4d3f9d89c7
Instead of calling into the table based scalar AES code in situations where the SIMD unit may not be used, use the generic AES code, which is more appropriate since it is less likely to be susceptible to timing attacks. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
186 lines
4.4 KiB
C
186 lines
4.4 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions
|
|
*
|
|
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <asm/neon.h>
|
|
#include <asm/simd.h>
|
|
#include <asm/unaligned.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/internal/simd.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "aes-ce-setkey.h"
|
|
|
|
MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions");
|
|
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
struct aes_block {
|
|
u8 b[AES_BLOCK_SIZE];
|
|
};
|
|
|
|
asmlinkage void __aes_ce_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
|
|
asmlinkage void __aes_ce_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
|
|
|
|
asmlinkage u32 __aes_ce_sub(u32 l);
|
|
asmlinkage void __aes_ce_invert(struct aes_block *out,
|
|
const struct aes_block *in);
|
|
|
|
static int num_rounds(struct crypto_aes_ctx *ctx)
|
|
{
|
|
/*
|
|
* # of rounds specified by AES:
|
|
* 128 bit key 10 rounds
|
|
* 192 bit key 12 rounds
|
|
* 256 bit key 14 rounds
|
|
* => n byte key => 6 + (n/4) rounds
|
|
*/
|
|
return 6 + ctx->key_length / 4;
|
|
}
|
|
|
|
static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
|
|
{
|
|
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
if (!crypto_simd_usable()) {
|
|
aes_encrypt(ctx, dst, src);
|
|
return;
|
|
}
|
|
|
|
kernel_neon_begin();
|
|
__aes_ce_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
|
|
kernel_neon_end();
|
|
}
|
|
|
|
static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
|
|
{
|
|
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
if (!crypto_simd_usable()) {
|
|
aes_decrypt(ctx, dst, src);
|
|
return;
|
|
}
|
|
|
|
kernel_neon_begin();
|
|
__aes_ce_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
|
|
kernel_neon_end();
|
|
}
|
|
|
|
int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
/*
|
|
* The AES key schedule round constants
|
|
*/
|
|
static u8 const rcon[] = {
|
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
|
|
};
|
|
|
|
u32 kwords = key_len / sizeof(u32);
|
|
struct aes_block *key_enc, *key_dec;
|
|
int i, j;
|
|
|
|
if (key_len != AES_KEYSIZE_128 &&
|
|
key_len != AES_KEYSIZE_192 &&
|
|
key_len != AES_KEYSIZE_256)
|
|
return -EINVAL;
|
|
|
|
ctx->key_length = key_len;
|
|
for (i = 0; i < kwords; i++)
|
|
ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
|
|
|
|
kernel_neon_begin();
|
|
for (i = 0; i < sizeof(rcon); i++) {
|
|
u32 *rki = ctx->key_enc + (i * kwords);
|
|
u32 *rko = rki + kwords;
|
|
|
|
rko[0] = ror32(__aes_ce_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0];
|
|
rko[1] = rko[0] ^ rki[1];
|
|
rko[2] = rko[1] ^ rki[2];
|
|
rko[3] = rko[2] ^ rki[3];
|
|
|
|
if (key_len == AES_KEYSIZE_192) {
|
|
if (i >= 7)
|
|
break;
|
|
rko[4] = rko[3] ^ rki[4];
|
|
rko[5] = rko[4] ^ rki[5];
|
|
} else if (key_len == AES_KEYSIZE_256) {
|
|
if (i >= 6)
|
|
break;
|
|
rko[4] = __aes_ce_sub(rko[3]) ^ rki[4];
|
|
rko[5] = rko[4] ^ rki[5];
|
|
rko[6] = rko[5] ^ rki[6];
|
|
rko[7] = rko[6] ^ rki[7];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate the decryption keys for the Equivalent Inverse Cipher.
|
|
* This involves reversing the order of the round keys, and applying
|
|
* the Inverse Mix Columns transformation on all but the first and
|
|
* the last one.
|
|
*/
|
|
key_enc = (struct aes_block *)ctx->key_enc;
|
|
key_dec = (struct aes_block *)ctx->key_dec;
|
|
j = num_rounds(ctx);
|
|
|
|
key_dec[0] = key_enc[j];
|
|
for (i = 1, j--; j > 0; i++, j--)
|
|
__aes_ce_invert(key_dec + i, key_enc + j);
|
|
key_dec[i] = key_enc[0];
|
|
|
|
kernel_neon_end();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ce_aes_expandkey);
|
|
|
|
int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
int ret;
|
|
|
|
ret = ce_aes_expandkey(ctx, in_key, key_len);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(ce_aes_setkey);
|
|
|
|
static struct crypto_alg aes_alg = {
|
|
.cra_name = "aes",
|
|
.cra_driver_name = "aes-ce",
|
|
.cra_priority = 250,
|
|
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_cipher = {
|
|
.cia_min_keysize = AES_MIN_KEY_SIZE,
|
|
.cia_max_keysize = AES_MAX_KEY_SIZE,
|
|
.cia_setkey = ce_aes_setkey,
|
|
.cia_encrypt = aes_cipher_encrypt,
|
|
.cia_decrypt = aes_cipher_decrypt
|
|
}
|
|
};
|
|
|
|
static int __init aes_mod_init(void)
|
|
{
|
|
return crypto_register_alg(&aes_alg);
|
|
}
|
|
|
|
static void __exit aes_mod_exit(void)
|
|
{
|
|
crypto_unregister_alg(&aes_alg);
|
|
}
|
|
|
|
module_cpu_feature_match(AES, aes_mod_init);
|
|
module_exit(aes_mod_exit);
|