923f3a2b48
Cache and memory bandwidth monitoring are features that are part of x86 CPU resource control that is supported by the resctrl subsystem. The monitoring properties are obtained via CPUID from every CPU and only used within the resctrl subsystem where the properties are only read from boot_cpu_data. Obtain the monitoring properties once, placed in boot_cpu_data, via the ->c_bsp_init() helpers of the vendors that support X86_FEATURE_CQM_LLC. Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/6d74a6ac3e69f4b7a8b4115835f9455faf0f468d.1588715690.git.reinette.chatre@intel.com
1923 lines
49 KiB
C
1923 lines
49 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* cpu_feature_enabled() cannot be used this early */
|
|
#define USE_EARLY_PGTABLE_L5
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/smt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/io.h>
|
|
#include <linux/syscore_ops.h>
|
|
|
|
#include <asm/stackprotector.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/doublefault.h>
|
|
#include <asm/archrandom.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/vsyscall.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpumask.h>
|
|
#include <asm/pgtable.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/hwcap2.h>
|
|
#include <linux/numa.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/memtype.h>
|
|
#include <asm/microcode.h>
|
|
#include <asm/microcode_intel.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/uv/uv.h>
|
|
|
|
#include "cpu.h"
|
|
|
|
u32 elf_hwcap2 __read_mostly;
|
|
|
|
/* all of these masks are initialized in setup_cpu_local_masks() */
|
|
cpumask_var_t cpu_initialized_mask;
|
|
cpumask_var_t cpu_callout_mask;
|
|
cpumask_var_t cpu_callin_mask;
|
|
|
|
/* representing cpus for which sibling maps can be computed */
|
|
cpumask_var_t cpu_sibling_setup_mask;
|
|
|
|
/* Number of siblings per CPU package */
|
|
int smp_num_siblings = 1;
|
|
EXPORT_SYMBOL(smp_num_siblings);
|
|
|
|
/* Last level cache ID of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
|
|
|
|
/* correctly size the local cpu masks */
|
|
void __init setup_cpu_local_masks(void)
|
|
{
|
|
alloc_bootmem_cpumask_var(&cpu_initialized_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_callin_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_callout_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
|
|
}
|
|
|
|
static void default_init(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
cpu_detect_cache_sizes(c);
|
|
#else
|
|
/* Not much we can do here... */
|
|
/* Check if at least it has cpuid */
|
|
if (c->cpuid_level == -1) {
|
|
/* No cpuid. It must be an ancient CPU */
|
|
if (c->x86 == 4)
|
|
strcpy(c->x86_model_id, "486");
|
|
else if (c->x86 == 3)
|
|
strcpy(c->x86_model_id, "386");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static const struct cpu_dev default_cpu = {
|
|
.c_init = default_init,
|
|
.c_vendor = "Unknown",
|
|
.c_x86_vendor = X86_VENDOR_UNKNOWN,
|
|
};
|
|
|
|
static const struct cpu_dev *this_cpu = &default_cpu;
|
|
|
|
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* We need valid kernel segments for data and code in long mode too
|
|
* IRET will check the segment types kkeil 2000/10/28
|
|
* Also sysret mandates a special GDT layout
|
|
*
|
|
* TLS descriptors are currently at a different place compared to i386.
|
|
* Hopefully nobody expects them at a fixed place (Wine?)
|
|
*/
|
|
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
|
|
#else
|
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
|
|
/*
|
|
* Segments used for calling PnP BIOS have byte granularity.
|
|
* They code segments and data segments have fixed 64k limits,
|
|
* the transfer segment sizes are set at run time.
|
|
*/
|
|
/* 32-bit code */
|
|
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
|
|
/* 16-bit code */
|
|
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
|
|
/*
|
|
* The APM segments have byte granularity and their bases
|
|
* are set at run time. All have 64k limits.
|
|
*/
|
|
/* 32-bit code */
|
|
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
|
|
/* 16-bit code */
|
|
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
|
|
/* data */
|
|
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
|
|
|
|
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
GDT_STACK_CANARY_INIT
|
|
#endif
|
|
} };
|
|
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static int __init x86_nopcid_setup(char *s)
|
|
{
|
|
/* nopcid doesn't accept parameters */
|
|
if (s)
|
|
return -EINVAL;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_PCID))
|
|
return 0;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
pr_info("nopcid: PCID feature disabled\n");
|
|
return 0;
|
|
}
|
|
early_param("nopcid", x86_nopcid_setup);
|
|
#endif
|
|
|
|
static int __init x86_noinvpcid_setup(char *s)
|
|
{
|
|
/* noinvpcid doesn't accept parameters */
|
|
if (s)
|
|
return -EINVAL;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_INVPCID))
|
|
return 0;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_INVPCID);
|
|
pr_info("noinvpcid: INVPCID feature disabled\n");
|
|
return 0;
|
|
}
|
|
early_param("noinvpcid", x86_noinvpcid_setup);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static int cachesize_override = -1;
|
|
static int disable_x86_serial_nr = 1;
|
|
|
|
static int __init cachesize_setup(char *str)
|
|
{
|
|
get_option(&str, &cachesize_override);
|
|
return 1;
|
|
}
|
|
__setup("cachesize=", cachesize_setup);
|
|
|
|
static int __init x86_sep_setup(char *s)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SEP);
|
|
return 1;
|
|
}
|
|
__setup("nosep", x86_sep_setup);
|
|
|
|
/* Standard macro to see if a specific flag is changeable */
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
u32 f1, f2;
|
|
|
|
/*
|
|
* Cyrix and IDT cpus allow disabling of CPUID
|
|
* so the code below may return different results
|
|
* when it is executed before and after enabling
|
|
* the CPUID. Add "volatile" to not allow gcc to
|
|
* optimize the subsequent calls to this function.
|
|
*/
|
|
asm volatile ("pushfl \n\t"
|
|
"pushfl \n\t"
|
|
"popl %0 \n\t"
|
|
"movl %0, %1 \n\t"
|
|
"xorl %2, %0 \n\t"
|
|
"pushl %0 \n\t"
|
|
"popfl \n\t"
|
|
"pushfl \n\t"
|
|
"popl %0 \n\t"
|
|
"popfl \n\t"
|
|
|
|
: "=&r" (f1), "=&r" (f2)
|
|
: "ir" (flag));
|
|
|
|
return ((f1^f2) & flag) != 0;
|
|
}
|
|
|
|
/* Probe for the CPUID instruction */
|
|
int have_cpuid_p(void)
|
|
{
|
|
return flag_is_changeable_p(X86_EFLAGS_ID);
|
|
}
|
|
|
|
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long lo, hi;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
|
|
return;
|
|
|
|
/* Disable processor serial number: */
|
|
|
|
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
lo |= 0x200000;
|
|
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
|
|
pr_notice("CPU serial number disabled.\n");
|
|
clear_cpu_cap(c, X86_FEATURE_PN);
|
|
|
|
/* Disabling the serial number may affect the cpuid level */
|
|
c->cpuid_level = cpuid_eax(0);
|
|
}
|
|
|
|
static int __init x86_serial_nr_setup(char *s)
|
|
{
|
|
disable_x86_serial_nr = 0;
|
|
return 1;
|
|
}
|
|
__setup("serialnumber", x86_serial_nr_setup);
|
|
#else
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
return 1;
|
|
}
|
|
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static __init int setup_disable_smep(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SMEP);
|
|
return 1;
|
|
}
|
|
__setup("nosmep", setup_disable_smep);
|
|
|
|
static __always_inline void setup_smep(struct cpuinfo_x86 *c)
|
|
{
|
|
if (cpu_has(c, X86_FEATURE_SMEP))
|
|
cr4_set_bits(X86_CR4_SMEP);
|
|
}
|
|
|
|
static __init int setup_disable_smap(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SMAP);
|
|
return 1;
|
|
}
|
|
__setup("nosmap", setup_disable_smap);
|
|
|
|
static __always_inline void setup_smap(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long eflags = native_save_fl();
|
|
|
|
/* This should have been cleared long ago */
|
|
BUG_ON(eflags & X86_EFLAGS_AC);
|
|
|
|
if (cpu_has(c, X86_FEATURE_SMAP)) {
|
|
#ifdef CONFIG_X86_SMAP
|
|
cr4_set_bits(X86_CR4_SMAP);
|
|
#else
|
|
cr4_clear_bits(X86_CR4_SMAP);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static __always_inline void setup_umip(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Check the boot processor, plus build option for UMIP. */
|
|
if (!cpu_feature_enabled(X86_FEATURE_UMIP))
|
|
goto out;
|
|
|
|
/* Check the current processor's cpuid bits. */
|
|
if (!cpu_has(c, X86_FEATURE_UMIP))
|
|
goto out;
|
|
|
|
cr4_set_bits(X86_CR4_UMIP);
|
|
|
|
pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
|
|
|
|
return;
|
|
|
|
out:
|
|
/*
|
|
* Make sure UMIP is disabled in case it was enabled in a
|
|
* previous boot (e.g., via kexec).
|
|
*/
|
|
cr4_clear_bits(X86_CR4_UMIP);
|
|
}
|
|
|
|
static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
|
|
static unsigned long cr4_pinned_bits __ro_after_init;
|
|
|
|
void native_write_cr0(unsigned long val)
|
|
{
|
|
unsigned long bits_missing = 0;
|
|
|
|
set_register:
|
|
asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
|
|
|
|
if (static_branch_likely(&cr_pinning)) {
|
|
if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
|
|
bits_missing = X86_CR0_WP;
|
|
val |= bits_missing;
|
|
goto set_register;
|
|
}
|
|
/* Warn after we've set the missing bits. */
|
|
WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(native_write_cr0);
|
|
|
|
void native_write_cr4(unsigned long val)
|
|
{
|
|
unsigned long bits_missing = 0;
|
|
|
|
set_register:
|
|
asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
|
|
|
|
if (static_branch_likely(&cr_pinning)) {
|
|
if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
|
|
bits_missing = ~val & cr4_pinned_bits;
|
|
val |= bits_missing;
|
|
goto set_register;
|
|
}
|
|
/* Warn after we've set the missing bits. */
|
|
WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
|
|
bits_missing);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(native_write_cr4);
|
|
|
|
void cr4_init(void)
|
|
{
|
|
unsigned long cr4 = __read_cr4();
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PCID))
|
|
cr4 |= X86_CR4_PCIDE;
|
|
if (static_branch_likely(&cr_pinning))
|
|
cr4 |= cr4_pinned_bits;
|
|
|
|
__write_cr4(cr4);
|
|
|
|
/* Initialize cr4 shadow for this CPU. */
|
|
this_cpu_write(cpu_tlbstate.cr4, cr4);
|
|
}
|
|
|
|
/*
|
|
* Once CPU feature detection is finished (and boot params have been
|
|
* parsed), record any of the sensitive CR bits that are set, and
|
|
* enable CR pinning.
|
|
*/
|
|
static void __init setup_cr_pinning(void)
|
|
{
|
|
unsigned long mask;
|
|
|
|
mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
|
|
cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
|
|
static_key_enable(&cr_pinning.key);
|
|
}
|
|
|
|
/*
|
|
* Protection Keys are not available in 32-bit mode.
|
|
*/
|
|
static bool pku_disabled;
|
|
|
|
static __always_inline void setup_pku(struct cpuinfo_x86 *c)
|
|
{
|
|
struct pkru_state *pk;
|
|
|
|
/* check the boot processor, plus compile options for PKU: */
|
|
if (!cpu_feature_enabled(X86_FEATURE_PKU))
|
|
return;
|
|
/* checks the actual processor's cpuid bits: */
|
|
if (!cpu_has(c, X86_FEATURE_PKU))
|
|
return;
|
|
if (pku_disabled)
|
|
return;
|
|
|
|
cr4_set_bits(X86_CR4_PKE);
|
|
pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
|
|
if (pk)
|
|
pk->pkru = init_pkru_value;
|
|
/*
|
|
* Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
|
|
* cpuid bit to be set. We need to ensure that we
|
|
* update that bit in this CPU's "cpu_info".
|
|
*/
|
|
set_cpu_cap(c, X86_FEATURE_OSPKE);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
|
|
static __init int setup_disable_pku(char *arg)
|
|
{
|
|
/*
|
|
* Do not clear the X86_FEATURE_PKU bit. All of the
|
|
* runtime checks are against OSPKE so clearing the
|
|
* bit does nothing.
|
|
*
|
|
* This way, we will see "pku" in cpuinfo, but not
|
|
* "ospke", which is exactly what we want. It shows
|
|
* that the CPU has PKU, but the OS has not enabled it.
|
|
* This happens to be exactly how a system would look
|
|
* if we disabled the config option.
|
|
*/
|
|
pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
|
|
pku_disabled = true;
|
|
return 1;
|
|
}
|
|
__setup("nopku", setup_disable_pku);
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Some CPU features depend on higher CPUID levels, which may not always
|
|
* be available due to CPUID level capping or broken virtualization
|
|
* software. Add those features to this table to auto-disable them.
|
|
*/
|
|
struct cpuid_dependent_feature {
|
|
u32 feature;
|
|
u32 level;
|
|
};
|
|
|
|
static const struct cpuid_dependent_feature
|
|
cpuid_dependent_features[] = {
|
|
{ X86_FEATURE_MWAIT, 0x00000005 },
|
|
{ X86_FEATURE_DCA, 0x00000009 },
|
|
{ X86_FEATURE_XSAVE, 0x0000000d },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
|
|
{
|
|
const struct cpuid_dependent_feature *df;
|
|
|
|
for (df = cpuid_dependent_features; df->feature; df++) {
|
|
|
|
if (!cpu_has(c, df->feature))
|
|
continue;
|
|
/*
|
|
* Note: cpuid_level is set to -1 if unavailable, but
|
|
* extended_extended_level is set to 0 if unavailable
|
|
* and the legitimate extended levels are all negative
|
|
* when signed; hence the weird messing around with
|
|
* signs here...
|
|
*/
|
|
if (!((s32)df->level < 0 ?
|
|
(u32)df->level > (u32)c->extended_cpuid_level :
|
|
(s32)df->level > (s32)c->cpuid_level))
|
|
continue;
|
|
|
|
clear_cpu_cap(c, df->feature);
|
|
if (!warn)
|
|
continue;
|
|
|
|
pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
|
|
x86_cap_flag(df->feature), df->level);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Naming convention should be: <Name> [(<Codename>)]
|
|
* This table only is used unless init_<vendor>() below doesn't set it;
|
|
* in particular, if CPUID levels 0x80000002..4 are supported, this
|
|
* isn't used
|
|
*/
|
|
|
|
/* Look up CPU names by table lookup. */
|
|
static const char *table_lookup_model(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
const struct legacy_cpu_model_info *info;
|
|
|
|
if (c->x86_model >= 16)
|
|
return NULL; /* Range check */
|
|
|
|
if (!this_cpu)
|
|
return NULL;
|
|
|
|
info = this_cpu->legacy_models;
|
|
|
|
while (info->family) {
|
|
if (info->family == c->x86)
|
|
return info->model_names[c->x86_model];
|
|
info++;
|
|
}
|
|
#endif
|
|
return NULL; /* Not found */
|
|
}
|
|
|
|
/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
|
|
__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
|
|
__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
|
|
|
|
void load_percpu_segment(int cpu)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
loadsegment(fs, __KERNEL_PERCPU);
|
|
#else
|
|
__loadsegment_simple(gs, 0);
|
|
wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
|
|
#endif
|
|
load_stack_canary_segment();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* The 32-bit entry code needs to find cpu_entry_area. */
|
|
DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
|
|
#endif
|
|
|
|
/* Load the original GDT from the per-cpu structure */
|
|
void load_direct_gdt(int cpu)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_direct_gdt);
|
|
|
|
/* Load a fixmap remapping of the per-cpu GDT */
|
|
void load_fixmap_gdt(int cpu)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_fixmap_gdt);
|
|
|
|
/*
|
|
* Current gdt points %fs at the "master" per-cpu area: after this,
|
|
* it's on the real one.
|
|
*/
|
|
void switch_to_new_gdt(int cpu)
|
|
{
|
|
/* Load the original GDT */
|
|
load_direct_gdt(cpu);
|
|
/* Reload the per-cpu base */
|
|
load_percpu_segment(cpu);
|
|
}
|
|
|
|
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
|
|
|
|
static void get_model_name(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int *v;
|
|
char *p, *q, *s;
|
|
|
|
if (c->extended_cpuid_level < 0x80000004)
|
|
return;
|
|
|
|
v = (unsigned int *)c->x86_model_id;
|
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
|
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
|
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
|
|
c->x86_model_id[48] = 0;
|
|
|
|
/* Trim whitespace */
|
|
p = q = s = &c->x86_model_id[0];
|
|
|
|
while (*p == ' ')
|
|
p++;
|
|
|
|
while (*p) {
|
|
/* Note the last non-whitespace index */
|
|
if (!isspace(*p))
|
|
s = q;
|
|
|
|
*q++ = *p++;
|
|
}
|
|
|
|
*(s + 1) = '\0';
|
|
}
|
|
|
|
void detect_num_cpu_cores(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
c->x86_max_cores = 1;
|
|
if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
|
|
return;
|
|
|
|
cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
|
|
if (eax & 0x1f)
|
|
c->x86_max_cores = (eax >> 26) + 1;
|
|
}
|
|
|
|
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int n, dummy, ebx, ecx, edx, l2size;
|
|
|
|
n = c->extended_cpuid_level;
|
|
|
|
if (n >= 0x80000005) {
|
|
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
|
|
c->x86_cache_size = (ecx>>24) + (edx>>24);
|
|
#ifdef CONFIG_X86_64
|
|
/* On K8 L1 TLB is inclusive, so don't count it */
|
|
c->x86_tlbsize = 0;
|
|
#endif
|
|
}
|
|
|
|
if (n < 0x80000006) /* Some chips just has a large L1. */
|
|
return;
|
|
|
|
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
|
|
l2size = ecx >> 16;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
|
|
#else
|
|
/* do processor-specific cache resizing */
|
|
if (this_cpu->legacy_cache_size)
|
|
l2size = this_cpu->legacy_cache_size(c, l2size);
|
|
|
|
/* Allow user to override all this if necessary. */
|
|
if (cachesize_override != -1)
|
|
l2size = cachesize_override;
|
|
|
|
if (l2size == 0)
|
|
return; /* Again, no L2 cache is possible */
|
|
#endif
|
|
|
|
c->x86_cache_size = l2size;
|
|
}
|
|
|
|
u16 __read_mostly tlb_lli_4k[NR_INFO];
|
|
u16 __read_mostly tlb_lli_2m[NR_INFO];
|
|
u16 __read_mostly tlb_lli_4m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_4k[NR_INFO];
|
|
u16 __read_mostly tlb_lld_2m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_4m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_1g[NR_INFO];
|
|
|
|
static void cpu_detect_tlb(struct cpuinfo_x86 *c)
|
|
{
|
|
if (this_cpu->c_detect_tlb)
|
|
this_cpu->c_detect_tlb(c);
|
|
|
|
pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
|
|
tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
|
|
tlb_lli_4m[ENTRIES]);
|
|
|
|
pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
|
|
tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
|
|
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
|
|
}
|
|
|
|
int detect_ht_early(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_HT))
|
|
return -1;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
|
|
return -1;
|
|
|
|
if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
|
|
return -1;
|
|
|
|
cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
|
|
smp_num_siblings = (ebx & 0xff0000) >> 16;
|
|
if (smp_num_siblings == 1)
|
|
pr_info_once("CPU0: Hyper-Threading is disabled\n");
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void detect_ht(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
int index_msb, core_bits;
|
|
|
|
if (detect_ht_early(c) < 0)
|
|
return;
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
|
|
|
|
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
|
|
core_bits = get_count_order(c->x86_max_cores);
|
|
|
|
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
|
|
((1 << core_bits) - 1);
|
|
#endif
|
|
}
|
|
|
|
static void get_cpu_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
char *v = c->x86_vendor_id;
|
|
int i;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++) {
|
|
if (!cpu_devs[i])
|
|
break;
|
|
|
|
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
|
|
(cpu_devs[i]->c_ident[1] &&
|
|
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
|
|
|
|
this_cpu = cpu_devs[i];
|
|
c->x86_vendor = this_cpu->c_x86_vendor;
|
|
return;
|
|
}
|
|
}
|
|
|
|
pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
|
|
"CPU: Your system may be unstable.\n", v);
|
|
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
this_cpu = &default_cpu;
|
|
}
|
|
|
|
void cpu_detect(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
|
|
(unsigned int *)&c->x86_vendor_id[0],
|
|
(unsigned int *)&c->x86_vendor_id[8],
|
|
(unsigned int *)&c->x86_vendor_id[4]);
|
|
|
|
c->x86 = 4;
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 junk, tfms, cap0, misc;
|
|
|
|
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
|
|
c->x86 = x86_family(tfms);
|
|
c->x86_model = x86_model(tfms);
|
|
c->x86_stepping = x86_stepping(tfms);
|
|
|
|
if (cap0 & (1<<19)) {
|
|
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void apply_forced_caps(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
|
|
c->x86_capability[i] &= ~cpu_caps_cleared[i];
|
|
c->x86_capability[i] |= cpu_caps_set[i];
|
|
}
|
|
}
|
|
|
|
static void init_speculation_control(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
|
|
* and they also have a different bit for STIBP support. Also,
|
|
* a hypervisor might have set the individual AMD bits even on
|
|
* Intel CPUs, for finer-grained selection of what's available.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
|
|
set_cpu_cap(c, X86_FEATURE_IBRS);
|
|
set_cpu_cap(c, X86_FEATURE_IBPB);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
|
|
set_cpu_cap(c, X86_FEATURE_STIBP);
|
|
|
|
if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
|
|
cpu_has(c, X86_FEATURE_VIRT_SSBD))
|
|
set_cpu_cap(c, X86_FEATURE_SSBD);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
|
|
set_cpu_cap(c, X86_FEATURE_IBRS);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBPB))
|
|
set_cpu_cap(c, X86_FEATURE_IBPB);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
|
|
set_cpu_cap(c, X86_FEATURE_STIBP);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
|
|
set_cpu_cap(c, X86_FEATURE_SSBD);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
|
|
}
|
|
}
|
|
|
|
void get_cpu_cap(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_1_ECX] = ecx;
|
|
c->x86_capability[CPUID_1_EDX] = edx;
|
|
}
|
|
|
|
/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
|
|
if (c->cpuid_level >= 0x00000006)
|
|
c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
|
|
|
|
/* Additional Intel-defined flags: level 0x00000007 */
|
|
if (c->cpuid_level >= 0x00000007) {
|
|
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_7_0_EBX] = ebx;
|
|
c->x86_capability[CPUID_7_ECX] = ecx;
|
|
c->x86_capability[CPUID_7_EDX] = edx;
|
|
|
|
/* Check valid sub-leaf index before accessing it */
|
|
if (eax >= 1) {
|
|
cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_7_1_EAX] = eax;
|
|
}
|
|
}
|
|
|
|
/* Extended state features: level 0x0000000d */
|
|
if (c->cpuid_level >= 0x0000000d) {
|
|
cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_D_1_EAX] = eax;
|
|
}
|
|
|
|
/* AMD-defined flags: level 0x80000001 */
|
|
eax = cpuid_eax(0x80000000);
|
|
c->extended_cpuid_level = eax;
|
|
|
|
if ((eax & 0xffff0000) == 0x80000000) {
|
|
if (eax >= 0x80000001) {
|
|
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_8000_0001_ECX] = ecx;
|
|
c->x86_capability[CPUID_8000_0001_EDX] = edx;
|
|
}
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x80000007) {
|
|
cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_8000_0007_EBX] = ebx;
|
|
c->x86_power = edx;
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_8000_0008_EBX] = ebx;
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x8000000a)
|
|
c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
|
|
|
|
init_scattered_cpuid_features(c);
|
|
init_speculation_control(c);
|
|
|
|
/*
|
|
* Clear/Set all flags overridden by options, after probe.
|
|
* This needs to happen each time we re-probe, which may happen
|
|
* several times during CPU initialization.
|
|
*/
|
|
apply_forced_caps(c);
|
|
}
|
|
|
|
void get_cpu_address_sizes(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
}
|
|
#ifdef CONFIG_X86_32
|
|
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
|
|
c->x86_phys_bits = 36;
|
|
#endif
|
|
c->x86_cache_bits = c->x86_phys_bits;
|
|
}
|
|
|
|
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
int i;
|
|
|
|
/*
|
|
* First of all, decide if this is a 486 or higher
|
|
* It's a 486 if we can modify the AC flag
|
|
*/
|
|
if (flag_is_changeable_p(X86_EFLAGS_AC))
|
|
c->x86 = 4;
|
|
else
|
|
c->x86 = 3;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++)
|
|
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
|
|
c->x86_vendor_id[0] = 0;
|
|
cpu_devs[i]->c_identify(c);
|
|
if (c->x86_vendor_id[0]) {
|
|
get_cpu_vendor(c);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define NO_SPECULATION BIT(0)
|
|
#define NO_MELTDOWN BIT(1)
|
|
#define NO_SSB BIT(2)
|
|
#define NO_L1TF BIT(3)
|
|
#define NO_MDS BIT(4)
|
|
#define MSBDS_ONLY BIT(5)
|
|
#define NO_SWAPGS BIT(6)
|
|
#define NO_ITLB_MULTIHIT BIT(7)
|
|
#define NO_SPECTRE_V2 BIT(8)
|
|
|
|
#define VULNWL(vendor, family, model, whitelist) \
|
|
X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
|
|
|
|
#define VULNWL_INTEL(model, whitelist) \
|
|
VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
|
|
|
|
#define VULNWL_AMD(family, whitelist) \
|
|
VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
|
|
|
|
#define VULNWL_HYGON(family, whitelist) \
|
|
VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
|
|
|
|
static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
|
|
VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
|
|
/* Intel Family 6 */
|
|
VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(CORE_YONAH, NO_SSB),
|
|
|
|
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
/*
|
|
* Technically, swapgs isn't serializing on AMD (despite it previously
|
|
* being documented as such in the APM). But according to AMD, %gs is
|
|
* updated non-speculatively, and the issuing of %gs-relative memory
|
|
* operands will be blocked until the %gs update completes, which is
|
|
* good enough for our purposes.
|
|
*/
|
|
|
|
VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
|
|
|
|
/* AMD Family 0xf - 0x12 */
|
|
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
|
|
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
/* Zhaoxin Family 7 */
|
|
VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
|
|
VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
|
|
{}
|
|
};
|
|
|
|
static bool __init cpu_matches(unsigned long which)
|
|
{
|
|
const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
|
|
|
|
return m && !!(m->driver_data & which);
|
|
}
|
|
|
|
u64 x86_read_arch_cap_msr(void)
|
|
{
|
|
u64 ia32_cap = 0;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
|
|
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
|
|
|
|
return ia32_cap;
|
|
}
|
|
|
|
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 ia32_cap = x86_read_arch_cap_msr();
|
|
|
|
/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
|
|
if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
|
|
setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
|
|
|
|
if (cpu_matches(NO_SPECULATION))
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
|
|
|
|
if (!cpu_matches(NO_SPECTRE_V2))
|
|
setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
|
|
|
|
if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
|
|
!cpu_has(c, X86_FEATURE_AMD_SSB_NO))
|
|
setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
|
|
|
|
if (ia32_cap & ARCH_CAP_IBRS_ALL)
|
|
setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
|
|
|
|
if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
|
|
setup_force_cpu_bug(X86_BUG_MDS);
|
|
if (cpu_matches(MSBDS_ONLY))
|
|
setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
|
|
}
|
|
|
|
if (!cpu_matches(NO_SWAPGS))
|
|
setup_force_cpu_bug(X86_BUG_SWAPGS);
|
|
|
|
/*
|
|
* When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
|
|
* - TSX is supported or
|
|
* - TSX_CTRL is present
|
|
*
|
|
* TSX_CTRL check is needed for cases when TSX could be disabled before
|
|
* the kernel boot e.g. kexec.
|
|
* TSX_CTRL check alone is not sufficient for cases when the microcode
|
|
* update is not present or running as guest that don't get TSX_CTRL.
|
|
*/
|
|
if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
|
|
(cpu_has(c, X86_FEATURE_RTM) ||
|
|
(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
|
|
setup_force_cpu_bug(X86_BUG_TAA);
|
|
|
|
if (cpu_matches(NO_MELTDOWN))
|
|
return;
|
|
|
|
/* Rogue Data Cache Load? No! */
|
|
if (ia32_cap & ARCH_CAP_RDCL_NO)
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
|
|
|
|
if (cpu_matches(NO_L1TF))
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_L1TF);
|
|
}
|
|
|
|
/*
|
|
* The NOPL instruction is supposed to exist on all CPUs of family >= 6;
|
|
* unfortunately, that's not true in practice because of early VIA
|
|
* chips and (more importantly) broken virtualizers that are not easy
|
|
* to detect. In the latter case it doesn't even *fail* reliably, so
|
|
* probing for it doesn't even work. Disable it completely on 32-bit
|
|
* unless we can find a reliable way to detect all the broken cases.
|
|
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
|
|
*/
|
|
static void detect_nopl(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
setup_clear_cpu_cap(X86_FEATURE_NOPL);
|
|
#else
|
|
setup_force_cpu_cap(X86_FEATURE_NOPL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Do minimum CPU detection early.
|
|
* Fields really needed: vendor, cpuid_level, family, model, mask,
|
|
* cache alignment.
|
|
* The others are not touched to avoid unwanted side effects.
|
|
*
|
|
* WARNING: this function is only called on the boot CPU. Don't add code
|
|
* here that is supposed to run on all CPUs.
|
|
*/
|
|
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
c->x86_phys_bits = 36;
|
|
c->x86_virt_bits = 48;
|
|
#else
|
|
c->x86_clflush_size = 32;
|
|
c->x86_phys_bits = 32;
|
|
c->x86_virt_bits = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
|
|
memset(&c->x86_capability, 0, sizeof(c->x86_capability));
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (have_cpuid_p()) {
|
|
cpu_detect(c);
|
|
get_cpu_vendor(c);
|
|
get_cpu_cap(c);
|
|
get_cpu_address_sizes(c);
|
|
setup_force_cpu_cap(X86_FEATURE_CPUID);
|
|
|
|
if (this_cpu->c_early_init)
|
|
this_cpu->c_early_init(c);
|
|
|
|
c->cpu_index = 0;
|
|
filter_cpuid_features(c, false);
|
|
|
|
if (this_cpu->c_bsp_init)
|
|
this_cpu->c_bsp_init(c);
|
|
} else {
|
|
setup_clear_cpu_cap(X86_FEATURE_CPUID);
|
|
}
|
|
|
|
setup_force_cpu_cap(X86_FEATURE_ALWAYS);
|
|
|
|
cpu_set_bug_bits(c);
|
|
|
|
cpu_set_core_cap_bits(c);
|
|
|
|
fpu__init_system(c);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Regardless of whether PCID is enumerated, the SDM says
|
|
* that it can't be enabled in 32-bit mode.
|
|
*/
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
#endif
|
|
|
|
/*
|
|
* Later in the boot process pgtable_l5_enabled() relies on
|
|
* cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
|
|
* enabled by this point we need to clear the feature bit to avoid
|
|
* false-positives at the later stage.
|
|
*
|
|
* pgtable_l5_enabled() can be false here for several reasons:
|
|
* - 5-level paging is disabled compile-time;
|
|
* - it's 32-bit kernel;
|
|
* - machine doesn't support 5-level paging;
|
|
* - user specified 'no5lvl' in kernel command line.
|
|
*/
|
|
if (!pgtable_l5_enabled())
|
|
setup_clear_cpu_cap(X86_FEATURE_LA57);
|
|
|
|
detect_nopl();
|
|
}
|
|
|
|
void __init early_cpu_init(void)
|
|
{
|
|
const struct cpu_dev *const *cdev;
|
|
int count = 0;
|
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT
|
|
pr_info("KERNEL supported cpus:\n");
|
|
#endif
|
|
|
|
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
|
|
const struct cpu_dev *cpudev = *cdev;
|
|
|
|
if (count >= X86_VENDOR_NUM)
|
|
break;
|
|
cpu_devs[count] = cpudev;
|
|
count++;
|
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT
|
|
{
|
|
unsigned int j;
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
if (!cpudev->c_ident[j])
|
|
continue;
|
|
pr_info(" %s %s\n", cpudev->c_vendor,
|
|
cpudev->c_ident[j]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
early_identify_cpu(&boot_cpu_data);
|
|
}
|
|
|
|
static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Empirically, writing zero to a segment selector on AMD does
|
|
* not clear the base, whereas writing zero to a segment
|
|
* selector on Intel does clear the base. Intel's behavior
|
|
* allows slightly faster context switches in the common case
|
|
* where GS is unused by the prev and next threads.
|
|
*
|
|
* Since neither vendor documents this anywhere that I can see,
|
|
* detect it directly instead of hardcoding the choice by
|
|
* vendor.
|
|
*
|
|
* I've designated AMD's behavior as the "bug" because it's
|
|
* counterintuitive and less friendly.
|
|
*/
|
|
|
|
unsigned long old_base, tmp;
|
|
rdmsrl(MSR_FS_BASE, old_base);
|
|
wrmsrl(MSR_FS_BASE, 1);
|
|
loadsegment(fs, 0);
|
|
rdmsrl(MSR_FS_BASE, tmp);
|
|
if (tmp != 0)
|
|
set_cpu_bug(c, X86_BUG_NULL_SEG);
|
|
wrmsrl(MSR_FS_BASE, old_base);
|
|
#endif
|
|
}
|
|
|
|
static void generic_identify(struct cpuinfo_x86 *c)
|
|
{
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (!have_cpuid_p())
|
|
return;
|
|
|
|
cpu_detect(c);
|
|
|
|
get_cpu_vendor(c);
|
|
|
|
get_cpu_cap(c);
|
|
|
|
get_cpu_address_sizes(c);
|
|
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_SMP
|
|
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
|
|
# else
|
|
c->apicid = c->initial_apicid;
|
|
# endif
|
|
#endif
|
|
c->phys_proc_id = c->initial_apicid;
|
|
}
|
|
|
|
get_model_name(c); /* Default name */
|
|
|
|
detect_null_seg_behavior(c);
|
|
|
|
/*
|
|
* ESPFIX is a strange bug. All real CPUs have it. Paravirt
|
|
* systems that run Linux at CPL > 0 may or may not have the
|
|
* issue, but, even if they have the issue, there's absolutely
|
|
* nothing we can do about it because we can't use the real IRET
|
|
* instruction.
|
|
*
|
|
* NB: For the time being, only 32-bit kernels support
|
|
* X86_BUG_ESPFIX as such. 64-bit kernels directly choose
|
|
* whether to apply espfix using paravirt hooks. If any
|
|
* non-paravirt system ever shows up that does *not* have the
|
|
* ESPFIX issue, we can change this.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_PARAVIRT_XXL
|
|
do {
|
|
extern void native_iret(void);
|
|
if (pv_ops.cpu.iret == native_iret)
|
|
set_cpu_bug(c, X86_BUG_ESPFIX);
|
|
} while (0);
|
|
# else
|
|
set_cpu_bug(c, X86_BUG_ESPFIX);
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Validate that ACPI/mptables have the same information about the
|
|
* effective APIC id and update the package map.
|
|
*/
|
|
static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned int apicid, cpu = smp_processor_id();
|
|
|
|
apicid = apic->cpu_present_to_apicid(cpu);
|
|
|
|
if (apicid != c->apicid) {
|
|
pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
|
|
cpu, apicid, c->initial_apicid);
|
|
}
|
|
BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
|
|
BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
|
|
#else
|
|
c->logical_proc_id = 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This does the hard work of actually picking apart the CPU stuff...
|
|
*/
|
|
static void identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
c->loops_per_jiffy = loops_per_jiffy;
|
|
c->x86_cache_size = 0;
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
c->x86_model = c->x86_stepping = 0; /* So far unknown... */
|
|
c->x86_vendor_id[0] = '\0'; /* Unset */
|
|
c->x86_model_id[0] = '\0'; /* Unset */
|
|
c->x86_max_cores = 1;
|
|
c->x86_coreid_bits = 0;
|
|
c->cu_id = 0xff;
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
c->x86_phys_bits = 36;
|
|
c->x86_virt_bits = 48;
|
|
#else
|
|
c->cpuid_level = -1; /* CPUID not detected */
|
|
c->x86_clflush_size = 32;
|
|
c->x86_phys_bits = 32;
|
|
c->x86_virt_bits = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
memset(&c->x86_capability, 0, sizeof(c->x86_capability));
|
|
#ifdef CONFIG_X86_VMX_FEATURE_NAMES
|
|
memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
|
|
#endif
|
|
|
|
generic_identify(c);
|
|
|
|
if (this_cpu->c_identify)
|
|
this_cpu->c_identify(c);
|
|
|
|
/* Clear/Set all flags overridden by options, after probe */
|
|
apply_forced_caps(c);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Vendor-specific initialization. In this section we
|
|
* canonicalize the feature flags, meaning if there are
|
|
* features a certain CPU supports which CPUID doesn't
|
|
* tell us, CPUID claiming incorrect flags, or other bugs,
|
|
* we handle them here.
|
|
*
|
|
* At the end of this section, c->x86_capability better
|
|
* indicate the features this CPU genuinely supports!
|
|
*/
|
|
if (this_cpu->c_init)
|
|
this_cpu->c_init(c);
|
|
|
|
/* Disable the PN if appropriate */
|
|
squash_the_stupid_serial_number(c);
|
|
|
|
/* Set up SMEP/SMAP/UMIP */
|
|
setup_smep(c);
|
|
setup_smap(c);
|
|
setup_umip(c);
|
|
|
|
/*
|
|
* The vendor-specific functions might have changed features.
|
|
* Now we do "generic changes."
|
|
*/
|
|
|
|
/* Filter out anything that depends on CPUID levels we don't have */
|
|
filter_cpuid_features(c, true);
|
|
|
|
/* If the model name is still unset, do table lookup. */
|
|
if (!c->x86_model_id[0]) {
|
|
const char *p;
|
|
p = table_lookup_model(c);
|
|
if (p)
|
|
strcpy(c->x86_model_id, p);
|
|
else
|
|
/* Last resort... */
|
|
sprintf(c->x86_model_id, "%02x/%02x",
|
|
c->x86, c->x86_model);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
detect_ht(c);
|
|
#endif
|
|
|
|
x86_init_rdrand(c);
|
|
setup_pku(c);
|
|
|
|
/*
|
|
* Clear/Set all flags overridden by options, need do it
|
|
* before following smp all cpus cap AND.
|
|
*/
|
|
apply_forced_caps(c);
|
|
|
|
/*
|
|
* On SMP, boot_cpu_data holds the common feature set between
|
|
* all CPUs; so make sure that we indicate which features are
|
|
* common between the CPUs. The first time this routine gets
|
|
* executed, c == &boot_cpu_data.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
/* AND the already accumulated flags with these */
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
|
|
|
|
/* OR, i.e. replicate the bug flags */
|
|
for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
|
|
c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
|
|
}
|
|
|
|
/* Init Machine Check Exception if available. */
|
|
mcheck_cpu_init(c);
|
|
|
|
select_idle_routine(c);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
numa_add_cpu(smp_processor_id());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
|
|
* on 32-bit kernels:
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
void enable_sep_cpu(void)
|
|
{
|
|
struct tss_struct *tss;
|
|
int cpu;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_SEP))
|
|
return;
|
|
|
|
cpu = get_cpu();
|
|
tss = &per_cpu(cpu_tss_rw, cpu);
|
|
|
|
/*
|
|
* We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
|
|
* see the big comment in struct x86_hw_tss's definition.
|
|
*/
|
|
|
|
tss->x86_tss.ss1 = __KERNEL_CS;
|
|
wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
|
|
wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
|
|
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
|
|
|
|
put_cpu();
|
|
}
|
|
#endif
|
|
|
|
void __init identify_boot_cpu(void)
|
|
{
|
|
identify_cpu(&boot_cpu_data);
|
|
#ifdef CONFIG_X86_32
|
|
sysenter_setup();
|
|
enable_sep_cpu();
|
|
#endif
|
|
cpu_detect_tlb(&boot_cpu_data);
|
|
setup_cr_pinning();
|
|
|
|
tsx_init();
|
|
}
|
|
|
|
void identify_secondary_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
BUG_ON(c == &boot_cpu_data);
|
|
identify_cpu(c);
|
|
#ifdef CONFIG_X86_32
|
|
enable_sep_cpu();
|
|
#endif
|
|
mtrr_ap_init();
|
|
validate_apic_and_package_id(c);
|
|
x86_spec_ctrl_setup_ap();
|
|
}
|
|
|
|
static __init int setup_noclflush(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
|
|
setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
|
|
return 1;
|
|
}
|
|
__setup("noclflush", setup_noclflush);
|
|
|
|
void print_cpu_info(struct cpuinfo_x86 *c)
|
|
{
|
|
const char *vendor = NULL;
|
|
|
|
if (c->x86_vendor < X86_VENDOR_NUM) {
|
|
vendor = this_cpu->c_vendor;
|
|
} else {
|
|
if (c->cpuid_level >= 0)
|
|
vendor = c->x86_vendor_id;
|
|
}
|
|
|
|
if (vendor && !strstr(c->x86_model_id, vendor))
|
|
pr_cont("%s ", vendor);
|
|
|
|
if (c->x86_model_id[0])
|
|
pr_cont("%s", c->x86_model_id);
|
|
else
|
|
pr_cont("%d86", c->x86);
|
|
|
|
pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
|
|
|
|
if (c->x86_stepping || c->cpuid_level >= 0)
|
|
pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
|
|
else
|
|
pr_cont(")\n");
|
|
}
|
|
|
|
/*
|
|
* clearcpuid= was already parsed in fpu__init_parse_early_param.
|
|
* But we need to keep a dummy __setup around otherwise it would
|
|
* show up as an environment variable for init.
|
|
*/
|
|
static __init int setup_clearcpuid(char *arg)
|
|
{
|
|
return 1;
|
|
}
|
|
__setup("clearcpuid=", setup_clearcpuid);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
|
|
fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
|
|
EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
|
|
|
|
/*
|
|
* The following percpu variables are hot. Align current_task to
|
|
* cacheline size such that they fall in the same cacheline.
|
|
*/
|
|
DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
|
|
&init_task;
|
|
EXPORT_PER_CPU_SYMBOL(current_task);
|
|
|
|
DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
|
|
DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
|
|
|
|
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
|
|
EXPORT_PER_CPU_SYMBOL(__preempt_count);
|
|
|
|
/* May not be marked __init: used by software suspend */
|
|
void syscall_init(void)
|
|
{
|
|
wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
|
|
wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
|
|
/*
|
|
* This only works on Intel CPUs.
|
|
* On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
|
|
* This does not cause SYSENTER to jump to the wrong location, because
|
|
* AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
|
|
*/
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
|
|
(unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
|
|
#else
|
|
wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
|
|
#endif
|
|
|
|
/* Flags to clear on syscall */
|
|
wrmsrl(MSR_SYSCALL_MASK,
|
|
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
|
|
X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
|
|
}
|
|
|
|
DEFINE_PER_CPU(int, debug_stack_usage);
|
|
DEFINE_PER_CPU(u32, debug_idt_ctr);
|
|
|
|
void debug_stack_set_zero(void)
|
|
{
|
|
this_cpu_inc(debug_idt_ctr);
|
|
load_current_idt();
|
|
}
|
|
NOKPROBE_SYMBOL(debug_stack_set_zero);
|
|
|
|
void debug_stack_reset(void)
|
|
{
|
|
if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
|
|
return;
|
|
if (this_cpu_dec_return(debug_idt_ctr) == 0)
|
|
load_current_idt();
|
|
}
|
|
NOKPROBE_SYMBOL(debug_stack_reset);
|
|
|
|
#else /* CONFIG_X86_64 */
|
|
|
|
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
|
|
EXPORT_PER_CPU_SYMBOL(current_task);
|
|
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
|
|
EXPORT_PER_CPU_SYMBOL(__preempt_count);
|
|
|
|
/*
|
|
* On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
|
|
* the top of the kernel stack. Use an extra percpu variable to track the
|
|
* top of the kernel stack directly.
|
|
*/
|
|
DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
|
|
(unsigned long)&init_thread_union + THREAD_SIZE;
|
|
EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
|
|
#endif
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Clear all 6 debug registers:
|
|
*/
|
|
static void clear_all_debug_regs(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
/* Ignore db4, db5 */
|
|
if ((i == 4) || (i == 5))
|
|
continue;
|
|
|
|
set_debugreg(0, i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB
|
|
/*
|
|
* Restore debug regs if using kgdbwait and you have a kernel debugger
|
|
* connection established.
|
|
*/
|
|
static void dbg_restore_debug_regs(void)
|
|
{
|
|
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
|
|
arch_kgdb_ops.correct_hw_break();
|
|
}
|
|
#else /* ! CONFIG_KGDB */
|
|
#define dbg_restore_debug_regs()
|
|
#endif /* ! CONFIG_KGDB */
|
|
|
|
static void wait_for_master_cpu(int cpu)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* wait for ACK from master CPU before continuing
|
|
* with AP initialization
|
|
*/
|
|
WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
|
|
while (!cpumask_test_cpu(cpu, cpu_callout_mask))
|
|
cpu_relax();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static inline void setup_getcpu(int cpu)
|
|
{
|
|
unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
|
|
struct desc_struct d = { };
|
|
|
|
if (boot_cpu_has(X86_FEATURE_RDTSCP))
|
|
write_rdtscp_aux(cpudata);
|
|
|
|
/* Store CPU and node number in limit. */
|
|
d.limit0 = cpudata;
|
|
d.limit1 = cpudata >> 16;
|
|
|
|
d.type = 5; /* RO data, expand down, accessed */
|
|
d.dpl = 3; /* Visible to user code */
|
|
d.s = 1; /* Not a system segment */
|
|
d.p = 1; /* Present */
|
|
d.d = 1; /* 32-bit */
|
|
|
|
write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
|
|
}
|
|
|
|
static inline void ucode_cpu_init(int cpu)
|
|
{
|
|
if (cpu)
|
|
load_ucode_ap();
|
|
}
|
|
|
|
static inline void tss_setup_ist(struct tss_struct *tss)
|
|
{
|
|
/* Set up the per-CPU TSS IST stacks */
|
|
tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
|
|
tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
|
|
tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
|
|
tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
|
|
}
|
|
|
|
#else /* CONFIG_X86_64 */
|
|
|
|
static inline void setup_getcpu(int cpu) { }
|
|
|
|
static inline void ucode_cpu_init(int cpu)
|
|
{
|
|
show_ucode_info_early();
|
|
}
|
|
|
|
static inline void tss_setup_ist(struct tss_struct *tss) { }
|
|
|
|
#endif /* !CONFIG_X86_64 */
|
|
|
|
static inline void tss_setup_io_bitmap(struct tss_struct *tss)
|
|
{
|
|
tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
|
|
|
|
#ifdef CONFIG_X86_IOPL_IOPERM
|
|
tss->io_bitmap.prev_max = 0;
|
|
tss->io_bitmap.prev_sequence = 0;
|
|
memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
|
|
/*
|
|
* Invalidate the extra array entry past the end of the all
|
|
* permission bitmap as required by the hardware.
|
|
*/
|
|
tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* cpu_init() initializes state that is per-CPU. Some data is already
|
|
* initialized (naturally) in the bootstrap process, such as the GDT
|
|
* and IDT. We reload them nevertheless, this function acts as a
|
|
* 'CPU state barrier', nothing should get across.
|
|
*/
|
|
void cpu_init(void)
|
|
{
|
|
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
|
|
struct task_struct *cur = current;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
wait_for_master_cpu(cpu);
|
|
|
|
ucode_cpu_init(cpu);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
if (this_cpu_read(numa_node) == 0 &&
|
|
early_cpu_to_node(cpu) != NUMA_NO_NODE)
|
|
set_numa_node(early_cpu_to_node(cpu));
|
|
#endif
|
|
setup_getcpu(cpu);
|
|
|
|
pr_debug("Initializing CPU#%d\n", cpu);
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
|
|
boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
|
|
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
|
|
/*
|
|
* Initialize the per-CPU GDT with the boot GDT,
|
|
* and set up the GDT descriptor:
|
|
*/
|
|
switch_to_new_gdt(cpu);
|
|
load_current_idt();
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64)) {
|
|
loadsegment(fs, 0);
|
|
memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
|
|
syscall_init();
|
|
|
|
wrmsrl(MSR_FS_BASE, 0);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, 0);
|
|
barrier();
|
|
|
|
x2apic_setup();
|
|
}
|
|
|
|
mmgrab(&init_mm);
|
|
cur->active_mm = &init_mm;
|
|
BUG_ON(cur->mm);
|
|
initialize_tlbstate_and_flush();
|
|
enter_lazy_tlb(&init_mm, cur);
|
|
|
|
/* Initialize the TSS. */
|
|
tss_setup_ist(tss);
|
|
tss_setup_io_bitmap(tss);
|
|
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
|
|
|
|
load_TR_desc();
|
|
/*
|
|
* sp0 points to the entry trampoline stack regardless of what task
|
|
* is running.
|
|
*/
|
|
load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
|
|
|
|
load_mm_ldt(&init_mm);
|
|
|
|
clear_all_debug_regs();
|
|
dbg_restore_debug_regs();
|
|
|
|
doublefault_init_cpu_tss();
|
|
|
|
fpu__init_cpu();
|
|
|
|
if (is_uv_system())
|
|
uv_cpu_init();
|
|
|
|
load_fixmap_gdt(cpu);
|
|
}
|
|
|
|
/*
|
|
* The microcode loader calls this upon late microcode load to recheck features,
|
|
* only when microcode has been updated. Caller holds microcode_mutex and CPU
|
|
* hotplug lock.
|
|
*/
|
|
void microcode_check(void)
|
|
{
|
|
struct cpuinfo_x86 info;
|
|
|
|
perf_check_microcode();
|
|
|
|
/* Reload CPUID max function as it might've changed. */
|
|
info.cpuid_level = cpuid_eax(0);
|
|
|
|
/*
|
|
* Copy all capability leafs to pick up the synthetic ones so that
|
|
* memcmp() below doesn't fail on that. The ones coming from CPUID will
|
|
* get overwritten in get_cpu_cap().
|
|
*/
|
|
memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
|
|
|
|
get_cpu_cap(&info);
|
|
|
|
if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
|
|
return;
|
|
|
|
pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
|
|
pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
|
|
}
|
|
|
|
/*
|
|
* Invoked from core CPU hotplug code after hotplug operations
|
|
*/
|
|
void arch_smt_update(void)
|
|
{
|
|
/* Handle the speculative execution misfeatures */
|
|
cpu_bugs_smt_update();
|
|
/* Check whether IPI broadcasting can be enabled */
|
|
apic_smt_update();
|
|
}
|