgrp = kf_root->kn->priv;
return root_cgrp->root;
}
static int cgroup_init_root_id(struct cgroup_root *root)
{
int id;
lockdep_assert_held(&cgroup_mutex);
id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
if (id < 0)
return id;
root->hierarchy_id = id;
return 0;
}
static void cgroup_exit_root_id(struct cgroup_root *root)
{
lockdep_assert_held(&cgroup_mutex);
idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
}
void cgroup_free_root(struct cgroup_root *root)
{
if (root) {
idr_destroy(&root->cgroup_idr);
kfree(root);
}
}
static void cgroup_destroy_root(struct cgroup_root *root)
{
struct cgroup *cgrp = &root->cgrp;
struct cgrp_cset_link *link, *tmp_link;
trace_cgroup_destroy_root(root);
cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
BUG_ON(atomic_read(&root->nr_cgrps));
BUG_ON(!list_empty(&cgrp->self.children));
/* Rebind all subsystems back to the default hierarchy */
WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
/*
* Release all the links from cset_links to this hierarchy's
* root cgroup
*/
spin_lock_irq(&css_set_lock);
list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
list_del(&link->cset_link);
list_del(&link->cgrp_link);
kfree(link);
}
spin_unlock_irq(&css_set_lock);
if (!list_empty(&root->root_list)) {
list_del(&root->root_list);
cgroup_root_count--;
}
cgroup_exit_root_id(root);
mutex_unlock(&cgroup_mutex);
kernfs_destroy_root(root->kf_root);
cgroup_free_root(root);
}
/*
* look up cgroup associated with current task's cgroup namespace on the
* specified hierarchy
*/
static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root *root)
{
struct cgroup *res = NULL;
struct css_set *cset;
lockdep_assert_held(&css_set_lock);
rcu_read_lock();
cset = current->nsproxy->cgroup_ns->root_cset;
if (cset == &init_css_set) {
res = &root->cgrp;
} else {
struct cgrp_cset_link *link;
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
if (c->root == root) {
res = c;
break;
}
}
}
rcu_read_unlock();
BUG_ON(!res);
return res;
}
/* look up cgroup associated with given css_set on the specified hierarchy */
static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
struct cgroup_root *root)
{
struct cgroup *res = NULL;
lockdep_assert_held(&cgroup_mutex);
lockdep_assert_held(&css_set_lock);
if (cset == &init_css_set) {
res = &root->cgrp;
} else {
struct cgrp_cset_link *link;
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
if (c->root == root) {
res = c;
break;
}
}
}
BUG_ON(!res);
return res;
}
/*
* Return the cgroup for "task" from the given hierarchy. Must be
* called with cgroup_mutex and css_set_lock held.
*/
struct cgroup *task_cgroup_from_root(struct task_struct *task,
struct cgroup_root *root)
{
/*
* No need to lock the task - since we hold cgroup_mutex the
* task can't change groups, so the only thing that can happen
* is that it exits and its css is set back to init_css_set.
*/
return cset_cgroup_from_root(task_css_set(task), root);
}
/*
* A task must hold cgroup_mutex to modify cgroups.
*
* Any task can increment and decrement the count field without lock.
* So in general, code holding cgroup_mutex can't rely on the count
* field not changing. However, if the count goes to zero, then only
* cgroup_attach_task() can increment it again. Because a count of zero
* means that no tasks are currently attached, therefore there is no
* way a task attached to that cgroup can fork (the other way to
* increment the count). So code holding cgroup_mutex can safely
* assume that if the count is zero, it will stay zero. Similarly, if
* a task holds cgroup_mutex on a cgroup with zero count, it
* knows that the cgroup won't be removed, as cgroup_rmdir()
* needs that mutex.
*
* A cgroup can only be deleted if both its 'count' of using tasks
* is zero, and its list of 'children' cgroups is empty. Since all
* tasks in the system use _some_ cgroup, and since there is always at
* least one task in the system (init, pid == 1), therefore, root cgroup
* always has either children cgroups and/or using tasks. So we don't
* need a special hack to ensure that root cgroup cannot be deleted.
*
* P.S. One more locking exception. RCU is used to guard the
* update of a tasks cgroup pointer by cgroup_attach_task()
*/
static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
char *buf)
{
struct cgroup_subsys *ss = cft->ss;
if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
!(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
cft->name);
else
strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
return buf;
}
/**
* cgroup_file_mode - deduce file mode of a control file
* @cft: the control file in question
*
* S_IRUGO for read, S_IWUSR for write.
*/
static umode_t cgroup_file_mode(const struct cftype *cft)
{
umode_t mode = 0;
if (cft->read_u64 || cft->read_s64 || cft->seq_show)
mode |= S_IRUGO;
if (cft->write_u64 || cft->write_s64 || cft->write) {
if (cft->flags & CFTYPE_WORLD_WRITABLE)
mode |= S_IWUGO;
else
mode |= S_IWUSR;
}
return mode;
}
/**
* cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
* @subtree_control: the new subtree_control mask to consider
* @this_ss_mask: available subsystems
*
* On the default hierarchy, a subsystem may request other subsystems to be
* enabled together through its ->depends_on mask. In such cases, more
* subsystems than specified in "cgroup.subtree_control" may be enabled.
*
* This function calculates which subsystems need to be enabled if
* @subtree_control is to be applied while restricted to @this_ss_mask.
*/
static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
{
u16 cur_ss_mask = subtree_control;
struct cgroup_subsys *ss;
int ssid;
lockdep_assert_held(&cgroup_mutex);
cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
while (true) {
u16 new_ss_mask = cur_ss_mask;
do_each_subsys_mask(ss, ssid, cur_ss_mask) {
new_ss_mask |= ss->depends_on;
} while_each_subsys_mask();
/*
* Mask out subsystems which aren't available. This can
* happen only if some depended-upon subsystems were bound
* to non-default hierarchies.
*/
new_ss_mask &= this_ss_mask;
if (new_ss_mask == cur_ss_mask)
break;
cur_ss_mask = new_ss_mask;
}
return cur_ss_mask;
}
/**
* cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
* @kn: the kernfs_node being serviced
*
* This helper undoes cgroup_kn_lock_live() and should be invoked before
* the method finishes if locking succeeded. Note that once this function
* returns the cgroup returned by cgroup_kn_lock_live() may become
* inaccessible any time. If the caller intends to continue to access the
* cgroup, it should pin it before invoking this function.
*/
void cgroup_kn_unlock(struct kernfs_node *kn)
{
struct cgroup *cgrp;
if (kernfs_type(kn) == KERNFS_DIR)
cgrp = kn->priv;
else
cgrp = kn->parent->priv;
mutex_unlock(&cgroup_mutex);
kernfs_unbreak_active_protection(kn);
cgroup_put(cgrp);
}
/**
* cgroup_kn_lock_live - locking helper for cgroup kernfs methods
* @kn: the kernfs_node being serviced
* @drain_offline: perform offline draining on the cgroup
*
* This helper is to be used by a cgroup kernfs method currently servicing
* @kn. It breaks the active protection, performs cgroup locking and
* verifies that the associated cgroup is alive. Returns the cgroup if
* alive; otherwise, %NULL. A successful return should be undone by a
* matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
* cgroup is drained of offlining csses before return.
*
* Any cgroup kernfs method implementation which requires locking the
* associated cgroup should use this helper. It avoids nesting cgroup
* locking under kernfs active protection and allows all kernfs operations
* including self-removal.
*/
struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
{
struct cgroup *cgrp;
if (kernfs_type(kn) == KERNFS_DIR)
cgrp = kn->priv;
else
cgrp = kn->parent->priv;
/*
* We're gonna grab cgroup_mutex which nests outside kernfs
* active_ref. cgroup liveliness check alone provides enough
* protection against removal. Ensure @cgrp stays accessible and
* break the active_ref protection.
*/
if (!cgroup_tryget(cgrp))
return NULL;
kernfs_break_active_protection(kn);
if (drain_offline)
cgroup_lock_and_drain_offline(cgrp);
else
mutex_lock(&cgroup_mutex);
if (!cgroup_is_dead(cgrp))
return cgrp;
cgroup_kn_unlock(kn);
return NULL;
}
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
{
char name[CGROUP_FILE_NAME_MAX];
lockdep_assert_held(&cgroup_mutex);
if (cft->file_offset) {
struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
struct cgroup_file *cfile = (void *)css + cft->file_offset;
spin_lock_irq(&cgroup_file_kn_lock);
cfile->kn = NULL;
spin_unlock_irq(&cgroup_file_kn_lock);
}
kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
}
/**
* css_clear_dir - remove subsys files in a cgroup directory
* @css: taget css
*/
static void css_clear_dir(struct cgroup_subsys_state *css)
{
struct cgroup *cgrp = css->cgroup;
struct cftype *cfts;
if (!(css->flags & CSS_VISIBLE))
return;
css->flags &= ~CSS_VISIBLE;
list_for_each_entry(cfts, &css->ss->cfts, node)
cgroup_addrm_files(css, cgrp, cfts, false);
}
/**
* css_populate_dir - create subsys files in a cgroup directory
* @css: target css
*
* On failure, no file is added.
*/
static int css_populate_dir(struct cgroup_subsys_state *css)
{
struct cgroup *cgrp = css->cgroup;
struct cftype *cfts, *failed_cfts;
int ret;
if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
return 0;
if (!css->ss) {
if (cgroup_on_dfl(cgrp))
cfts = cgroup_base_files;
else
cfts = cgroup1_base_files;
return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
}
list_for_each_entry(cfts, &css->ss->cfts, node) {
ret = cgroup_addrm_files(css, cgrp, cfts, true);
if (ret < 0) {
failed_cfts = cfts;
goto err;
}
}
css->flags |= CSS_VISIBLE;
return 0;
err:
list_for_each_entry(cfts, &css->ss->cfts, node) {
if (cfts == failed_cfts)
break;
cgroup_addrm_files(css, cgrp, cfts, false);
}
return ret;
}
int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
{
struct cgroup *dcgrp = &dst_root->cgrp;
struct cgroup_subsys *ss;
int ssid, i, ret;
lockdep_assert_held(&cgroup_mutex);
do_each_subsys_mask(ss, ssid, ss_mask) {
/*
* If @ss has non-root csses attached to it, can't move.
* If @ss is an implicit controller, it is exempt from this
* rule and can be stolen.
*/
if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
!ss->implicit_on_dfl)
return -EBUSY;
/* can't move between two non-dummy roots either */
if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
return -EBUSY;
} while_each_subsys_mask();
do_each_subsys_mask(ss, ssid, ss_mask) {
struct cgroup_root *src_root = ss->root;
struct cgroup *scgrp = &src_root->cgrp;
struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
struct css_set *cset;
WARN_ON(!css || cgroup_css(dcgrp, ss));
/* disable from the source */
src_root->subsys_mask &= ~(1 << ssid);
WARN_ON(cgroup_apply_control(scgrp));
cgroup_finalize_control(scgrp, 0);
/* rebind */
RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
rcu_assign_pointer(dcgrp->subsys[ssid], css);
ss->root = dst_root;
css->cgroup = dcgrp;
spin_lock_irq(&css_set_lock);
hash_for_each(css_set_table, i, cset, hlist)
list_move_tail(&cset->e_cset_node[ss->id],
&dcgrp->e_csets[ss->id]);
spin_unlock_irq(&css_set_lock);
/* default hierarchy doesn't enable controllers by default */
dst_root->subsys_mask |= 1 << ssid;
if (dst_root == &cgrp_dfl_root) {
static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
} else {
dcgrp->subtree_control |= 1 << ssid;
static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
}
ret = cgroup_apply_control(dcgrp);
if (ret)
pr_warn("partial failure to rebind %s controller (err=%d)\n",
ss->name, ret);
if (ss->bind)
ss->bind(css);
} while_each_subsys_mask();
kernfs_activate(dcgrp->kn);
return 0;
}
int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
struct kernfs_root *kf_root)
{
int len = 0;
char *buf = NULL;
struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
struct cgroup *ns_cgroup;
buf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!buf)
return -ENOMEM;
spin_lock_irq(&css_set_lock);
ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
spin_unlock_irq(&css_set_lock);
if (len >= PATH_MAX)
len = -ERANGE;
else if (len > 0) {
seq_escape(sf, buf, " \t\n\\");
len = 0;
}
kfree(buf);
return len;
}
static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
{
char *token;
*root_flags = 0;
if (!data)
return 0;
while ((token = strsep(&data, ",")) != NULL) {
if (!strcmp(token, "nsdelegate")) {
*root_flags |= CGRP_ROOT_NS_DELEGATE;
continue;
}
pr_err("cgroup2: unknown option \"%s\"\n", token);
return -EINVAL;
}
return 0;
}
static void apply_cgroup_root_flags(unsigned int root_flags)
{
if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
if (root_flags & CGRP_ROOT_NS_DELEGATE)
cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
else
cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
}
}
static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
{
if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
seq_puts(seq, ",nsdelegate");
return 0;
}
static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
{
unsigned int root_flags;
int ret;
ret = parse_cgroup_root_flags(data, &root_flags);
if (ret)
return ret;
apply_cgroup_root_flags(root_flags);
return 0;
}
/*
* To reduce the fork() overhead for systems that are not actually using
* their cgroups capability, we don't maintain the lists running through
* each css_set to its tasks until we see the list actually used - in other
* words after the first mount.
*/
static bool use_task_css_set_links __read_mostly;
static void cgroup_enable_task_cg_lists(void)
{
struct task_struct *p, *g;
spin_lock_irq(&css_set_lock);
if (use_task_css_set_links)
goto out_unlock;
use_task_css_set_links = true;
/*
* We need tasklist_lock because RCU is not safe against
* while_each_thread(). Besides, a forking task that has passed
* cgroup_post_fork() without seeing use_task_css_set_links = 1
* is not guaranteed to have its child immediately visible in the
* tasklist if we walk through it with RCU.
*/
read_lock(&tasklist_lock);
do_each_thread(g, p) {
WARN_ON_ONCE(!list_empty(&p->cg_list) ||
task_css_set(p) != &init_css_set);
/*
* We should check if the process is exiting, otherwise
* it will race with cgroup_exit() in that the list
* entry won't be deleted though the process has exited.
* Do it while holding siglock so that we don't end up
* racing against cgroup_exit().
*
* Interrupts were already disabled while acquiring
* the css_set_lock, so we do not need to disable it
* again when acquiring the sighand->siglock here.
*/
spin_lock(&p->sighand->siglock);
if (!(p->flags & PF_EXITING)) {
struct css_set *cset = task_css_set(p);
if (!css_set_populated(cset))
css_set_update_populated(cset, true);
list_add_tail(&p->cg_list, &cset->tasks);
get_css_set(cset);
cset->nr_tasks++;
}
spin_unlock(&p->sighand->siglock);
} while_each_thread(g, p);
read_unlock(&tasklist_lock);
out_unlock:
spin_unlock_irq(&css_set_lock);
}
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
struct cgroup_subsys *ss;
int ssid;
INIT_LIST_HEAD(&cgrp->self.sibling);
INIT_LIST_HEAD(&cgrp->self.children);
INIT_LIST_HEAD(&cgrp->cset_links);
INIT_LIST_HEAD(&cgrp->pidlists);
mutex_init(&cgrp->pidlist_mutex);
cgrp->self.cgroup = cgrp;
cgrp->self.flags |= CSS_ONLINE;
for_each_subsys(ss, ssid)
INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
init_waitqueue_head(&cgrp->offline_waitq);
INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
}
void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
{
struct cgroup *cgrp = &root->cgrp;
INIT_LIST_HEAD(&root->root_list);
atomic_set(&root->nr_cgrps, 1);
cgrp->root = root;
init_cgroup_housekeeping(cgrp);
idr_init(&root->cgroup_idr);
root->flags = opts->flags;
if (opts->release_agent)
strcpy(root->release_agent_path, opts->release_agent);
if (opts->name)
strcpy(root->name, opts->name);
if (opts->cpuset_clone_children)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
}
int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
{
LIST_HEAD(tmp_links);
struct cgroup *root_cgrp = &root->cgrp;
struct kernfs_syscall_ops *kf_sops;
struct css_set *cset;
int i, ret;
lockdep_assert_held(&cgroup_mutex);
ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
if (ret < 0)
goto out;
root_cgrp->id = ret;
root_cgrp->ancestor_ids[0] = ret;
ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
ref_flags, GFP_KERNEL);
if (ret)
goto out;
/*
* We're accessing css_set_count without locking css_set_lock here,
* but that's OK - it can only be increased by someone holding
* cgroup_lock, and that's us. Later rebinding may disable
* controllers on the default hierarchy and thus create new csets,
* which can't be more than the existing ones. Allocate 2x.
*/
ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
if (ret)
goto cancel_ref;
ret = cgroup_init_root_id(root);
if (ret)
goto cancel_ref;
kf_sops = root == &cgrp_dfl_root ?
&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
root->kf_root = kernfs_create_root(kf_sops,
KERNFS_ROOT_CREATE_DEACTIVATED |
KERNFS_ROOT_SUPPORT_EXPORTOP,
root_cgrp);
if (IS_ERR(root->kf_root)) {
ret = PTR_ERR(root->kf_root);
goto exit_root_id;
}
root_cgrp->kn = root->kf_root->kn;
ret = css_populate_dir(&root_cgrp->self);
if (ret)
goto destroy_root;
ret = rebind_subsystems(root, ss_mask);
if (ret)
goto destroy_root;
trace_cgroup_setup_root(root);
/*
* There must be no failure case after here, since rebinding takes
* care of subsystems' refcounts, which are explicitly dropped in
* the failure exit path.
*/
list_add(&root->root_list, &cgroup_roots);
cgroup_root_count++;
/*
* Link the root cgroup in this hierarchy into all the css_set
* objects.
*/
spin_lock_irq(&css_set_lock);
hash_for_each(css_set_table, i, cset, hlist) {
link_css_set(&tmp_links, cset, root_cgrp);
if (css_set_populated(cset))
cgroup_update_populated(root_cgrp, true);
}
spin_unlock_irq(&css_set_lock);
BUG_ON(!list_empty(&root_cgrp->self.children));
BUG_ON(atomic_read(&root->nr_cgrps) != 1);
kernfs_activate(root_cgrp->kn);
ret = 0;
goto out;
destroy_root:
kernfs_destroy_root(root->kf_root);
root->kf_root = NULL;
exit_root_id:
cgroup_exit_root_id(root);
cancel_ref:
percpu_ref_exit(&root_cgrp->self.refcnt);
out:
free_cgrp_cset_links(&tmp_links);
return ret;
}
struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
struct cgroup_root *root, unsigned long magic,
struct cgroup_namespace *ns)
{
struct dentry *dentry;
bool new_sb;
dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
/*
* In non-init cgroup namespace, instead of root cgroup's dentry,
* we return the dentry corresponding to the cgroupns->root_cgrp.
*/
if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
struct dentry *nsdentry;
struct cgroup *cgrp;
mutex_lock(&cgroup_mutex);
spin_lock_irq(&css_set_lock);
cgrp = cset_cgroup_from_root(ns->root_cset, root);
spin_unlock_irq(&css_set_lock);
mutex_unlock(&cgroup_mutex);
nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
dput(dentry);
dentry = nsdentry;
}
if (IS_ERR(dentry) || !new_sb)
cgroup_put(&root->cgrp);
return dentry;
}
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data)
{
struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
struct dentry *dentry;
int ret;
get_cgroup_ns(ns);
/* Check if the caller has permission to mount. */
if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
put_cgroup_ns(ns);
return ERR_PTR(-EPERM);
}
/*
* The first time anyone tries to mount a cgroup, enable the list
* linking each css_set to its tasks and fix up all existing tasks.
*/
if (!use_task_css_set_links)
cgroup_enable_task_cg_lists();
if (fs_type == &cgroup2_fs_type) {
unsigned int root_flags;
ret = parse_cgroup_root_flags(data, &root_flags);
if (ret) {
put_cgroup_ns(ns);
return ERR_PTR(ret);
}
cgrp_dfl_visible = true;
cgroup_get_live(&cgrp_dfl_root.cgrp);
dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
CGROUP2_SUPER_MAGIC, ns);
if (!IS_ERR(dentry))
apply_cgroup_root_flags(root_flags);
} else {
dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
CGROUP_SUPER_MAGIC, ns);
}
put_cgroup_ns(ns);
return dentry;
}
static void cgroup_kill_sb(struct super_block *sb)
{
struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
/*
* If @root doesn't have any mounts or children, start killing it.
* This prevents new mounts by disabling percpu_ref_tryget_live().
* cgroup_mount() may wait for @root's release.
*
* And don't kill the default root.
*/
if (!list_empty(&root->cgrp.self.children) ||
root == &cgrp_dfl_root)
cgroup_put(&root->cgrp);
else
percpu_ref_kill(&root->cgrp.self.refcnt);
kernfs_kill_sb(sb);
}
struct file_system_type cgroup_fs_type = {
.name = "cgroup",
.mount = cgroup_mount,
.kill_sb = cgroup_kill_sb,
.fs_flags = FS_USERNS_MOUNT,
};
static struct file_system_type cgroup2_fs_type = {
.name = "cgroup2",
.mount = cgroup_mount,
.kill_sb = cgroup_kill_sb,
.fs_flags = FS_USERNS_MOUNT,
};
int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
struct cgroup_namespace *ns)
{
struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
}
int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
struct cgroup_namespace *ns)
{
int ret;
mutex_lock(&cgroup_mutex);
spin_lock_irq(&css_set_lock);
ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
spin_unlock_irq(&css_set_lock);
mutex_unlock(&cgroup_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(cgroup_path_ns);
/**
* task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
* @task: target task
* @buf: the buffer to write the path into
* @buflen: the length of the buffer
*
* Determine @task's cgroup on the first (the one with the lowest non-zero
* hierarchy_id) cgroup hierarchy and copy its path into @buf. This
* function grabs cgroup_mutex and shouldn't be used inside locks used by
* cgroup controller callbacks.
*
* Return value is the same as kernfs_path().
*/
int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
{
struct cgroup_root *root;
struct cgroup *cgrp;
int hierarchy_id = 1;
int ret;
mutex_lock(&cgroup_mutex);
spin_lock_irq(&css_set_lock);
root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
if (root) {
cgrp = task_cgroup_from_root(task, root);
ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
} else {
/* if no hierarchy exists, everyone is in "/" */
ret = strlcpy(buf, "/", buflen);
}
spin_unlock_irq(&css_set_lock);
mutex_unlock(&cgroup_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(task_cgroup_path);
/**
* cgroup_migrate_add_task - add a migration target task to a migration context
* @task: target task
* @mgctx: target migration context
*
* Add @task, which is a migration target, to @mgctx->tset. This function
* becomes noop if @task doesn't need to be migrated. @task's css_set
* should have been added as a migration source and @task->cg_list will be
* moved from the css_set's tasks list to mg_tasks one.
*/
static void cgroup_migrate_add_task(struct task_struct *task,
struct cgroup_mgctx *mgctx)
{
struct css_set *cset;
lockdep_assert_held(&css_set_lock);
/* @task either already exited or can't exit until the end */
if (task->flags & PF_EXITING)
return;
/* leave @task alone if post_fork() hasn't linked it yet */
if (list_empty(&task->cg_list))
return;
cset = task_css_set(task);
if (!cset->mg_src_cgrp)
return;
list_move_tail(&task->cg_list, &cset->mg_tasks);
if (list_empty(&cset->mg_node))
list_add_tail(&cset->mg_node,
&mgctx->tset.src_csets);
if (list_empty(&cset->mg_dst_cset->mg_node))
list_add_tail(&cset->mg_dst_cset->mg_node,
&mgctx->tset.dst_csets);
}
/**
* cgroup_taskset_first - reset taskset and return the first task
* @tset: taskset of interest
* @dst_cssp: output variable for the destination css
*
* @tset iteration is initialized and the first task is returned.
*/
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
struct cgroup_subsys_state **dst_cssp)
{
tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
tset->cur_task = NULL;
return cgroup_taskset_next(tset, dst_cssp);
}
/**
* cgroup_taskset_next - iterate to the next task in taskset
* @tset: taskset of interest
* @dst_cssp: output variable for the destination css
*
* Return the next task in @tset. Iteration must have been initialized
* with cgroup_taskset_first().
*/
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
struct cgroup_subsys_state **dst_cssp)
{
struct css_set *cset = tset->cur_cset;
struct task_struct *task = tset->cur_task;
while (&cset->mg_node != tset->csets) {
if (!task)
task = list_first_entry(&cset->mg_tasks,
struct task_struct, cg_list);
else
task = list_next_entry(task, cg_list);
if (&task->cg_list != &cset->mg_tasks) {
tset->cur_cset = cset;
tset->cur_task = task;
/*
* This function may be called both before and
* after cgroup_taskset_migrate(). The two cases
* can be distinguished by looking at whether @cset
* has its ->mg_dst_cset set.
*/
if (cset->mg_dst_cset)
*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
else
*dst_cssp = cset->subsys[tset->ssid];
return task;
}
cset = list_next_entry(cset, mg_node);
task = NULL;
}
return NULL;
}
/**
* cgroup_taskset_migrate - migrate a taskset
* @mgctx: migration context
*
* Migrate tasks in @mgctx as setup by migration preparation functions.
* This function fails iff one of the ->can_attach callbacks fails and
* guarantees that either all or none of the tasks in @mgctx are migrated.
* @mgctx is consumed regardless of success.
*/
static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
{
struct cgroup_taskset *tset = &mgctx->tset;
struct cgroup_subsys *ss;
struct task_struct *task, *tmp_task;
struct css_set *cset, *tmp_cset;
int ssid, failed_ssid, ret;
/* methods shouldn't be called if no task is actually migrating */
if (list_empty(&tset->src_csets))
return 0;
/* check that we can legitimately attach to the cgroup */
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
if (ss->can_attach) {
tset->ssid = ssid;
ret = ss->can_attach(tset);
if (ret) {
failed_ssid = ssid;
goto out_cancel_attach;
}
}
} while_each_subsys_mask();
/*
* Now that we're guaranteed success, proceed to move all tasks to
* the new cgroup. There are no failure cases after here, so this
* is the commit point.
*/
spin_lock_irq(&css_set_lock);
list_for_each_entry(cset, &tset->src_csets, mg_node) {
list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
struct css_set *from_cset = task_css_set(task);
struct css_set *to_cset = cset->mg_dst_cset;
get_css_set(to_cset);
to_cset->nr_tasks++;
css_set_move_task(task, from_cset, to_cset, true);
put_css_set_locked(from_cset);
from_cset->nr_tasks--;
}
}
spin_unlock_irq(&css_set_lock);
/*
* Migration is committed, all target tasks are now on dst_csets.
* Nothing is sensitive to fork() after this point. Notify
* controllers that migration is complete.
*/
tset->csets = &tset->dst_csets;
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
if (ss->attach) {
tset->ssid = ssid;
ss->attach(tset);
}
} while_each_subsys_mask();
ret = 0;
goto out_release_tset;
out_cancel_attach:
do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
if (ssid == failed_ssid)
break;
if (ss->cancel_attach) {
tset->ssid = ssid;
ss->cancel_attach(tset);
}
} while_each_subsys_mask();
out_release_tset:
spin_lock_irq(&css_set_lock);
list_splice_init(&tset->dst_csets, &tset->src_csets);
list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
list_del_init(&cset->mg_node);
}
spin_unlock_irq(&css_set_lock);
return ret;
}
/**
* cgroup_may_migrate_to - verify whether a cgroup can be migration destination
* @dst_cgrp: destination cgroup to test
*
* On the default hierarchy, except for the root, subtree_control must be
* zero for migration destination cgroups with tasks so that child cgroups
* don't compete against tasks.
*/
bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
{
return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
!dst_cgrp->subtree_control;
}
/**
* cgroup_migrate_finish - cleanup after attach
* @mgctx: migration context
*
* Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
* those functions for details.
*/
void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
{
LIST_HEAD(preloaded);
struct css_set *cset, *tmp_cset;
lockdep_assert_held(&cgroup_mutex);
spin_lock_irq(&css_set_lock);
list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
cset->mg_src_cgrp = NULL;
cset->mg_dst_cgrp = NULL;
cset->mg_dst_cset = NULL;
list_del_init(&cset->mg_preload_node);
put_css_set_locked(cset);
}
spin_unlock_irq(&css_set_lock);
}
/**
* cgroup_migrate_add_src - add a migration source css_set
* @src_cset: the source css_set to add
* @dst_cgrp: the destination cgroup
* @mgctx: migration context
*
* Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
* @src_cset and add it to @mgctx->src_csets, which should later be cleaned
* up by cgroup_migrate_finish().
*
* This function may be called without holding cgroup_threadgroup_rwsem
* even if the target is a process. Threads may be created and destroyed
* but as long as cgroup_mutex is not dropped, no new css_set can be put
* into play and the preloaded css_sets are guaranteed to cover all
* migrations.
*/
void cgroup_migrate_add_src(struct css_set *src_cset,
struct cgroup *dst_cgrp,
struct cgroup_mgctx *mgctx)
{
struct cgroup *src_cgrp;
lockdep_assert_held(&cgroup_mutex);
lockdep_assert_held(&css_set_lock);
/*
* If ->dead, @src_set is associated with one or more dead cgroups
* and doesn't contain any migratable tasks. Ignore it early so
* that the rest of migration path doesn't get confused by it.
*/
if (src_cset->dead)
return;
src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
if (!list_empty(&src_cset->mg_preload_node))
return;
WARN_ON(src_cset->mg_src_cgrp);
WARN_ON(src_cset->mg_dst_cgrp);
WARN_ON(!list_empty(&src_cset->mg_tasks));
WARN_ON(!list_empty(&src_cset->mg_node));
src_cset->mg_src_cgrp = src_cgrp;
src_cset->mg_dst_cgrp = dst_cgrp;
get_css_set(src_cset);
list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
}
/**
* cgroup_migrate_prepare_dst - prepare destination css_sets for migration
* @mgctx: migration context
*
* Tasks are about to be moved and all the source css_sets have been
* preloaded to @mgctx->preloaded_src_csets. This function looks up and
* pins all destination css_sets, links each to its source, and append them
* to @mgctx->preloaded_dst_csets.
*
* This function must be called after cgroup_migrate_add_src() has been
* called on each migration source css_set. After migration is performed
* using cgroup_migrate(), cgroup_migrate_finish() must be called on
* @mgctx.
*/
int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
{
struct css_set *src_cset, *tmp_cset;
lockdep_assert_held(&cgroup_mutex);
/* look up the dst cset for each src cset and link it to src */
list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
mg_preload_node) {
struct css_set *dst_cset;
struct cgroup_subsys *ss;
int ssid;
dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
if (!dst_cset)
goto err;
WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
/*
* If src cset equals dst, it's noop. Drop the src.
* cgroup_migrate() will skip the cset too. Note that we
* can't handle src == dst as some nodes are used by both.
*/
if (src_cset == dst_cset) {
src_cset->mg_src_cgrp = NULL;
src_cset->mg_dst_cgrp = NULL;
list_del_init(&src_cset->mg_preload_node);
put_css_set(src_cset);
put_css_set(dst_cset);
continue;
}
src_cset->mg_dst_cset = dst_cset;
if (list_empty(&dst_cset->mg_preload_node))
list_add_tail(&dst_cset->mg_preload_node,
&mgctx->preloaded_dst_csets);
else
put_css_set(dst_cset);
for_each_subsys(ss, ssid)
if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
mgctx->ss_mask |= 1 << ssid;
}
return 0;
err:
cgroup_migrate_finish(mgctx);
return -ENOMEM;
}
/**
* cgroup_migrate - migrate a process or task to a cgroup
* @leader: the leader of the process or the task to migrate
* @threadgroup: whether @leader points to the whole process or a single task
* @mgctx: migration context
*
* Migrate a process or task denoted by @leader. If migrating a process,
* the caller must be holding cgroup_threadgroup_rwsem. The caller is also
* responsible for invoking cgroup_migrate_add_src() and
* cgroup_migrate_prepare_dst() on the targets before invoking this
* function and following up with cgroup_migrate_finish().
*
* As long as a controller's ->can_attach() doesn't fail, this function is
* guaranteed to succeed. This means that, excluding ->can_attach()
* failure, when migrating multiple targets, the success or failure can be
* decided for all targets by invoking group_migrate_prepare_dst() before
* actually starting migrating.
*/
int cgroup_migrate(struct task_struct *leader, bool threadgroup,
struct cgroup_mgctx *mgctx)
{
struct task_struct *task;
/*
* Prevent freeing of tasks while we take a snapshot. Tasks that are
* already PF_EXITING could be freed from underneath us unless we
* take an rcu_read_lock.
*/
spin_lock_irq(&css_set_lock);
rcu_read_lock();
task = leader;
do {
cgroup_migrate_add_task(task, mgctx);
if (!threadgroup)
break;
} while_each_thread(leader, task);
rcu_read_unlock();
spin_unlock_irq(&css_set_lock);
return cgroup_migrate_execute(mgctx);
}
/**
* cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
* @dst_cgrp: the cgroup to attach to
* @leader: the task or the leader of the threadgroup to be attached
* @threadgroup: attach the whole threadgroup?
*
* Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
*/
int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
bool threadgroup)
{
DEFINE_CGROUP_MGCTX(mgctx);
struct task_struct *task;
int ret;
if (!cgroup_may_migrate_to(dst_cgrp))
return -EBUSY;
/* look up all src csets */
spin_lock_irq(&css_set_lock);
rcu_read_lock();
task = leader;
do {
cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
if (!threadgroup)
break;
} while_each_thread(leader, task);
rcu_read_unlock();
spin_unlock_irq(&css_set_lock);
/* prepare dst csets and commit */
ret = cgroup_migrate_prepare_dst(&mgctx);
if (!ret)
ret = cgroup_migrate(leader, threadgroup, &mgctx);
cgroup_migrate_finish(&mgctx);
if (!ret)
trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
return ret;
}
static int cgroup_procs_write_permission(struct task_struct *task,
struct cgroup *dst_cgrp,
struct kernfs_open_file *of)
{
struct super_block *sb = of->file->f_path.dentry->d_sb;
struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
struct cgroup *root_cgrp = ns->root_cset->dfl_cgrp;
struct cgroup *src_cgrp, *com_cgrp;
struct inode *inode;
int ret;
if (!cgroup_on_dfl(dst_cgrp)) {
const struct cred *cred = current_cred();
const struct cred *tcred = get_task_cred(task);
/*
* even if we're attaching all tasks in the thread group,
* we only need to check permissions on one of them.
*/
if (uid_eq(cred->euid, GLOBAL_ROOT_UID) ||
uid_eq(cred->euid, tcred->uid) ||
uid_eq(cred->euid, tcred->suid))
ret = 0;
else
ret = -EACCES;
put_cred(tcred);
return ret;
}
/* find the source cgroup */
spin_lock_irq(&css_set_lock);
src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
spin_unlock_irq(&css_set_lock);
/* and the common ancestor */
com_cgrp = src_cgrp;
while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
com_cgrp = cgroup_parent(com_cgrp);
/* %current should be authorized to migrate to the common ancestor */
inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
if (!inode)
return -ENOMEM;
ret = inode_permission(inode, MAY_WRITE);
iput(inode);
if (ret)
return ret;
/*
* If namespaces are delegation boundaries, %current must be able
* to see both source and destination cgroups from its namespace.
*/
if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
(!cgroup_is_descendant(src_cgrp, root_cgrp) ||
!cgroup_is_descendant(dst_cgrp, root_cgrp)))
return -ENOENT;
return 0;
}
/*
* Find the task_struct of the task to attach by vpid and pass it along to the
* function to attach either it or all tasks in its threadgroup. Will lock
* cgroup_mutex and threadgroup.
*/
ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off, bool threadgroup)
{
struct task_struct *tsk;
struct cgroup_subsys *ss;
struct cgroup *cgrp;
pid_t pid;
int ssid, ret;
if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
return -EINVAL;
cgrp = cgroup_kn_lock_live(of->kn, false);
if (!cgrp)
return -ENODEV;
percpu_down_write(&cgroup_threadgroup_rwsem);
rcu_read_lock();
if (pid) {
tsk = find_task_by_vpid(pid);
if (!tsk) {
ret = -ESRCH;
goto out_unlock_rcu;
}
} else {
tsk = current;
}
if (threadgroup)
tsk = tsk->group_leader;
/*
* kthreads may acquire PF_NO_SETAFFINITY during initialization.
* If userland migrates such a kthread to a non-root cgroup, it can
* become trapped in a cpuset, or RT kthread may be born in a
* cgroup with no rt_runtime allocated. Just say no.
*/
if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
ret = -EINVAL;
goto out_unlock_rcu;
}
get_task_struct(tsk);
rcu_read_unlock();
ret = cgroup_procs_write_permission(tsk, cgrp, of);
if (!ret)
ret = cgroup_attach_task(cgrp, tsk, threadgroup);
put_task_struct(tsk);
goto out_unlock_threadgroup;
out_unlock_rcu:
rcu_read_unlock();
out_unlock_threadgroup:
percpu_up_write(&cgroup_threadgroup_rwsem);
for_each_subsys(ss, ssid)
if (ss->post_attach)
ss->post_attach();
cgroup_kn_unlock(of->kn);
return ret ?: nbytes;
}
ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
loff_t off)
{
return __cgroup_procs_write(of, buf, nbytes, off, true);
}
static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
{
struct cgroup_subsys *ss;
bool printed = false;
int ssid;
do_each_subsys_mask(ss, ssid, ss_mask) {
if (printed)
seq_putc(seq, ' ');
seq_printf(seq, "%s", ss->name);
printed = true;
} while_each_subsys_mask();
if (printed)
seq_putc(seq, '\n');
}
/* show controllers which are enabled from the parent */
static int cgroup_controllers_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
cgroup_print_ss_mask(seq, cgroup_control(cgrp));
return 0;
}
/* show controllers which are enabled for a given cgroup's children */
static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
cgroup_print_ss_mask(seq, cgrp->subtree_control);
return 0;
}
/**
* cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
* @cgrp: root of the subtree to update csses for
*
* @cgrp's control masks have changed and its subtree's css associations
* need to be updated accordingly. This function looks up all css_sets
* which are attached to the subtree, creates the matching updated css_sets
* and migrates the tasks to the new ones.
*/
static int cgroup_update_dfl_csses(struct cgroup *cgrp)
{
DEFINE_CGROUP_MGCTX(mgctx);
struct cgroup_subsys_state *d_css;
struct cgroup *dsct;
struct css_set *src_cset;
int ret;
lockdep_assert_held(&cgroup_mutex);
percpu_down_write(&cgroup_threadgroup_rwsem);
/* look up all csses currently attached to @cgrp's subtree */
spin_lock_irq(&css_set_lock);
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
struct cgrp_cset_link *link;
list_for_each_entry(link, &dsct->cset_links, cset_link)
cgroup_migrate_add_src(link->cset, dsct, &mgctx);
}
spin_unlock_irq(&css_set_lock);
/* NULL dst indicates self on default hierarchy */
ret = cgroup_migrate_prepare_dst(&mgctx);
if (ret)
goto out_finish;
spin_lock_irq(&css_set_lock);
list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
struct task_struct *task, *ntask;
/* all tasks in src_csets need to be migrated */
list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
cgroup_migrate_add_task(task, &mgctx);
}
spin_unlock_irq(&css_set_lock);
ret = cgroup_migrate_execute(&mgctx);
out_finish:
cgroup_migrate_finish(&mgctx);
percpu_up_write(&cgroup_threadgroup_rwsem);
return ret;
}
/**
* cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
* @cgrp: root of the target subtree
*
* Because css offlining is asynchronous, userland may try to re-enable a
* controller while the previous css is still around. This function grabs
* cgroup_mutex and drains the previous css instances of @cgrp's subtree.
*/
void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
__acquires(&cgroup_mutex)
{
struct cgroup *dsct;
struct cgroup_subsys_state *d_css;
struct cgroup_subsys *ss;
int ssid;
restart:
mutex_lock(&cgroup_mutex);
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
for_each_subsys(ss, ssid) {
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
DEFINE_WAIT(wait);
if (!css || !percpu_ref_is_dying(&css->refcnt))
continue;
cgroup_get_live(dsct);
prepare_to_wait(&dsct->offline_waitq, &wait,
TASK_UNINTERRUPTIBLE);
mutex_unlock(&cgroup_mutex);
schedule();
finish_wait(&dsct->offline_waitq, &wait);
cgroup_put(dsct);
goto restart;
}
}
}
/**
* cgroup_save_control - save control masks of a subtree
* @cgrp: root of the target subtree
*
* Save ->subtree_control and ->subtree_ss_mask to the respective old_
* prefixed fields for @cgrp's subtree including @cgrp itself.
*/
static void cgroup_save_control(struct cgroup *cgrp)
{
struct cgroup *dsct;
struct cgroup_subsys_state *d_css;
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
dsct->old_subtree_control = dsct->subtree_control;
dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
}
}
/**
* cgroup_propagate_control - refresh control masks of a subtree
* @cgrp: root of the target subtree
*
* For @cgrp and its subtree, ensure ->subtree_ss_mask matches
* ->subtree_control and propagate controller availability through the
* subtree so that descendants don't have unavailable controllers enabled.
*/
static void cgroup_propagate_control(struct cgroup *cgrp)
{
struct cgroup *dsct;
struct cgroup_subsys_state *d_css;
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
dsct->subtree_control &= cgroup_control(dsct);
dsct->subtree_ss_mask =
cgroup_calc_subtree_ss_mask(dsct->subtree_control,
cgroup_ss_mask(dsct));
}
}
/**
* cgroup_restore_control - restore control masks of a subtree
* @cgrp: root of the target subtree
*
* Restore ->subtree_control and ->subtree_ss_mask from the respective old_
* prefixed fields for @cgrp's subtree including @cgrp itself.
*/
static void cgroup_restore_control(struct cgroup *cgrp)
{
struct cgroup *dsct;
struct cgroup_subsys_state *d_css;
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
dsct->subtree_control = dsct->old_subtree_control;
dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
}
}
static bool css_visible(struct cgroup_subsys_state *css)
{
struct cgroup_subsys *ss = css->ss;
struct cgroup *cgrp = css->cgroup;
if (cgroup_control(cgrp) & (1 << ss->id))
return true;
if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
return false;
return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
}
/**
* cgroup_apply_control_enable - enable or show csses according to control
* @cgrp: root of the target subtree
*
* Walk @cgrp's subtree and create new csses or make the existing ones
* visible. A css is created invisible if it's being implicitly enabled
* through dependency. An invisible css is made visible when the userland
* explicitly enables it.
*
* Returns 0 on success, -errno on failure. On failure, csses which have
* been processed already aren't cleaned up. The caller is responsible for
* cleaning up with cgroup_apply_control_disable().
*/
static int cgroup_apply_control_enable(struct cgroup *cgrp)
{
struct cgroup *dsct;
struct cgroup_subsys_state *d_css;
struct cgroup_subsys *ss;
int ssid, ret;
cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
for_each_subsys(ss, ssid) {
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
continue;
if (!css) {
css = css_create(dsct, ss);
if (IS_ERR(css))
return PTR_ERR(css);
}
if (css_visible(css)) {
ret = css_populate_dir(css);
if (ret)
return ret;
}
}
}
return 0;
}
/**
* cgroup_apply_control_disable - kill or hide csses according to control
* @cgrp: root of the target subtree
*
* Walk @cgrp's subtree and kill and hide csses so that they match
* cgroup_ss_mask() and cgroup_visible_mask().
*
* A css is hidden when the userland requests it to be disabled while other
* subsystems are still depending on it. The css must not actively control
* resources and be in the vanilla state if it's made visible again later.
* Controllers which may be depended upon should provide ->css_reset() for
* this purpose.
*/
static void cgroup_apply_control_disable(struct cgroup *cgrp)
{
struct cgroup *dsct;
struct cgroup_subsys_state *d_css;
struct cgroup_subsys *ss;
int ssid;
cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
for_each_subsys(ss, ssid) {
struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
if (!css)
continue;
if (css->parent &&
!(cgroup_ss_mask(dsct) & (1 << ss->id))) {
kill_css(css);
} else if (!css_visible(css)) {
css_clear_dir(css);
if (ss->css_reset)
ss->css_reset(css);
}
}
}
}
/**
* cgroup_apply_control - apply control mask updates to the subtree
* @cgrp: root of the target subtree
*
* subsystems can be enabled and disabled in a subtree using the following
* steps.
*
* 1. Call cgroup_save_control() to stash the current state.
* 2. Update ->subtree_control masks in the subtree as desired.
* 3. Call cgroup_apply_control() to apply the changes.
* 4. Optionally perform other related operations.
* 5. Call cgroup_finalize_control() to finish up.
*
* This function implements step 3 and propagates the mask changes
* throughout @cgrp's subtree, updates csses accordingly and perform
* process migrations.
*/
static int cgroup_apply_control(struct cgroup *cgrp)
{
int ret;
cgroup_propagate_control(cgrp);
ret = cgroup_apply_control_enable(cgrp);
if (ret)
return ret;
/*
* At this point, cgroup_e_css() results reflect the new csses
* making the following cgroup_update_dfl_csses() properly update
* css associations of all tasks in the subtree.
*/
ret = cgroup_update_dfl_csses(cgrp);
if (ret)
return ret;
return 0;
}
/**
* cgroup_finalize_control - finalize control mask update
* @cgrp: root of the target subtree
* @ret: the result of the update
*
* Finalize control mask update. See cgroup_apply_control() for more info.
*/
static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
{
if (ret) {
cgroup_restore_control(cgrp);
cgroup_propagate_control(cgrp);
}
cgroup_apply_control_disable(cgrp);
}
/* change the enabled child controllers for a cgroup in the default hierarchy */
static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
char *buf, size_t nbytes,
loff_t off)
{
u16 enable = 0, disable = 0;
struct cgroup *cgrp, *child;
struct cgroup_subsys *ss;
char *tok;
int ssid, ret;
/*
* Parse input - space separated list of subsystem names prefixed
* with either + or -.
*/
buf = strstrip(buf);
while ((tok = strsep(&buf, " "))) {
if (tok[0] == '\0')
continue;
do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
if (!cgroup_ssid_enabled(ssid) ||
strcmp(tok + 1, ss->name))
continue;
if (*tok == '+') {
enable |= 1 << ssid;
disable &= ~(1 << ssid);
} else if (*tok == '-') {
disable |= 1 << ssid;
enable &= ~(1 << ssid);
} else {
return -EINVAL;
}
break;
} while_each_subsys_mask();
if (ssid == CGROUP_SUBSYS_COUNT)
return -EINVAL;
}
cgrp = cgroup_kn_lock_live(of->kn, true);
if (!cgrp)
return -ENODEV;
for_each_subsys(ss, ssid) {
if (enable & (1 << ssid)) {
if (cgrp->subtree_control & (1 << ssid)) {
enable &= ~(1 << ssid);
continue;
}
if (!(cgroup_control(cgrp) & (1 << ssid))) {
ret = -ENOENT;
goto out_unlock;
}
} else if (disable & (1 << ssid)) {
if (!(cgrp->subtree_control & (1 << ssid))) {
disable &= ~(1 << ssid);
continue;
}
/* a child has it enabled? */
cgroup_for_each_live_child(child, cgrp) {
if (child->subtree_control & (1 << ssid)) {
ret = -EBUSY;
goto out_unlock;
}
}
}
}
if (!enable && !disable) {
ret = 0;
goto out_unlock;
}
/*
* Except for the root, subtree_control must be zero for a cgroup
* with tasks so that child cgroups don't compete against tasks.
*/
if (enable && cgroup_parent(cgrp)) {
struct cgrp_cset_link *link;
/*
* Because namespaces pin csets too, @cgrp->cset_links
* might not be empty even when @cgrp is empty. Walk and
* verify each cset.
*/
spin_lock_irq(&css_set_lock);
ret = 0;
list_for_each_entry(link, &cgrp->cset_links, cset_link) {
if (css_set_populated(link->cset)) {
ret = -EBUSY;
break;
}
}
spin_unlock_irq(&css_set_lock);
if (ret)
goto out_unlock;
}
/* save and update control masks and prepare csses */
cgroup_save_control(cgrp);
cgrp->subtree_control |= enable;
cgrp->subtree_control &= ~disable;
ret = cgroup_apply_control(cgrp);
cgroup_finalize_control(cgrp, ret);
kernfs_activate(cgrp->kn);
ret = 0;
out_unlock:
cgroup_kn_unlock(of->kn);
return ret ?: nbytes;
}
static int cgroup_events_show(struct seq_file *seq, void *v)
{
seq_printf(seq, "populated %d\n",
cgroup_is_populated(seq_css(seq)->cgroup));
return 0;
}
static int cgroup_file_open(struct kernfs_open_file *of)
{
struct cftype *cft = of->kn->priv;
if (cft->open)
return cft->open(of);
return 0;
}
static void cgroup_file_release(struct kernfs_open_file *of)
{
struct cftype *cft = of->kn->priv;
if (cft->release)
cft->release(of);
}
static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
struct cgroup *cgrp = of->kn->parent->priv;
struct cftype *cft = of->kn->priv;
struct cgroup_subsys_state *css;
int ret;
/*
* If namespaces are delegation boundaries, disallow writes to
* files in an non-init namespace root from inside the namespace
* except for the files explicitly marked delegatable -
* cgroup.procs and cgroup.subtree_control.
*/
if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
!(cft->flags & CFTYPE_NS_DELEGATABLE) &&
ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
return -EPERM;
if (cft->write)
return cft->write(of, buf, nbytes, off);
/*
* kernfs guarantees that a file isn't deleted with operations in
* flight, which means that the matching css is and stays alive and
* doesn't need to be pinned. The RCU locking is not necessary
* either. It's just for the convenience of using cgroup_css().
*/
rcu_read_lock();
css = cgroup_css(cgrp, cft->ss);
rcu_read_unlock();
if (cft->write_u64) {
unsigned long long v;
ret = kstrtoull(buf, 0, &v);
if (!ret)
ret = cft->write_u64(css, cft, v);
} else if (cft->write_s64) {
long long v;
ret = kstrtoll(buf, 0, &v);
if (!ret)
ret = cft->write_s64(css, cft, v);
} else {
ret = -EINVAL;
}
return ret ?: nbytes;
}
static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
{
return seq_cft(seq)->seq_start(seq, ppos);
}
static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
{
return seq_cft(seq)->seq_next(seq, v, ppos);
}
static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
{
if (seq_cft(seq)->seq_stop)
seq_cft(seq)->seq_stop(seq, v);
}
static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
struct cftype *cft = seq_cft(m);
struct cgroup_subsys_state *css = seq_css(m);
if (cft->seq_show)
return cft->seq_show(m, arg);
if (cft->read_u64)
seq_printf(m, "%llu\n", cft->read_u64(css, cft));
else if (cft->read_s64)
seq_printf(m, "%lld\n", cft->read_s64(css, cft));
else
return -EINVAL;
return 0;
}
static struct kernfs_ops cgroup_kf_single_ops = {
.atomic_write_len = PAGE_SIZE,
.open = cgroup_file_open,
.release = cgroup_file_release,
.write = cgroup_file_write,
.seq_show = cgroup_seqfile_show,
};
static struct kernfs_ops cgroup_kf_ops = {
.atomic_write_len = PAGE_SIZE,
.open = cgroup_file_open,
.release = cgroup_file_release,
.write = cgroup_file_write,
.seq_start = cgroup_seqfile_start,
.seq_next = cgroup_seqfile_next,
.seq_stop = cgroup_seqfile_stop,
.seq_show = cgroup_seqfile_show,
};
/* set uid and gid of cgroup dirs and files to that of the creator */
static int cgroup_kn_set_ugid(struct kernfs_node *kn)
{
struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
.ia_uid = current_fsuid(),
.ia_gid = current_fsgid(), };
if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
return 0;
return kernfs_setattr(kn, &iattr);
}
static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
struct cftype *cft)
{
char name[CGROUP_FILE_NAME_MAX];
struct kernfs_node *kn;
struct lock_class_key *key = NULL;
int ret;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
key = &cft->lockdep_key;
#endif
kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
cgroup_file_mode(cft), 0, cft->kf_ops, cft,
NULL, key);
if (IS_ERR(kn))
return PTR_ERR(kn);
ret = cgroup_kn_set_ugid(kn);
if (ret) {
kernfs_remove(kn);
return ret;
}
if (cft->file_offset) {
struct cgroup_file *cfile = (void *)css + cft->file_offset;
spin_lock_irq(&cgroup_file_kn_lock);
cfile->kn = kn;
spin_unlock_irq(&cgroup_file_kn_lock);
}
return 0;
}
/**
* cgroup_addrm_files - add or remove files to a cgroup directory
* @css: the target css
* @cgrp: the target cgroup (usually css->cgroup)
* @cfts: array of cftypes to be added
* @is_add: whether to add or remove
*
* Depending on @is_add, add or remove files defined by @cfts on @cgrp.
* For removals, this function never fails.
*/
static int cgroup_addrm_files(struct cgroup_subsys_state *css,
struct cgroup *cgrp, struct cftype cfts[],
bool is_add)
{
struct cftype *cft, *cft_end = NULL;
int ret = 0;
lockdep_assert_held(&cgroup_mutex);
restart:
for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
/* does cft->flags tell us to skip this file on @cgrp? */
if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
continue;
if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
continue;
if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
continue;
if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
continue;
if (is_add) {
ret = cgroup_add_file(css, cgrp, cft);
if (ret) {
pr_warn("%s: failed to add %s, err=%d\n",
__func__, cft->name, ret);
cft_end = cft;
is_add = false;
goto restart;
}
} else {
cgroup_rm_file(cgrp, cft);
}
}
return ret;
}
static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
{
LIST_HEAD(pending);
struct cgroup_subsys *ss = cfts[0].ss;
struct cgroup *root = &ss->root->cgrp;
struct cgroup_subsys_state *css;
int ret = 0;
lockdep_assert_held(&cgroup_mutex);
/* add/rm files for all cgroups created before */
css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
struct cgroup *cgrp = css->cgroup;
if (!(css->flags & CSS_VISIBLE))
continue;
ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
if (ret)
break;
}
if (is_add && !ret)
kernfs_activate(root->kn);
return ret;
}
static void cgroup_exit_cftypes(struct cftype *cfts)
{
struct cftype *cft;
for (cft = cfts; cft->name[0] != '\0'; cft++) {
/* free copy for custom atomic_write_len, see init_cftypes() */
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
kfree(cft->kf_ops);
cft->kf_ops = NULL;
cft->ss = NULL;
/* revert flags set by cgroup core while adding @cfts */
cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
}
}
static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
struct cftype *cft;
for (cft = cfts; cft->name[0] != '\0'; cft++) {
struct kernfs_ops *kf_ops;
WARN_ON(cft->ss || cft->kf_ops);
if (cft->seq_start)
kf_ops = &cgroup_kf_ops;
else
kf_ops = &cgroup_kf_single_ops;
/*
* Ugh... if @cft wants a custom max_write_len, we need to
* make a copy of kf_ops to set its atomic_write_len.
*/
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
if (!kf_ops) {
cgroup_exit_cftypes(cfts);
return -ENOMEM;
}
kf_ops->atomic_write_len = cft->max_write_len;
}
cft->kf_ops = kf_ops;
cft->ss = ss;
}
return 0;
}
static int cgroup_rm_cftypes_locked(struct cftype *cfts)
{
lockdep_assert_held(&cgroup_mutex);
if (!cfts || !cfts[0].ss)
return -ENOENT;
list_del(&cfts->node);
cgroup_apply_cftypes(cfts, false);
cgroup_exit_cftypes(cfts);
return 0;
}
/**
* cgroup_rm_cftypes - remove an array of cftypes from a subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Unregister @cfts. Files described by @cfts are removed from all
* existing cgroups and all future cgroups won't have them either. This
* function can be called anytime whether @cfts' subsys is attached or not.
*
* Returns 0 on successful unregistration, -ENOENT if @cfts is not
* registered.
*/
int cgroup_rm_cftypes(struct cftype *cfts)
{
int ret;
mutex_lock(&cgroup_mutex);
ret = cgroup_rm_cftypes_locked(cfts);
mutex_unlock(&cgroup_mutex);
return ret;
}
/**
* cgroup_add_cftypes - add an array of cftypes to a subsystem
* @ss: target cgroup subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Register @cfts to @ss. Files described by @cfts are created for all
* existing cgroups to which @ss is attached and all future cgroups will
* have them too. This function can be called anytime whether @ss is
* attached or not.
*
* Returns 0 on successful registration, -errno on failure. Note that this
* function currently returns 0 as long as @cfts registration is successful
* even if some file creation attempts on existing cgroups fail.
*/
static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
int ret;
if (!cgroup_ssid_enabled(ss->id))
return 0;
if (!cfts || cfts[0].name[0] == '\0')
return 0;
ret = cgroup_init_cftypes(ss, cfts);
if (ret)
return ret;
mutex_lock(&cgroup_mutex);
list_add_tail(&cfts->node, &ss->cfts);
ret = cgroup_apply_cftypes(cfts, true);
if (ret)
cgroup_rm_cftypes_locked(cfts);
mutex_unlock(&cgroup_mutex);
return ret;
}
/**
* cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
* @ss: target cgroup subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Similar to cgroup_add_cftypes() but the added files are only used for
* the default hierarchy.
*/
int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
struct cftype *cft;
for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
cft->flags |= __CFTYPE_ONLY_ON_DFL;
return cgroup_add_cftypes(ss, cfts);
}
/**
* cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
* @ss: target cgroup subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Similar to cgroup_add_cftypes() but the added files are only used for
* the legacy hierarchies.
*/
int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
struct cftype *cft;
for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
cft->flags |= __CFTYPE_NOT_ON_DFL;
return cgroup_add_cftypes(ss, cfts);
}
/**
* cgroup_file_notify - generate a file modified event for a cgroup_file
* @cfile: target cgroup_file
*
* @cfile must have been obtained by setting cftype->file_offset.
*/
void cgroup_file_notify(struct cgroup_file *cfile)
{
unsigned long flags;
spin_lock_irqsave(&cgroup_file_kn_lock, flags);
if (cfile->kn)
kernfs_notify(cfile->kn);
spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
}
/**
* css_next_child - find the next child of a given css
* @pos: the current position (%NULL to initiate traversal)
* @parent: css whose children to walk
*
* This function returns the next child of @parent and should be called
* under either cgroup_mutex or RCU read lock. The only requirement is
* that @parent and @pos are accessible. The next sibling is guaranteed to
* be returned regardless of their states.
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*/
struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *parent)
{
struct cgroup_subsys_state *next;
cgroup_assert_mutex_or_rcu_locked();
/*
* @pos could already have been unlinked from the sibling list.
* Once a cgroup is removed, its ->sibling.next is no longer
* updated when its next sibling changes. CSS_RELEASED is set when
* @pos is taken off list, at which time its next pointer is valid,
* and, as releases are serialized, the one pointed to by the next
* pointer is guaranteed to not have started release yet. This
* implies that if we observe !CSS_RELEASED on @pos in this RCU
* critical section, the one pointed to by its next pointer is
* guaranteed to not have finished its RCU grace period even if we
* have dropped rcu_read_lock() inbetween iterations.
*
* If @pos has CSS_RELEASED set, its next pointer can't be
* dereferenced; however, as each css is given a monotonically
* increasing unique serial number and always appended to the
* sibling list, the next one can be found by walking the parent's
* children until the first css with higher serial number than
* @pos's. While this path can be slower, it happens iff iteration
* races against release and the race window is very small.
*/
if (!pos) {
next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
} else if (likely(!(pos->flags & CSS_RELEASED))) {
next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
} else {
list_for_each_entry_rcu(next, &parent->children, sibling)
if (next->serial_nr > pos->serial_nr)
break;
}
/*
* @next, if not pointing to the head, can be dereferenced and is
* the next sibling.
*/
if (&next->sibling != &parent->children)
return next;
return NULL;
}
/**
* css_next_descendant_pre - find the next descendant for pre-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: css whose descendants to walk
*
* To be used by css_for_each_descendant_pre(). Find the next descendant
* to visit for pre-order traversal of @root's descendants. @root is
* included in the iteration and the first node to be visited.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct next descendant as long
* as both @pos and @root are accessible and @pos is a descendant of @root.
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*/
struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *root)
{
struct cgroup_subsys_state *next;
cgroup_assert_mutex_or_rcu_locked();
/* if first iteration, visit @root */
if (!pos)
return root;
/* visit the first child if exists */
next = css_next_child(NULL, pos);
if (next)
return next;
/* no child, visit my or the closest ancestor's next sibling */
while (pos != root) {
next = css_next_child(pos, pos->parent);
if (next)
return next;
pos = pos->parent;
}
return NULL;
}
/**
* css_rightmost_descendant - return the rightmost descendant of a css
* @pos: css of interest
*
* Return the rightmost descendant of @pos. If there's no descendant, @pos
* is returned. This can be used during pre-order traversal to skip
* subtree of @pos.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct rightmost descendant as
* long as @pos is accessible.
*/
struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state *pos)
{
struct cgroup_subsys_state *last, *tmp;
cgroup_assert_mutex_or_rcu_locked();
do {
last = pos;
/* ->prev isn't RCU safe, walk ->next till the end */
pos = NULL;
css_for_each_child(tmp, last)
pos = tmp;
} while (pos);
return last;
}
static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state *pos)
{
struct cgroup_subsys_state *last;
do {
last = pos;
pos = css_next_child(NULL, pos);
} while (pos);
return last;
}
/**
* css_next_descendant_post - find the next descendant for post-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: css whose descendants to walk
*
* To be used by css_for_each_descendant_post(). Find the next descendant
* to visit for post-order traversal of @root's descendants. @root is
* included in the iteration and the last node to be visited.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct next descendant as long
* as both @pos and @cgroup are accessible and @pos is a descendant of
* @cgroup.
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*/
struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *root)
{
struct cgroup_subsys_state *next;
cgroup_assert_mutex_or_rcu_locked();
/* if first iteration, visit leftmost descendant which may be @root */
if (!pos)
return css_leftmost_descendant(root);
/* if we visited @root, we're done */
if (pos == root)
return NULL;
/* if there's an unvisited sibling, visit its leftmost descendant */
next = css_next_child(pos, pos->parent);
if (next)
return css_leftmost_descendant(next);
/* no sibling left, visit parent */
return pos->parent;
}
/**
* css_has_online_children - does a css have online children
* @css: the target css
*
* Returns %true if @css has any online children; otherwise, %false. This
* function can be called from any context but the caller is responsible
* for synchronizing against on/offlining as necessary.
*/
bool css_has_online_children(struct cgroup_subsys_state *css)
{
struct cgroup_subsys_state *child;
bool ret = false;
rcu_read_lock();
css_for_each_child(child, css) {
if (child->flags & CSS_ONLINE) {
ret = true;
break;
}
}
rcu_read_unlock();
return ret;
}
/**
* css_task_iter_advance_css_set - advance a task itererator to the next css_set
* @it: the iterator to advance
*
* Advance @it to the next css_set to walk.
*/
static void css_task_iter_advance_css_set(struct css_task_iter *it)
{
struct list_head *l = it->cset_pos;
struct cgrp_cset_link *link;
struct css_set *cset;
lockdep_assert_held(&css_set_lock);
/* Advance to the next non-empty css_set */
do {
l = l->next;
if (l == it->cset_head) {
it->cset_pos = NULL;
it->task_pos = NULL;
return;
}
if (it->ss) {
cset = container_of(l, struct css_set,
e_cset_node[it->ss->id]);
} else {
link = list_entry(l, struct cgrp_cset_link, cset_link);
cset = link->cset;
}
} while (!css_set_populated(cset));
it->cset_pos = l;
if (!list_empty(&cset->tasks))
it->task_pos = cset->tasks.next;
else
it->task_pos = cset->mg_tasks.next;
it->tasks_head = &cset->tasks;
it->mg_tasks_head = &cset->mg_tasks;
/*
* We don't keep css_sets locked across iteration steps and thus
* need to take steps to ensure that iteration can be resumed after
* the lock is re-acquired. Iteration is performed at two levels -
* css_sets and tasks in them.
*
* Once created, a css_set never leaves its cgroup lists, so a
* pinned css_set is guaranteed to stay put and we can resume
* iteration afterwards.
*
* Tasks may leave @cset across iteration steps. This is resolved
* by registering each iterator with the css_set currently being
* walked and making css_set_move_task() advance iterators whose
* next task is leaving.
*/
if (it->cur_cset) {
list_del(&it->iters_node);
put_css_set_locked(it->cur_cset);
}
get_css_set(cset);
it->cur_cset = cset;
list_add(&it->iters_node, &cset->task_iters);
}
static void css_task_iter_advance(struct css_task_iter *it)
{
struct list_head *l = it->task_pos;
lockdep_assert_held(&css_set_lock);
WARN_ON_ONCE(!l);
/*
* Advance iterator to find next entry. cset->tasks is consumed
* first and then ->mg_tasks. After ->mg_tasks, we move onto the
* next cset.
*/
l = l->next;
if (l == it->tasks_head)
l = it->mg_tasks_head->next;
if (l == it->mg_tasks_head)
css_task_iter_advance_css_set(it);
else
it->task_pos = l;
}
/**
* css_task_iter_start - initiate task iteration
* @css: the css to walk tasks of
* @it: the task iterator to use
*
* Initiate iteration through the tasks of @css. The caller can call
* css_task_iter_next() to walk through the tasks until the function
* returns NULL. On completion of iteration, css_task_iter_end() must be
* called.
*/
void css_task_iter_start(struct cgroup_subsys_state *css,
struct css_task_iter *it)
{
/* no one should try to iterate before mounting cgroups */
WARN_ON_ONCE(!use_task_css_set_links);
memset(it, 0, sizeof(*it));
spin_lock_irq(&css_set_lock);
it->ss = css->ss;
if (it->ss)
it->cset_pos = &css->cgroup->e_csets[css->ss->id];
else
it->cset_pos = &css->cgroup->cset_links;
it->cset_head = it->cset_pos;
css_task_iter_advance_css_set(it);
spin_unlock_irq(&css_set_lock);
}
/**
* css_task_iter_next - return the next task for the iterator
* @it: the task iterator being iterated
*
* The "next" function for task iteration. @it should have been
* initialized via css_task_iter_start(). Returns NULL when the iteration
* reaches the end.
*/
struct task_struct *css_task_iter_next(struct css_task_iter *it)
{
if (it->cur_task) {
put_task_struct(it->cur_task);
it->cur_task = NULL;
}
spin_lock_irq(&css_set_lock);
if (it->task_pos) {
it->cur_task = list_entry(it->task_pos, struct task_struct,
cg_list);
get_task_struct(it->cur_task);
css_task_iter_advance(it);
}
spin_unlock_irq(&css_set_lock);
return it->cur_task;
}
/**
* css_task_iter_end - finish task iteration
* @it: the task iterator to finish
*
* Finish task iteration started by css_task_iter_start().
*/
void css_task_iter_end(struct css_task_iter *it)
{
if (it->cur_cset) {
spin_lock_irq(&css_set_lock);
list_del(&it->iters_node);
put_css_set_locked(it->cur_cset);
spin_unlock_irq(&css_set_lock);
}
if (it->cur_task)
put_task_struct(it->cur_task);
}
static void cgroup_procs_release(struct kernfs_open_file *of)
{
if (of->priv) {
css_task_iter_end(of->priv);
kfree(of->priv);
}
}
static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
{
struct kernfs_open_file *of = s->private;
struct css_task_iter *it = of->priv;
struct task_struct *task;
do {
task = css_task_iter_next(it);
} while (task && !thread_group_leader(task));
return task;
}
static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
{
struct kernfs_open_file *of = s->private;
struct cgroup *cgrp = seq_css(s)->cgroup;
struct css_task_iter *it = of->priv;
/*
* When a seq_file is seeked, it's always traversed sequentially
* from position 0, so we can simply keep iterating on !0 *pos.
*/
if (!it) {
if (WARN_ON_ONCE((*pos)++))
return ERR_PTR(-EINVAL);
it = kzalloc(sizeof(*it), GFP_KERNEL);
if (!it)
return ERR_PTR(-ENOMEM);
of->priv = it;
css_task_iter_start(&cgrp->self, it);
} else if (!(*pos)++) {
css_task_iter_end(it);
css_task_iter_start(&cgrp->self, it);
}
return cgroup_procs_next(s, NULL, NULL);
}
static int cgroup_procs_show(struct seq_file *s, void *v)
{
seq_printf(s, "%d\n", task_tgid_vnr(v));
return 0;
}
/* cgroup core interface files for the default hierarchy */
static struct cftype cgroup_base_files[] = {
{
.name = "cgroup.procs",
.flags = CFTYPE_NS_DELEGATABLE,
.file_offset = offsetof(struct cgroup, procs_file),
.release = cgroup_procs_release,
.seq_start = cgroup_procs_start,
.seq_next = cgroup_procs_next,
.seq_show = cgroup_procs_show,
.write = cgroup_procs_write,
},
{
.name = "cgroup.controllers",
.seq_show = cgroup_controllers_show,
},
{
.name = "cgroup.subtree_control",
.flags = CFTYPE_NS_DELEGATABLE,
.seq_show = cgroup_subtree_control_show,
.write = cgroup_subtree_control_write,
},
{
.name = "cgroup.events",
.flags = CFTYPE_NOT_ON_ROOT,
.file_offset = offsetof(struct cgroup, events_file),
.seq_show = cgroup_events_show,
},
{ } /* terminate */
};
/*
* css destruction is four-stage process.
*
* 1. Destruction starts. Killing of the percpu_ref is initiated.
* Implemented in kill_css().
*
* 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
* and thus css_tryget_online() is guaranteed to fail, the css can be
* offlined by invoking offline_css(). After offlining, the base ref is
* put. Implemented in css_killed_work_fn().
*
* 3. When the percpu_ref reaches zero, the only possible remaining
* accessors are inside RCU read sections. css_release() schedules the
* RCU callback.
*
* 4. After the grace period, the css can be freed. Implemented in
* css_free_work_fn().
*
* It is actually hairier because both step 2 and 4 require process context
* and thus involve punting to css->destroy_work adding two additional
* steps to the already complex sequence.
*/
static void css_free_work_fn(struct work_struct *work)
{
struct cgroup_subsys_state *css =
container_of(work, struct cgroup_subsys_state, destroy_work);
struct cgroup_subsys *ss = css->ss;
struct cgroup *cgrp = css->cgroup;
percpu_ref_exit(&css->refcnt);
if (ss) {
/* css free path */
struct cgroup_subsys_state *parent = css->parent;
int id = css->id;
ss->css_free(css);
cgroup_idr_remove(&ss->css_idr, id);
cgroup_put(cgrp);
if (parent)
css_put(parent);
} else {
/* cgroup free path */
atomic_dec(&cgrp->root->nr_cgrps);
cgroup1_pidlist_destroy_all(cgrp);
cancel_work_sync(&cgrp->release_agent_work);
if (cgroup_parent(cgrp)) {
/*
* We get a ref to the parent, and put the ref when
* this cgroup is being freed, so it's guaranteed
* that the parent won't be destroyed before its
* children.
*/
cgroup_put(cgroup_parent(cgrp));
kernfs_put(cgrp->kn);
kfree(cgrp);
} else {
/*
* This is root cgroup's refcnt reaching zero,
* which indicates that the root should be
* released.
*/
cgroup_destroy_root(cgrp->root);
}
}
}
static void css_free_rcu_fn(struct rcu_head *rcu_head)
{
struct cgroup_subsys_state *css =
container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
INIT_WORK(&css->destroy_work, css_free_work_fn);
queue_work(cgroup_destroy_wq, &css->destroy_work);
}
static void css_release_work_fn(struct work_struct *work)
{
struct cgroup_subsys_state *css =
container_of(work, struct cgroup_subsys_state, destroy_work);
struct cgroup_subsys *ss = css->ss;
struct cgroup *cgrp = css->cgroup;
mutex_lock(&cgroup_mutex);
css->flags |= CSS_RELEASED;
list_del_rcu(&css->sibling);
if (ss) {
/* css release path */
cgroup_idr_replace(&ss->css_idr, NULL, css->id);
if (ss->css_released)
ss->css_released(css);
} else {
/* cgroup release path */
trace_cgroup_release(cgrp);
cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
cgrp->id = -1;
/*
* There are two control paths which try to determine
* cgroup from dentry without going through kernfs -
* cgroupstats_build() and css_tryget_online_from_dir().
* Those are supported by RCU protecting clearing of
* cgrp->kn->priv backpointer.
*/
if (cgrp->kn)
RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
NULL);
cgroup_bpf_put(cgrp);
}
mutex_unlock(&cgroup_mutex);
call_rcu(&css->rcu_head, css_free_rcu_fn);
}
static void css_release(struct percpu_ref *ref)
{
struct cgroup_subsys_state *css =
container_of(ref, struct cgroup_subsys_state, refcnt);
INIT_WORK(&css->destroy_work, css_release_work_fn);
queue_work(cgroup_destroy_wq, &css->destroy_work);
}
static void init_and_link_css(struct cgroup_subsys_state *css,
struct cgroup_subsys *ss, struct cgroup *cgrp)
{
lockdep_assert_held(&cgroup_mutex);
cgroup_get_live(cgrp);
memset(css, 0, sizeof(*css));
css->cgroup = cgrp;
css->ss = ss;
css->id = -1;
INIT_LIST_HEAD(&css->sibling);
INIT_LIST_HEAD(&css->children);
css->serial_nr = css_serial_nr_next++;
atomic_set(&css->online_cnt, 0);
if (cgroup_parent(cgrp)) {
css->parent = cgroup_css(cgroup_parent(cgrp), ss);
css_get(css->parent);
}
BUG_ON(cgroup_css(cgrp, ss));
}
/* invoke ->css_online() on a new CSS and mark it online if successful */
static int online_css(struct cgroup_subsys_state *css)
{
struct cgroup_subsys *ss = css->ss;
int ret = 0;
lockdep_assert_held(&cgroup_mutex);
if (ss->css_online)
ret = ss->css_online(css);
if (!ret) {
css->flags |= CSS_ONLINE;
rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
atomic_inc(&css->online_cnt);
if (css->parent)
atomic_inc(&css->parent->online_cnt);
}
return ret;
}
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
static void offline_css(struct cgroup_subsys_state *css)
{
struct cgroup_subsys *ss = css->ss;
lockdep_assert_held(&cgroup_mutex);
if (!(css->flags & CSS_ONLINE))
return;
if (ss->css_reset)
ss->css_reset(css);
if (ss->css_offline)
ss->css_offline(css);
css->flags &= ~CSS_ONLINE;
RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
wake_up_all(&css->cgroup->offline_waitq);
}
/**
* css_create - create a cgroup_subsys_state
* @cgrp: the cgroup new css will be associated with
* @ss: the subsys of new css
*
* Create a new css associated with @cgrp - @ss pair. On success, the new
* css is online and installed in @cgrp. This function doesn't create the
* interface files. Returns 0 on success, -errno on failure.
*/
static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
struct cgroup_subsys *ss)
{
struct cgroup *parent = cgroup_parent(cgrp);
struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
struct cgroup_subsys_state *css;
int err;
lockdep_assert_held(&cgroup_mutex);
css = ss->css_alloc(parent_css);
if (!css)
css = ERR_PTR(-ENOMEM);
if (IS_ERR(css))
return css;
init_and_link_css(css, ss, cgrp);
err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
if (err)
goto err_free_css;
err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
if (err < 0)
goto err_free_css;
css->id = err;
/* @css is ready to be brought online now, make it visible */
list_add_tail_rcu(&css->sibling, &parent_css->children);
cgroup_idr_replace(&ss->css_idr, css, css->id);
err = online_css(css);
if (err)
goto err_list_del;
if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
cgroup_parent(parent)) {
pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
current->comm, current->pid, ss->name);
if (!strcmp(ss->name, "memory"))
pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
ss->warned_broken_hierarchy = true;
}
return css;
err_list_del:
list_del_rcu(&css->sibling);
err_free_css:
call_rcu(&css->rcu_head, css_free_rcu_fn);
return ERR_PTR(err);
}
/*
* The returned cgroup is fully initialized including its control mask, but
* it isn't associated with its kernfs_node and doesn't have the control
* mask applied.
*/
static struct cgroup *cgroup_create(struct cgroup *parent)
{
struct cgroup_root *root = parent->root;
struct cgroup *cgrp, *tcgrp;
int level = parent->level + 1;
int ret;
/* allocate the cgroup and its ID, 0 is reserved for the root */
cgrp = kzalloc(sizeof(*cgrp) +
sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
if (!cgrp)
return ERR_PTR(-ENOMEM);
ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
if (ret)
goto out_free_cgrp;
/*
* Temporarily set the pointer to NULL, so idr_find() won't return
* a half-baked cgroup.
*/
cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
if (cgrp->id < 0) {
ret = -ENOMEM;
goto out_cancel_ref;
}
init_cgroup_housekeeping(cgrp);
cgrp->self.parent = &parent->self;
cgrp->root = root;
cgrp->level = level;
for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
if (notify_on_release(parent))
set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
cgrp->self.serial_nr = css_serial_nr_next++;
/* allocation complete, commit to creation */
list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
atomic_inc(&root->nr_cgrps);
cgroup_get_live(parent);
/*
* @cgrp is now fully operational. If something fails after this
* point, it'll be released via the normal destruction path.
*/
cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
/*
* On the default hierarchy, a child doesn't automatically inherit
* subtree_control from the parent. Each is configured manually.
*/
if (!cgroup_on_dfl(cgrp))
cgrp->subtree_control = cgroup_control(cgrp);
if (parent)
cgroup_bpf_inherit(cgrp, parent);
cgroup_propagate_control(cgrp);
return cgrp;
out_cancel_ref:
percpu_ref_exit(&cgrp->self.refcnt);
out_free_cgrp:
kfree(cgrp);
return ERR_PTR(ret);
}
int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
{
struct cgroup *parent, *cgrp;
struct kernfs_node *kn;
int ret;
/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
if (strchr(name, '\n'))
return -EINVAL;
parent = cgroup_kn_lock_live(parent_kn, false);
if (!parent)
return -ENODEV;
cgrp = cgroup_create(parent);
if (IS_ERR(cgrp)) {
ret = PTR_ERR(cgrp);
goto out_unlock;
}
/* create the directory */
kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
if (IS_ERR(kn)) {
ret = PTR_ERR(kn);
goto out_destroy;
}
cgrp->kn = kn;
/*
* This extra ref will be put in cgroup_free_fn() and guarantees
* that @cgrp->kn is always accessible.
*/
kernfs_get(kn);
ret = cgroup_kn_set_ugid(kn);
if (ret)
goto out_destroy;
ret = css_populate_dir(&cgrp->self);
if (ret)
goto out_destroy;
ret = cgroup_apply_control_enable(cgrp);
if (ret)
goto out_destroy;
trace_cgroup_mkdir(cgrp);
/* let's create and online css's */
kernfs_activate(kn);
ret = 0;
goto out_unlock;
out_destroy:
cgroup_destroy_locked(cgrp);
out_unlock:
cgroup_kn_unlock(parent_kn);
return ret;
}
/*
* This is called when the refcnt of a css is confirmed to be killed.
* css_tryget_online() is now guaranteed to fail. Tell the subsystem to
* initate destruction and put the css ref from kill_css().
*/
static void css_killed_work_fn(struct work_struct *work)
{
struct cgroup_subsys_state *css =
container_of(work, struct cgroup_subsys_state, destroy_work);
mutex_lock(&cgroup_mutex);
do {
offline_css(css);
css_put(css);
/* @css can't go away while we're holding cgroup_mutex */
css = css->parent;
} while (css && atomic_dec_and_test(&css->online_cnt));
mutex_unlock(&cgroup_mutex);
}
/* css kill confirmation processing requires process context, bounce */
static void css_killed_ref_fn(struct percpu_ref *ref)
{
struct cgroup_subsys_state *css =
container_of(ref, struct cgroup_subsys_state, refcnt);
if (atomic_dec_and_test(&css->online_cnt)) {
INIT_WORK(&css->destroy_work, css_killed_work_fn);
queue_work(cgroup_destroy_wq, &css->destroy_work);
}
}
/**
* kill_css - destroy a css
* @css: css to destroy
*
* This function initiates destruction of @css by removing cgroup interface
* files and putting its base reference. ->css_offline() will be invoked
* asynchronously once css_tryget_online() is guaranteed to fail and when
* the reference count reaches zero, @css will be released.
*/
static void kill_css(struct cgroup_subsys_state *css)
{
lockdep_assert_held(&cgroup_mutex);
if (css->flags & CSS_DYING)
return;
css->flags |= CSS_DYING;
/*
* This must happen before css is disassociated with its cgroup.
* See seq_css() for details.
*/
css_clear_dir(css);
/*
* Killing would put the base ref, but we need to keep it alive
* until after ->css_offline().
*/
css_get(css);
/*
* cgroup core guarantees that, by the time ->css_offline() is
* invoked, no new css reference will be given out via
* css_tryget_online(). We can't simply call percpu_ref_kill() and
* proceed to offlining css's because percpu_ref_kill() doesn't
* guarantee that the ref is seen as killed on all CPUs on return.
*
* Use percpu_ref_kill_and_confirm() to get notifications as each
* css is confirmed to be seen as killed on all CPUs.
*/
percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
}
/**
* cgroup_destroy_locked - the first stage of cgroup destruction
* @cgrp: cgroup to be destroyed
*
* css's make use of percpu refcnts whose killing latency shouldn't be
* exposed to userland and are RCU protected. Also, cgroup core needs to
* guarantee that css_tryget_online() won't succeed by the time
* ->css_offline() is invoked. To satisfy all the requirements,
* destruction is implemented in the following two steps.
*
* s1. Verify @cgrp can be destroyed and mark it dying. Remove all
* userland visible parts and start killing the percpu refcnts of
* css's. Set up so that the next stage will be kicked off once all
* the percpu refcnts are confirmed to be killed.
*
* s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
* rest of destruction. Once all cgroup references are gone, the
* cgroup is RCU-freed.
*
* This function implements s1. After this step, @cgrp is gone as far as
* the userland is concerned and a new cgroup with the same name may be
* created. As cgroup doesn't care about the names internally, this
* doesn't cause any problem.
*/
static int cgroup_destroy_locked(struct cgroup *cgrp)
__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
{
struct cgroup_subsys_state *css;
struct cgrp_cset_link *link;
int ssid;
lockdep_assert_held(&cgroup_mutex);
/*
* Only migration can raise populated from zero and we're already
* holding cgroup_mutex.
*/
if (cgroup_is_populated(cgrp))
return -EBUSY;
/*
* Make sure there's no live children. We can't test emptiness of
* ->self.children as dead children linger on it while being
* drained; otherwise, "rmdir parent/child parent" may fail.
*/
if (css_has_online_children(&cgrp->self))
return -EBUSY;
/*
* Mark @cgrp and the associated csets dead. The former prevents
* further task migration and child creation by disabling
* cgroup_lock_live_group(). The latter makes the csets ignored by
* the migration path.
*/
cgrp->self.flags &= ~CSS_ONLINE;
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &cgrp->cset_links, cset_link)
link->cset->dead = true;
spin_unlock_irq(&css_set_lock);
/* initiate massacre of all css's */
for_each_css(css, ssid, cgrp)
kill_css(css);
/*
* Remove @cgrp directory along with the base files. @cgrp has an
* extra ref on its kn.
*/
kernfs_remove(cgrp->kn);
cgroup1_check_for_release(cgroup_parent(cgrp));
/* put the base reference */
percpu_ref_kill(&cgrp->self.refcnt);
return 0;
};
int cgroup_rmdir(struct kernfs_node *kn)
{
struct cgroup *cgrp;
int ret = 0;
cgrp = cgroup_kn_lock_live(kn, false);
if (!cgrp)
return 0;
ret = cgroup_destroy_locked(cgrp);
if (!ret)
trace_cgroup_rmdir(cgrp);
cgroup_kn_unlock(kn);
return ret;
}
static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
.show_options = cgroup_show_options,
.remount_fs = cgroup_remount,
.mkdir = cgroup_mkdir,
.rmdir = cgroup_rmdir,
.show_path = cgroup_show_path,
};
static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
{
struct cgroup_subsys_state *css;
pr_debug("Initializing cgroup subsys %s\n", ss->name);
mutex_lock(&cgroup_mutex);
idr_init(&ss->css_idr);
INIT_LIST_HEAD(&ss->cfts);
/* Create the root cgroup state for this subsystem */
ss->root = &cgrp_dfl_root;
css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
/* We don't handle early failures gracefully */
BUG_ON(IS_ERR(css));
init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
/*
* Root csses are never destroyed and we can't initialize
* percpu_ref during early init. Disable refcnting.
*/
css->flags |= CSS_NO_REF;
if (early) {
/* allocation can't be done safely during early init */
css->id = 1;
} else {
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
BUG_ON(css->id < 0);
}
/* Update the init_css_set to contain a subsys
* pointer to this state - since the subsystem is
* newly registered, all tasks and hence the
* init_css_set is in the subsystem's root cgroup. */
init_css_set.subsys[ss->id] = css;
have_fork_callback |= (bool)ss->fork << ss->id;
have_exit_callback |= (bool)ss->exit << ss->id;
have_free_callback |= (bool)ss->free << ss->id;
have_canfork_callback |= (bool)ss->can_fork << ss->id;
/* At system boot, before all subsystems have been
* registered, no tasks have been forked, so we don't
* need to invoke fork callbacks here. */
BUG_ON(!list_empty(&init_task.tasks));
BUG_ON(online_css(css));
mutex_unlock(&cgroup_mutex);
}
/**
* cgroup_init_early - cgroup initialization at system boot
*
* Initialize cgroups at system boot, and initialize any
* subsystems that request early init.
*/
int __init cgroup_init_early(void)
{
static struct cgroup_sb_opts __initdata opts;
struct cgroup_subsys *ss;
int i;
init_cgroup_root(&cgrp_dfl_root, &opts);
cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
for_each_subsys(ss, i) {
WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
"invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
ss->id, ss->name);
WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
"cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
ss->id = i;
ss->name = cgroup_subsys_name[i];
if (!ss->legacy_name)
ss->legacy_name = cgroup_subsys_name[i];
if (ss->early_init)
cgroup_init_subsys(ss, true);
}
return 0;
}
static u16 cgroup_disable_mask __initdata;
/**
* cgroup_init - cgroup initialization
*
* Register cgroup filesystem and /proc file, and initialize
* any subsystems that didn't request early init.
*/
int __init cgroup_init(void)
{
struct cgroup_subsys *ss;
int ssid;
BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
/*
* The latency of the synchronize_sched() is too high for cgroups,
* avoid it at the cost of forcing all readers into the slow path.
*/
rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
get_user_ns(init_cgroup_ns.user_ns);
mutex_lock(&cgroup_mutex);
/*
* Add init_css_set to the hash table so that dfl_root can link to
* it during init.
*/
hash_add(css_set_table, &init_css_set.hlist,
css_set_hash(init_css_set.subsys));
BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
mutex_unlock(&cgroup_mutex);
for_each_subsys(ss, ssid) {
if (ss->early_init) {
struct cgroup_subsys_state *css =
init_css_set.subsys[ss->id];
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
GFP_KERNEL);
BUG_ON(css->id < 0);
} else {
cgroup_init_subsys(ss, false);
}
list_add_tail(&init_css_set.e_cset_node[ssid],
&cgrp_dfl_root.cgrp.e_csets[ssid]);
/*
* Setting dfl_root subsys_mask needs to consider the
* disabled flag and cftype registration needs kmalloc,
* both of which aren't available during early_init.
*/
if (cgroup_disable_mask & (1 << ssid)) {
static_branch_disable(cgroup_subsys_enabled_key[ssid]);
printk(KERN_INFO "Disabling %s control group subsystem\n",
ss->name);
continue;
}
if (cgroup1_ssid_disabled(ssid))
printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
ss->name);
cgrp_dfl_root.subsys_mask |= 1 << ss->id;
if (ss->implicit_on_dfl)
cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
else if (!ss->dfl_cftypes)
cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
if (ss->dfl_cftypes == ss->legacy_cftypes) {
WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
} else {
WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
}
if (ss->bind)
ss->bind(init_css_set.subsys[ssid]);
}
/* init_css_set.subsys[] has been updated, re-hash */
hash_del(&init_css_set.hlist);
hash_add(css_set_table, &init_css_set.hlist,
css_set_hash(init_css_set.subsys));
WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
WARN_ON(register_filesystem(&cgroup_fs_type));
WARN_ON(register_filesystem(&cgroup2_fs_type));
WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
return 0;
}
static int __init cgroup_wq_init(void)
{
/*
* There isn't much point in executing destruction path in
* parallel. Good chunk is serialized with cgroup_mutex anyway.
* Use 1 for @max_active.
*
* We would prefer to do this in cgroup_init() above, but that
* is called before init_workqueues(): so leave this until after.
*/
cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
BUG_ON(!cgroup_destroy_wq);
return 0;
}
core_initcall(cgroup_wq_init);
/*
* proc_cgroup_show()
* - Print task's cgroup paths into seq_file, one line for each hierarchy
* - Used for /proc/<pid>/cgroup.
*/
int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *tsk)
{
char *buf;
int retval;
struct cgroup_root *root;
retval = -ENOMEM;
buf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!buf)
goto out;
mutex_lock(&cgroup_mutex);
spin_lock_irq(&css_set_lock);
for_each_root(root) {
struct cgroup_subsys *ss;
struct cgroup *cgrp;
int ssid, count = 0;
if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
continue;
seq_printf(m, "%d:", root->hierarchy_id);
if (root != &cgrp_dfl_root)
for_each_subsys(ss, ssid)
if (root->subsys_mask & (1 << ssid))
seq_printf(m, "%s%s", count++ ? "," : "",
ss->legacy_name);
if (strlen(root->name))
seq_printf(m, "%sname=%s", count ? "," : "",
root->name);
seq_putc(m, ':');
cgrp = task_cgroup_from_root(tsk, root);
/*
* On traditional hierarchies, all zombie tasks show up as
* belonging to the root cgroup. On the default hierarchy,
* while a zombie doesn't show up in "cgroup.procs" and
* thus can't be migrated, its /proc/PID/cgroup keeps
* reporting the cgroup it belonged to before exiting. If
* the cgroup is removed before the zombie is reaped,
* " (deleted)" is appended to the cgroup path.
*/
if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
current->nsproxy->cgroup_ns);
if (retval >= PATH_MAX)
retval = -ENAMETOOLONG;
if (retval < 0)
goto out_unlock;
seq_puts(m, buf);
} else {
seq_puts(m, "/");
}
if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
seq_puts(m, " (deleted)\n");
else
seq_putc(m, '\n');
}
retval = 0;
out_unlock:
spin_unlock_irq(&css_set_lock);
mutex_unlock(&cgroup_mutex);
kfree(buf);
out:
return retval;
}
/**
* cgroup_fork - initialize cgroup related fields during copy_process()
* @child: pointer to task_struct of forking parent process.
*
* A task is associated with the init_css_set until cgroup_post_fork()
* attaches it to the parent's css_set. Empty cg_list indicates that
* @child isn't holding reference to its css_set.
*/
void cgroup_fork(struct task_struct *child)
{
RCU_INIT_POINTER(child->cgroups, &init_css_set);
INIT_LIST_HEAD(&child->cg_list);
}
/**
* cgroup_can_fork - called on a new task before the process is exposed
* @child: the task in question.
*
* This calls the subsystem can_fork() callbacks. If the can_fork() callback
* returns an error, the fork aborts with that error code. This allows for
* a cgroup subsystem to conditionally allow or deny new forks.
*/
int cgroup_can_fork(struct task_struct *child)
{
struct cgroup_subsys *ss;
int i, j, ret;
do_each_subsys_mask(ss, i, have_canfork_callback) {
ret = ss->can_fork(child);
if (ret)
goto out_revert;
} while_each_subsys_mask();
return 0;
out_revert:
for_each_subsys(ss, j) {
if (j >= i)
break;
if (ss->cancel_fork)
ss->cancel_fork(child);
}
return ret;
}
/**
* cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
* @child: the task in question
*
* This calls the cancel_fork() callbacks if a fork failed *after*
* cgroup_can_fork() succeded.
*/
void cgroup_cancel_fork(struct task_struct *child)
{
struct cgroup_subsys *ss;
int i;
for_each_subsys(ss, i)
if (ss->cancel_fork)
ss->cancel_fork(child);
}
/**
* cgroup_post_fork - called on a new task after adding it to the task list
* @child: the task in question
*
* Adds the task to the list running through its css_set if necessary and
* call the subsystem fork() callbacks. Has to be after the task is
* visible on the task list in case we race with the first call to
* cgroup_task_iter_start() - to guarantee that the new task ends up on its
* list.
*/
void cgroup_post_fork(struct task_struct *child)
{
struct cgroup_subsys *ss;
int i;
/*
* This may race against cgroup_enable_task_cg_lists(). As that
* function sets use_task_css_set_links before grabbing
* tasklist_lock and we just went through tasklist_lock to add
* @child, it's guaranteed that either we see the set
* use_task_css_set_links or cgroup_enable_task_cg_lists() sees
* @child during its iteration.
*
* If we won the race, @child is associated with %current's
* css_set. Grabbing css_set_lock guarantees both that the
* association is stable, and, on completion of the parent's
* migration, @child is visible in the source of migration or
* already in the destination cgroup. This guarantee is necessary
* when implementing operations which need to migrate all tasks of
* a cgroup to another.
*
* Note that if we lose to cgroup_enable_task_cg_lists(), @child
* will remain in init_css_set. This is safe because all tasks are
* in the init_css_set before cg_links is enabled and there's no
* operation which transfers all tasks out of init_css_set.
*/
if (use_task_css_set_links) {
struct css_set *cset;
spin_lock_irq(&css_set_lock);
cset = task_css_set(current);
if (list_empty(&child->cg_list)) {
get_css_set(cset);
cset->nr_tasks++;
css_set_move_task(child, NULL, cset, false);
}
spin_unlock_irq(&css_set_lock);
}
/*
* Call ss->fork(). This must happen after @child is linked on
* css_set; otherwise, @child might change state between ->fork()
* and addition to css_set.
*/
do_each_subsys_mask(ss, i, have_fork_callback) {
ss->fork(child);
} while_each_subsys_mask();
}
/**
* cgroup_exit - detach cgroup from exiting task
* @tsk: pointer to task_struct of exiting process
*
* Description: Detach cgroup from @tsk and release it.
*
* Note that cgroups marked notify_on_release force every task in
* them to take the global cgroup_mutex mutex when exiting.
* This could impact scaling on very large systems. Be reluctant to
* use notify_on_release cgroups where very high task exit scaling
* is required on large systems.
*
* We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
* call cgroup_exit() while the task is still competent to handle
* notify_on_release(), then leave the task attached to the root cgroup in
* each hierarchy for the remainder of its exit. No need to bother with
* init_css_set refcnting. init_css_set never goes away and we can't race
* with migration path - PF_EXITING is visible to migration path.
*/
void cgroup_exit(struct task_struct *tsk)
{
struct cgroup_subsys *ss;
struct css_set *cset;
int i;
/*
* Unlink from @tsk from its css_set. As migration path can't race
* with us, we can check css_set and cg_list without synchronization.
*/
cset = task_css_set(tsk);
if (!list_empty(&tsk->cg_list)) {
spin_lock_irq(&css_set_lock);
css_set_move_task(tsk, cset, NULL, false);
cset->nr_tasks--;
spin_unlock_irq(&css_set_lock);
} else {
get_css_set(cset);
}
/* see cgroup_post_fork() for details */
do_each_subsys_mask(ss, i, have_exit_callback) {
ss->exit(tsk);
} while_each_subsys_mask();
}
void cgroup_free(struct task_struct *task)
{
struct css_set *cset = task_css_set(task);
struct cgroup_subsys *ss;
int ssid;
do_each_subsys_mask(ss, ssid, have_free_callback) {
ss->free(task);
} while_each_subsys_mask();
put_css_set(cset);
}
static int __init cgroup_disable(char *str)
{
struct cgroup_subsys *ss;
char *token;
int i;
while ((token = strsep(&str, ",")) != NULL) {
if (!*token)
continue;
for_each_subsys(ss, i) {
if (strcmp(token, ss->name) &&
strcmp(token, ss->legacy_name))
continue;
cgroup_disable_mask |= 1 << i;
}
}
return 1;
}
__setup("cgroup_disable=", cgroup_disable);
/**
* css_tryget_online_from_dir - get corresponding css from a cgroup dentry
* @dentry: directory dentry of interest
* @ss: subsystem of interest
*
* If @dentry is a directory for a cgroup which has @ss enabled on it, try
* to get the corresponding css and return it. If such css doesn't exist
* or can't be pinned, an ERR_PTR value is returned.
*/
struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
struct cgroup_subsys *ss)
{
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
struct file_system_type *s_type = dentry->d_sb->s_type;
struct cgroup_subsys_state *css = NULL;
struct cgroup *cgrp;
/* is @dentry a cgroup dir? */
if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
!kn || kernfs_type(kn) != KERNFS_DIR)
return ERR_PTR(-EBADF);
rcu_read_lock();
/*
* This path doesn't originate from kernfs and @kn could already
* have been or be removed at any point. @kn->priv is RCU
* protected for this access. See css_release_work_fn() for details.
*/
cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
if (cgrp)
css = cgroup_css(cgrp, ss);
if (!css || !css_tryget_online(css))
css = ERR_PTR(-ENOENT);
rcu_read_unlock();
return css;
}
/**
* css_from_id - lookup css by id
* @id: the cgroup id
* @ss: cgroup subsys to be looked into
*
* Returns the css if there's valid one with @id, otherwise returns NULL.
* Should be called under rcu_read_lock().
*/
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return idr_find(&ss->css_idr, id);
}
/**
* cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
* @path: path on the default hierarchy
*
* Find the cgroup at @path on the default hierarchy, increment its
* reference count and return it. Returns pointer to the found cgroup on
* success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
* if @path points to a non-directory.
*/
struct cgroup *cgroup_get_from_path(const char *path)
{
struct kernfs_node *kn;
struct cgroup *cgrp;
mutex_lock(&cgroup_mutex);
kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
if (kn) {
if (kernfs_type(kn) == KERNFS_DIR) {
cgrp = kn->priv;
cgroup_get_live(cgrp);
} else {
cgrp = ERR_PTR(-ENOTDIR);
}
kernfs_put(kn);
} else {
cgrp = ERR_PTR(-ENOENT);
}
mutex_unlock(&cgroup_mutex);
return cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_get_from_path);
/**
* cgroup_get_from_fd - get a cgroup pointer from a fd
* @fd: fd obtained by open(cgroup2_dir)
*
* Find the cgroup from a fd which should be obtained
* by opening a cgroup directory. Returns a pointer to the
* cgroup on success. ERR_PTR is returned if the cgroup
* cannot be found.
*/
struct cgroup *cgroup_get_from_fd(int fd)
{
struct cgroup_subsys_state *css;
struct cgroup *cgrp;
struct file *f;
f = fget_raw(fd);
if (!f)
return ERR_PTR(-EBADF);
css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
fput(f);
if (IS_ERR(css))
return ERR_CAST(css);
cgrp = css->cgroup;
if (!cgroup_on_dfl(cgrp)) {
cgroup_put(cgrp);
return ERR_PTR(-EBADF);
}
return cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
/*
* sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
* definition in cgroup-defs.h.
*/
#ifdef CONFIG_SOCK_CGROUP_DATA
#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
DEFINE_SPINLOCK(cgroup_sk_update_lock);
static bool cgroup_sk_alloc_disabled __read_mostly;
void cgroup_sk_alloc_disable(void)
{
if (cgroup_sk_alloc_disabled)
return;
pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
cgroup_sk_alloc_disabled = true;
}
#else
#define cgroup_sk_alloc_disabled false
#endif
void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
{
if (cgroup_sk_alloc_disabled)
return;
/* Socket clone path */
if (skcd->val) {
/*
* We might be cloning a socket which is left in an empty
* cgroup and the cgroup might have already been rmdir'd.
* Don't use cgroup_get_live().
*/
cgroup_get(sock_cgroup_ptr(skcd));
return;
}
rcu_read_lock();
while (true) {
struct css_set *cset;
cset = task_css_set(current);
if (likely(cgroup_tryget(cset->dfl_cgrp))) {
skcd->val = (unsigned long)cset->dfl_cgrp;
break;
}
cpu_relax();
}
rcu_read_unlock();
}
void cgroup_sk_free(struct sock_cgroup_data *skcd)
{
cgroup_put(sock_cgroup_ptr(skcd));
}
#endif /* CONFIG_SOCK_CGROUP_DATA */
#ifdef CONFIG_CGROUP_BPF
int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
enum bpf_attach_type type, bool overridable)
{
struct cgroup *parent = cgroup_parent(cgrp);
int ret;
mutex_lock(&cgroup_mutex);
ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
mutex_unlock(&cgroup_mutex);
return ret;
}
#endif /* CONFIG_CGROUP_BPF */