linux/fs/ext4/super.c
Lukas Czerner bbc605cdb1 ext4: implement support for get/set fs label
Implement support for FS_IOC_GETFSLABEL and FS_IOC_SETFSLABEL ioctls for
online reading and setting of file system label.

ext4_ioctl_getlabel() is simple, just get the label from the primary
superblock. This might not be the first sb on the file system if
'sb=' mount option is used.

In ext4_ioctl_setlabel() we update what ext4 currently views as a
primary superblock and then proceed to update backup superblocks. There
are two caveats:
 - the primary superblock might not be the first superblock and so it
   might not be the one used by userspace tools if read directly
   off the disk.
 - because the primary superblock might not be the first superblock we
   potentialy have to update it as part of backup superblock update.
   However the first sb location is a bit more complicated than the rest
   so we have to account for that.

The superblock modification is created generic enough so the
infrastructure can be used for other potential superblock modification
operations, such as chaning UUID.

Tested with generic/492 with various configurations. I also checked the
behavior with 'sb=' mount options, including very large file systems
with and without sparse_super/sparse_super2.

Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Link: https://lore.kernel.org/r/20211213135618.43303-1-lczerner@redhat.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2022-01-10 13:25:55 -05:00

7181 lines
200 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ext4/super.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/parser.h>
#include <linux/buffer_head.h>
#include <linux/exportfs.h>
#include <linux/vfs.h>
#include <linux/random.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/quotaops.h>
#include <linux/seq_file.h>
#include <linux/ctype.h>
#include <linux/log2.h>
#include <linux/crc16.h>
#include <linux/dax.h>
#include <linux/cleancache.h>
#include <linux/uaccess.h>
#include <linux/iversion.h>
#include <linux/unicode.h>
#include <linux/part_stat.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/fsnotify.h>
#include <linux/fs_context.h>
#include <linux/fs_parser.h>
#include "ext4.h"
#include "ext4_extents.h" /* Needed for trace points definition */
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include "mballoc.h"
#include "fsmap.h"
#define CREATE_TRACE_POINTS
#include <trace/events/ext4.h>
static struct ext4_lazy_init *ext4_li_info;
static DEFINE_MUTEX(ext4_li_mtx);
static struct ratelimit_state ext4_mount_msg_ratelimit;
static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
unsigned long journal_devnum);
static int ext4_show_options(struct seq_file *seq, struct dentry *root);
static void ext4_update_super(struct super_block *sb);
static int ext4_commit_super(struct super_block *sb);
static int ext4_mark_recovery_complete(struct super_block *sb,
struct ext4_super_block *es);
static int ext4_clear_journal_err(struct super_block *sb,
struct ext4_super_block *es);
static int ext4_sync_fs(struct super_block *sb, int wait);
static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
static int ext4_unfreeze(struct super_block *sb);
static int ext4_freeze(struct super_block *sb);
static inline int ext2_feature_set_ok(struct super_block *sb);
static inline int ext3_feature_set_ok(struct super_block *sb);
static void ext4_destroy_lazyinit_thread(void);
static void ext4_unregister_li_request(struct super_block *sb);
static void ext4_clear_request_list(void);
static struct inode *ext4_get_journal_inode(struct super_block *sb,
unsigned int journal_inum);
static int ext4_validate_options(struct fs_context *fc);
static int ext4_check_opt_consistency(struct fs_context *fc,
struct super_block *sb);
static int ext4_apply_options(struct fs_context *fc, struct super_block *sb);
static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
static int ext4_get_tree(struct fs_context *fc);
static int ext4_reconfigure(struct fs_context *fc);
static void ext4_fc_free(struct fs_context *fc);
static int ext4_init_fs_context(struct fs_context *fc);
static const struct fs_parameter_spec ext4_param_specs[];
/*
* Lock ordering
*
* page fault path:
* mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
* -> page lock -> i_data_sem (rw)
*
* buffered write path:
* sb_start_write -> i_mutex -> mmap_lock
* sb_start_write -> i_mutex -> transaction start -> page lock ->
* i_data_sem (rw)
*
* truncate:
* sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
* page lock
* sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
* i_data_sem (rw)
*
* direct IO:
* sb_start_write -> i_mutex -> mmap_lock
* sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
*
* writepages:
* transaction start -> page lock(s) -> i_data_sem (rw)
*/
static const struct fs_context_operations ext4_context_ops = {
.parse_param = ext4_parse_param,
.get_tree = ext4_get_tree,
.reconfigure = ext4_reconfigure,
.free = ext4_fc_free,
};
#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
static struct file_system_type ext2_fs_type = {
.owner = THIS_MODULE,
.name = "ext2",
.init_fs_context = ext4_init_fs_context,
.parameters = ext4_param_specs,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("ext2");
MODULE_ALIAS("ext2");
#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
#else
#define IS_EXT2_SB(sb) (0)
#endif
static struct file_system_type ext3_fs_type = {
.owner = THIS_MODULE,
.name = "ext3",
.init_fs_context = ext4_init_fs_context,
.parameters = ext4_param_specs,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("ext3");
MODULE_ALIAS("ext3");
#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
bh_end_io_t *end_io)
{
/*
* buffer's verified bit is no longer valid after reading from
* disk again due to write out error, clear it to make sure we
* recheck the buffer contents.
*/
clear_buffer_verified(bh);
bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
get_bh(bh);
submit_bh(REQ_OP_READ, op_flags, bh);
}
void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
bh_end_io_t *end_io)
{
BUG_ON(!buffer_locked(bh));
if (ext4_buffer_uptodate(bh)) {
unlock_buffer(bh);
return;
}
__ext4_read_bh(bh, op_flags, end_io);
}
int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
{
BUG_ON(!buffer_locked(bh));
if (ext4_buffer_uptodate(bh)) {
unlock_buffer(bh);
return 0;
}
__ext4_read_bh(bh, op_flags, end_io);
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return 0;
return -EIO;
}
int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
{
if (trylock_buffer(bh)) {
if (wait)
return ext4_read_bh(bh, op_flags, NULL);
ext4_read_bh_nowait(bh, op_flags, NULL);
return 0;
}
if (wait) {
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return 0;
return -EIO;
}
return 0;
}
/*
* This works like __bread_gfp() except it uses ERR_PTR for error
* returns. Currently with sb_bread it's impossible to distinguish
* between ENOMEM and EIO situations (since both result in a NULL
* return.
*/
static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
sector_t block, int op_flags,
gfp_t gfp)
{
struct buffer_head *bh;
int ret;
bh = sb_getblk_gfp(sb, block, gfp);
if (bh == NULL)
return ERR_PTR(-ENOMEM);
if (ext4_buffer_uptodate(bh))
return bh;
ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
if (ret) {
put_bh(bh);
return ERR_PTR(ret);
}
return bh;
}
struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
int op_flags)
{
return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
}
struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
sector_t block)
{
return __ext4_sb_bread_gfp(sb, block, 0, 0);
}
void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
{
struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
if (likely(bh)) {
ext4_read_bh_lock(bh, REQ_RAHEAD, false);
brelse(bh);
}
}
static int ext4_verify_csum_type(struct super_block *sb,
struct ext4_super_block *es)
{
if (!ext4_has_feature_metadata_csum(sb))
return 1;
return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
}
__le32 ext4_superblock_csum(struct super_block *sb,
struct ext4_super_block *es)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
int offset = offsetof(struct ext4_super_block, s_checksum);
__u32 csum;
csum = ext4_chksum(sbi, ~0, (char *)es, offset);
return cpu_to_le32(csum);
}
static int ext4_superblock_csum_verify(struct super_block *sb,
struct ext4_super_block *es)
{
if (!ext4_has_metadata_csum(sb))
return 1;
return es->s_checksum == ext4_superblock_csum(sb, es);
}
void ext4_superblock_csum_set(struct super_block *sb)
{
struct ext4_super_block *es = EXT4_SB(sb)->s_es;
if (!ext4_has_metadata_csum(sb))
return;
es->s_checksum = ext4_superblock_csum(sb, es);
}
ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_block_bitmap_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
}
ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_inode_bitmap_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
}
ext4_fsblk_t ext4_inode_table(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_inode_table_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
}
__u32 ext4_free_group_clusters(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_free_blocks_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
}
__u32 ext4_free_inodes_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_free_inodes_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
}
__u32 ext4_used_dirs_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_used_dirs_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
}
__u32 ext4_itable_unused_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_itable_unused_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
}
void ext4_block_bitmap_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
}
void ext4_inode_bitmap_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
}
void ext4_inode_table_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
}
void ext4_free_group_clusters_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
}
void ext4_free_inodes_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
}
void ext4_used_dirs_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
}
void ext4_itable_unused_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
}
static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
{
now = clamp_val(now, 0, (1ull << 40) - 1);
*lo = cpu_to_le32(lower_32_bits(now));
*hi = upper_32_bits(now);
}
static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
{
return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
}
#define ext4_update_tstamp(es, tstamp) \
__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
ktime_get_real_seconds())
#define ext4_get_tstamp(es, tstamp) \
__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
/*
* The del_gendisk() function uninitializes the disk-specific data
* structures, including the bdi structure, without telling anyone
* else. Once this happens, any attempt to call mark_buffer_dirty()
* (for example, by ext4_commit_super), will cause a kernel OOPS.
* This is a kludge to prevent these oops until we can put in a proper
* hook in del_gendisk() to inform the VFS and file system layers.
*/
static int block_device_ejected(struct super_block *sb)
{
struct inode *bd_inode = sb->s_bdev->bd_inode;
struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
return bdi->dev == NULL;
}
static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
{
struct super_block *sb = journal->j_private;
struct ext4_sb_info *sbi = EXT4_SB(sb);
int error = is_journal_aborted(journal);
struct ext4_journal_cb_entry *jce;
BUG_ON(txn->t_state == T_FINISHED);
ext4_process_freed_data(sb, txn->t_tid);
spin_lock(&sbi->s_md_lock);
while (!list_empty(&txn->t_private_list)) {
jce = list_entry(txn->t_private_list.next,
struct ext4_journal_cb_entry, jce_list);
list_del_init(&jce->jce_list);
spin_unlock(&sbi->s_md_lock);
jce->jce_func(sb, jce, error);
spin_lock(&sbi->s_md_lock);
}
spin_unlock(&sbi->s_md_lock);
}
/*
* This writepage callback for write_cache_pages()
* takes care of a few cases after page cleaning.
*
* write_cache_pages() already checks for dirty pages
* and calls clear_page_dirty_for_io(), which we want,
* to write protect the pages.
*
* However, we may have to redirty a page (see below.)
*/
static int ext4_journalled_writepage_callback(struct page *page,
struct writeback_control *wbc,
void *data)
{
transaction_t *transaction = (transaction_t *) data;
struct buffer_head *bh, *head;
struct journal_head *jh;
bh = head = page_buffers(page);
do {
/*
* We have to redirty a page in these cases:
* 1) If buffer is dirty, it means the page was dirty because it
* contains a buffer that needs checkpointing. So the dirty bit
* needs to be preserved so that checkpointing writes the buffer
* properly.
* 2) If buffer is not part of the committing transaction
* (we may have just accidentally come across this buffer because
* inode range tracking is not exact) or if the currently running
* transaction already contains this buffer as well, dirty bit
* needs to be preserved so that the buffer gets writeprotected
* properly on running transaction's commit.
*/
jh = bh2jh(bh);
if (buffer_dirty(bh) ||
(jh && (jh->b_transaction != transaction ||
jh->b_next_transaction))) {
redirty_page_for_writepage(wbc, page);
goto out;
}
} while ((bh = bh->b_this_page) != head);
out:
return AOP_WRITEPAGE_ACTIVATE;
}
static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
{
struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.range_start = jinode->i_dirty_start,
.range_end = jinode->i_dirty_end,
};
return write_cache_pages(mapping, &wbc,
ext4_journalled_writepage_callback,
jinode->i_transaction);
}
static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
{
int ret;
if (ext4_should_journal_data(jinode->i_vfs_inode))
ret = ext4_journalled_submit_inode_data_buffers(jinode);
else
ret = jbd2_journal_submit_inode_data_buffers(jinode);
return ret;
}
static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
{
int ret = 0;
if (!ext4_should_journal_data(jinode->i_vfs_inode))
ret = jbd2_journal_finish_inode_data_buffers(jinode);
return ret;
}
static bool system_going_down(void)
{
return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
|| system_state == SYSTEM_RESTART;
}
struct ext4_err_translation {
int code;
int errno;
};
#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
static struct ext4_err_translation err_translation[] = {
EXT4_ERR_TRANSLATE(EIO),
EXT4_ERR_TRANSLATE(ENOMEM),
EXT4_ERR_TRANSLATE(EFSBADCRC),
EXT4_ERR_TRANSLATE(EFSCORRUPTED),
EXT4_ERR_TRANSLATE(ENOSPC),
EXT4_ERR_TRANSLATE(ENOKEY),
EXT4_ERR_TRANSLATE(EROFS),
EXT4_ERR_TRANSLATE(EFBIG),
EXT4_ERR_TRANSLATE(EEXIST),
EXT4_ERR_TRANSLATE(ERANGE),
EXT4_ERR_TRANSLATE(EOVERFLOW),
EXT4_ERR_TRANSLATE(EBUSY),
EXT4_ERR_TRANSLATE(ENOTDIR),
EXT4_ERR_TRANSLATE(ENOTEMPTY),
EXT4_ERR_TRANSLATE(ESHUTDOWN),
EXT4_ERR_TRANSLATE(EFAULT),
};
static int ext4_errno_to_code(int errno)
{
int i;
for (i = 0; i < ARRAY_SIZE(err_translation); i++)
if (err_translation[i].errno == errno)
return err_translation[i].code;
return EXT4_ERR_UNKNOWN;
}
static void save_error_info(struct super_block *sb, int error,
__u32 ino, __u64 block,
const char *func, unsigned int line)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
/* We default to EFSCORRUPTED error... */
if (error == 0)
error = EFSCORRUPTED;
spin_lock(&sbi->s_error_lock);
sbi->s_add_error_count++;
sbi->s_last_error_code = error;
sbi->s_last_error_line = line;
sbi->s_last_error_ino = ino;
sbi->s_last_error_block = block;
sbi->s_last_error_func = func;
sbi->s_last_error_time = ktime_get_real_seconds();
if (!sbi->s_first_error_time) {
sbi->s_first_error_code = error;
sbi->s_first_error_line = line;
sbi->s_first_error_ino = ino;
sbi->s_first_error_block = block;
sbi->s_first_error_func = func;
sbi->s_first_error_time = sbi->s_last_error_time;
}
spin_unlock(&sbi->s_error_lock);
}
/* Deal with the reporting of failure conditions on a filesystem such as
* inconsistencies detected or read IO failures.
*
* On ext2, we can store the error state of the filesystem in the
* superblock. That is not possible on ext4, because we may have other
* write ordering constraints on the superblock which prevent us from
* writing it out straight away; and given that the journal is about to
* be aborted, we can't rely on the current, or future, transactions to
* write out the superblock safely.
*
* We'll just use the jbd2_journal_abort() error code to record an error in
* the journal instead. On recovery, the journal will complain about
* that error until we've noted it down and cleared it.
*
* If force_ro is set, we unconditionally force the filesystem into an
* ABORT|READONLY state, unless the error response on the fs has been set to
* panic in which case we take the easy way out and panic immediately. This is
* used to deal with unrecoverable failures such as journal IO errors or ENOMEM
* at a critical moment in log management.
*/
static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
__u32 ino, __u64 block,
const char *func, unsigned int line)
{
journal_t *journal = EXT4_SB(sb)->s_journal;
bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
if (test_opt(sb, WARN_ON_ERROR))
WARN_ON_ONCE(1);
if (!continue_fs && !sb_rdonly(sb)) {
ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
if (journal)
jbd2_journal_abort(journal, -EIO);
}
if (!bdev_read_only(sb->s_bdev)) {
save_error_info(sb, error, ino, block, func, line);
/*
* In case the fs should keep running, we need to writeout
* superblock through the journal. Due to lock ordering
* constraints, it may not be safe to do it right here so we
* defer superblock flushing to a workqueue.
*/
if (continue_fs && journal)
schedule_work(&EXT4_SB(sb)->s_error_work);
else
ext4_commit_super(sb);
}
/*
* We force ERRORS_RO behavior when system is rebooting. Otherwise we
* could panic during 'reboot -f' as the underlying device got already
* disabled.
*/
if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
panic("EXT4-fs (device %s): panic forced after error\n",
sb->s_id);
}
if (sb_rdonly(sb) || continue_fs)
return;
ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
/*
* Make sure updated value of ->s_mount_flags will be visible before
* ->s_flags update
*/
smp_wmb();
sb->s_flags |= SB_RDONLY;
}
static void flush_stashed_error_work(struct work_struct *work)
{
struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
s_error_work);
journal_t *journal = sbi->s_journal;
handle_t *handle;
/*
* If the journal is still running, we have to write out superblock
* through the journal to avoid collisions of other journalled sb
* updates.
*
* We use directly jbd2 functions here to avoid recursing back into
* ext4 error handling code during handling of previous errors.
*/
if (!sb_rdonly(sbi->s_sb) && journal) {
struct buffer_head *sbh = sbi->s_sbh;
handle = jbd2_journal_start(journal, 1);
if (IS_ERR(handle))
goto write_directly;
if (jbd2_journal_get_write_access(handle, sbh)) {
jbd2_journal_stop(handle);
goto write_directly;
}
ext4_update_super(sbi->s_sb);
if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
"superblock detected");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
if (jbd2_journal_dirty_metadata(handle, sbh)) {
jbd2_journal_stop(handle);
goto write_directly;
}
jbd2_journal_stop(handle);
ext4_notify_error_sysfs(sbi);
return;
}
write_directly:
/*
* Write through journal failed. Write sb directly to get error info
* out and hope for the best.
*/
ext4_commit_super(sbi->s_sb);
ext4_notify_error_sysfs(sbi);
}
#define ext4_error_ratelimit(sb) \
___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
"EXT4-fs error")
void __ext4_error(struct super_block *sb, const char *function,
unsigned int line, bool force_ro, int error, __u64 block,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
return;
trace_ext4_error(sb, function, line);
if (ext4_error_ratelimit(sb)) {
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
sb->s_id, function, line, current->comm, &vaf);
va_end(args);
}
fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
ext4_handle_error(sb, force_ro, error, 0, block, function, line);
}
void __ext4_error_inode(struct inode *inode, const char *function,
unsigned int line, ext4_fsblk_t block, int error,
const char *fmt, ...)
{
va_list args;
struct va_format vaf;
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
return;
trace_ext4_error(inode->i_sb, function, line);
if (ext4_error_ratelimit(inode->i_sb)) {
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (block)
printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
"inode #%lu: block %llu: comm %s: %pV\n",
inode->i_sb->s_id, function, line, inode->i_ino,
block, current->comm, &vaf);
else
printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
"inode #%lu: comm %s: %pV\n",
inode->i_sb->s_id, function, line, inode->i_ino,
current->comm, &vaf);
va_end(args);
}
fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
function, line);
}
void __ext4_error_file(struct file *file, const char *function,
unsigned int line, ext4_fsblk_t block,
const char *fmt, ...)
{
va_list args;
struct va_format vaf;
struct inode *inode = file_inode(file);
char pathname[80], *path;
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
return;
trace_ext4_error(inode->i_sb, function, line);
if (ext4_error_ratelimit(inode->i_sb)) {
path = file_path(file, pathname, sizeof(pathname));
if (IS_ERR(path))
path = "(unknown)";
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (block)
printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: inode #%lu: "
"block %llu: comm %s: path %s: %pV\n",
inode->i_sb->s_id, function, line, inode->i_ino,
block, current->comm, path, &vaf);
else
printk(KERN_CRIT
"EXT4-fs error (device %s): %s:%d: inode #%lu: "
"comm %s: path %s: %pV\n",
inode->i_sb->s_id, function, line, inode->i_ino,
current->comm, path, &vaf);
va_end(args);
}
fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
function, line);
}
const char *ext4_decode_error(struct super_block *sb, int errno,
char nbuf[16])
{
char *errstr = NULL;
switch (errno) {
case -EFSCORRUPTED:
errstr = "Corrupt filesystem";
break;
case -EFSBADCRC:
errstr = "Filesystem failed CRC";
break;
case -EIO:
errstr = "IO failure";
break;
case -ENOMEM:
errstr = "Out of memory";
break;
case -EROFS:
if (!sb || (EXT4_SB(sb)->s_journal &&
EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
errstr = "Journal has aborted";
else
errstr = "Readonly filesystem";
break;
default:
/* If the caller passed in an extra buffer for unknown
* errors, textualise them now. Else we just return
* NULL. */
if (nbuf) {
/* Check for truncated error codes... */
if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
errstr = nbuf;
}
break;
}
return errstr;
}
/* __ext4_std_error decodes expected errors from journaling functions
* automatically and invokes the appropriate error response. */
void __ext4_std_error(struct super_block *sb, const char *function,
unsigned int line, int errno)
{
char nbuf[16];
const char *errstr;
if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
return;
/* Special case: if the error is EROFS, and we're not already
* inside a transaction, then there's really no point in logging
* an error. */
if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
return;
if (ext4_error_ratelimit(sb)) {
errstr = ext4_decode_error(sb, errno, nbuf);
printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
sb->s_id, function, line, errstr);
}
fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
ext4_handle_error(sb, false, -errno, 0, 0, function, line);
}
void __ext4_msg(struct super_block *sb,
const char *prefix, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (sb) {
atomic_inc(&EXT4_SB(sb)->s_msg_count);
if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
"EXT4-fs"))
return;
}
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (sb)
printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
else
printk("%sEXT4-fs: %pV\n", prefix, &vaf);
va_end(args);
}
static int ext4_warning_ratelimit(struct super_block *sb)
{
atomic_inc(&EXT4_SB(sb)->s_warning_count);
return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
"EXT4-fs warning");
}
void __ext4_warning(struct super_block *sb, const char *function,
unsigned int line, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (!ext4_warning_ratelimit(sb))
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
sb->s_id, function, line, &vaf);
va_end(args);
}
void __ext4_warning_inode(const struct inode *inode, const char *function,
unsigned int line, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
if (!ext4_warning_ratelimit(inode->i_sb))
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
"inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
function, line, inode->i_ino, current->comm, &vaf);
va_end(args);
}
void __ext4_grp_locked_error(const char *function, unsigned int line,
struct super_block *sb, ext4_group_t grp,
unsigned long ino, ext4_fsblk_t block,
const char *fmt, ...)
__releases(bitlock)
__acquires(bitlock)
{
struct va_format vaf;
va_list args;
if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
return;
trace_ext4_error(sb, function, line);
if (ext4_error_ratelimit(sb)) {
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
sb->s_id, function, line, grp);
if (ino)
printk(KERN_CONT "inode %lu: ", ino);
if (block)
printk(KERN_CONT "block %llu:",
(unsigned long long) block);
printk(KERN_CONT "%pV\n", &vaf);
va_end(args);
}
if (test_opt(sb, ERRORS_CONT)) {
if (test_opt(sb, WARN_ON_ERROR))
WARN_ON_ONCE(1);
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
if (!bdev_read_only(sb->s_bdev)) {
save_error_info(sb, EFSCORRUPTED, ino, block, function,
line);
schedule_work(&EXT4_SB(sb)->s_error_work);
}
return;
}
ext4_unlock_group(sb, grp);
ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
/*
* We only get here in the ERRORS_RO case; relocking the group
* may be dangerous, but nothing bad will happen since the
* filesystem will have already been marked read/only and the
* journal has been aborted. We return 1 as a hint to callers
* who might what to use the return value from
* ext4_grp_locked_error() to distinguish between the
* ERRORS_CONT and ERRORS_RO case, and perhaps return more
* aggressively from the ext4 function in question, with a
* more appropriate error code.
*/
ext4_lock_group(sb, grp);
return;
}
void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
ext4_group_t group,
unsigned int flags)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
int ret;
if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
&grp->bb_state);
if (!ret)
percpu_counter_sub(&sbi->s_freeclusters_counter,
grp->bb_free);
}
if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
&grp->bb_state);
if (!ret && gdp) {
int count;
count = ext4_free_inodes_count(sb, gdp);
percpu_counter_sub(&sbi->s_freeinodes_counter,
count);
}
}
}
void ext4_update_dynamic_rev(struct super_block *sb)
{
struct ext4_super_block *es = EXT4_SB(sb)->s_es;
if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
return;
ext4_warning(sb,
"updating to rev %d because of new feature flag, "
"running e2fsck is recommended",
EXT4_DYNAMIC_REV);
es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
/* leave es->s_feature_*compat flags alone */
/* es->s_uuid will be set by e2fsck if empty */
/*
* The rest of the superblock fields should be zero, and if not it
* means they are likely already in use, so leave them alone. We
* can leave it up to e2fsck to clean up any inconsistencies there.
*/
}
/*
* Open the external journal device
*/
static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
{
struct block_device *bdev;
bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
if (IS_ERR(bdev))
goto fail;
return bdev;
fail:
ext4_msg(sb, KERN_ERR,
"failed to open journal device unknown-block(%u,%u) %ld",
MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
return NULL;
}
/*
* Release the journal device
*/
static void ext4_blkdev_put(struct block_device *bdev)
{
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
}
static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
{
struct block_device *bdev;
bdev = sbi->s_journal_bdev;
if (bdev) {
ext4_blkdev_put(bdev);
sbi->s_journal_bdev = NULL;
}
}
static inline struct inode *orphan_list_entry(struct list_head *l)
{
return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
}
static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
{
struct list_head *l;
ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
le32_to_cpu(sbi->s_es->s_last_orphan));
printk(KERN_ERR "sb_info orphan list:\n");
list_for_each(l, &sbi->s_orphan) {
struct inode *inode = orphan_list_entry(l);
printk(KERN_ERR " "
"inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
inode->i_sb->s_id, inode->i_ino, inode,
inode->i_mode, inode->i_nlink,
NEXT_ORPHAN(inode));
}
}
#ifdef CONFIG_QUOTA
static int ext4_quota_off(struct super_block *sb, int type);
static inline void ext4_quota_off_umount(struct super_block *sb)
{
int type;
/* Use our quota_off function to clear inode flags etc. */
for (type = 0; type < EXT4_MAXQUOTAS; type++)
ext4_quota_off(sb, type);
}
/*
* This is a helper function which is used in the mount/remount
* codepaths (which holds s_umount) to fetch the quota file name.
*/
static inline char *get_qf_name(struct super_block *sb,
struct ext4_sb_info *sbi,
int type)
{
return rcu_dereference_protected(sbi->s_qf_names[type],
lockdep_is_held(&sb->s_umount));
}
#else
static inline void ext4_quota_off_umount(struct super_block *sb)
{
}
#endif
static void ext4_put_super(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
struct buffer_head **group_desc;
struct flex_groups **flex_groups;
int aborted = 0;
int i, err;
ext4_unregister_li_request(sb);
ext4_quota_off_umount(sb);
flush_work(&sbi->s_error_work);
destroy_workqueue(sbi->rsv_conversion_wq);
ext4_release_orphan_info(sb);
/*
* Unregister sysfs before destroying jbd2 journal.
* Since we could still access attr_journal_task attribute via sysfs
* path which could have sbi->s_journal->j_task as NULL
*/
ext4_unregister_sysfs(sb);
if (sbi->s_journal) {
aborted = is_journal_aborted(sbi->s_journal);
err = jbd2_journal_destroy(sbi->s_journal);
sbi->s_journal = NULL;
if ((err < 0) && !aborted) {
ext4_abort(sb, -err, "Couldn't clean up the journal");
}
}
ext4_es_unregister_shrinker(sbi);
del_timer_sync(&sbi->s_err_report);
ext4_release_system_zone(sb);
ext4_mb_release(sb);
ext4_ext_release(sb);
if (!sb_rdonly(sb) && !aborted) {
ext4_clear_feature_journal_needs_recovery(sb);
ext4_clear_feature_orphan_present(sb);
es->s_state = cpu_to_le16(sbi->s_mount_state);
}
if (!sb_rdonly(sb))
ext4_commit_super(sb);
rcu_read_lock();
group_desc = rcu_dereference(sbi->s_group_desc);
for (i = 0; i < sbi->s_gdb_count; i++)
brelse(group_desc[i]);
kvfree(group_desc);
flex_groups = rcu_dereference(sbi->s_flex_groups);
if (flex_groups) {
for (i = 0; i < sbi->s_flex_groups_allocated; i++)
kvfree(flex_groups[i]);
kvfree(flex_groups);
}
rcu_read_unlock();
percpu_counter_destroy(&sbi->s_freeclusters_counter);
percpu_counter_destroy(&sbi->s_freeinodes_counter);
percpu_counter_destroy(&sbi->s_dirs_counter);
percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
percpu_free_rwsem(&sbi->s_writepages_rwsem);
#ifdef CONFIG_QUOTA
for (i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(get_qf_name(sb, sbi, i));
#endif
/* Debugging code just in case the in-memory inode orphan list
* isn't empty. The on-disk one can be non-empty if we've
* detected an error and taken the fs readonly, but the
* in-memory list had better be clean by this point. */
if (!list_empty(&sbi->s_orphan))
dump_orphan_list(sb, sbi);
ASSERT(list_empty(&sbi->s_orphan));
sync_blockdev(sb->s_bdev);
invalidate_bdev(sb->s_bdev);
if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
/*
* Invalidate the journal device's buffers. We don't want them
* floating about in memory - the physical journal device may
* hotswapped, and it breaks the `ro-after' testing code.
*/
sync_blockdev(sbi->s_journal_bdev);
invalidate_bdev(sbi->s_journal_bdev);
ext4_blkdev_remove(sbi);
}
ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
sbi->s_ea_inode_cache = NULL;
ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
sbi->s_ea_block_cache = NULL;
ext4_stop_mmpd(sbi);
brelse(sbi->s_sbh);
sb->s_fs_info = NULL;
/*
* Now that we are completely done shutting down the
* superblock, we need to actually destroy the kobject.
*/
kobject_put(&sbi->s_kobj);
wait_for_completion(&sbi->s_kobj_unregister);
if (sbi->s_chksum_driver)
crypto_free_shash(sbi->s_chksum_driver);
kfree(sbi->s_blockgroup_lock);
fs_put_dax(sbi->s_daxdev);
fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
#ifdef CONFIG_UNICODE
utf8_unload(sb->s_encoding);
#endif
kfree(sbi);
}
static struct kmem_cache *ext4_inode_cachep;
/*
* Called inside transaction, so use GFP_NOFS
*/
static struct inode *ext4_alloc_inode(struct super_block *sb)
{
struct ext4_inode_info *ei;
ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
if (!ei)
return NULL;
inode_set_iversion(&ei->vfs_inode, 1);
spin_lock_init(&ei->i_raw_lock);
INIT_LIST_HEAD(&ei->i_prealloc_list);
atomic_set(&ei->i_prealloc_active, 0);
spin_lock_init(&ei->i_prealloc_lock);
ext4_es_init_tree(&ei->i_es_tree);
rwlock_init(&ei->i_es_lock);
INIT_LIST_HEAD(&ei->i_es_list);
ei->i_es_all_nr = 0;
ei->i_es_shk_nr = 0;
ei->i_es_shrink_lblk = 0;
ei->i_reserved_data_blocks = 0;
spin_lock_init(&(ei->i_block_reservation_lock));
ext4_init_pending_tree(&ei->i_pending_tree);
#ifdef CONFIG_QUOTA
ei->i_reserved_quota = 0;
memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
#endif
ei->jinode = NULL;
INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
spin_lock_init(&ei->i_completed_io_lock);
ei->i_sync_tid = 0;
ei->i_datasync_tid = 0;
atomic_set(&ei->i_unwritten, 0);
INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
ext4_fc_init_inode(&ei->vfs_inode);
mutex_init(&ei->i_fc_lock);
return &ei->vfs_inode;
}
static int ext4_drop_inode(struct inode *inode)
{
int drop = generic_drop_inode(inode);
if (!drop)
drop = fscrypt_drop_inode(inode);
trace_ext4_drop_inode(inode, drop);
return drop;
}
static void ext4_free_in_core_inode(struct inode *inode)
{
fscrypt_free_inode(inode);
if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
pr_warn("%s: inode %ld still in fc list",
__func__, inode->i_ino);
}
kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
}
static void ext4_destroy_inode(struct inode *inode)
{
if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
ext4_msg(inode->i_sb, KERN_ERR,
"Inode %lu (%p): orphan list check failed!",
inode->i_ino, EXT4_I(inode));
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
EXT4_I(inode), sizeof(struct ext4_inode_info),
true);
dump_stack();
}
if (EXT4_I(inode)->i_reserved_data_blocks)
ext4_msg(inode->i_sb, KERN_ERR,
"Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
inode->i_ino, EXT4_I(inode),
EXT4_I(inode)->i_reserved_data_blocks);
}
static void init_once(void *foo)
{
struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
INIT_LIST_HEAD(&ei->i_orphan);
init_rwsem(&ei->xattr_sem);
init_rwsem(&ei->i_data_sem);
inode_init_once(&ei->vfs_inode);
ext4_fc_init_inode(&ei->vfs_inode);
}
static int __init init_inodecache(void)
{
ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
sizeof(struct ext4_inode_info), 0,
(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
SLAB_ACCOUNT),
offsetof(struct ext4_inode_info, i_data),
sizeof_field(struct ext4_inode_info, i_data),
init_once);
if (ext4_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(ext4_inode_cachep);
}
void ext4_clear_inode(struct inode *inode)
{
ext4_fc_del(inode);
invalidate_inode_buffers(inode);
clear_inode(inode);
ext4_discard_preallocations(inode, 0);
ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
dquot_drop(inode);
if (EXT4_I(inode)->jinode) {
jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
EXT4_I(inode)->jinode);
jbd2_free_inode(EXT4_I(inode)->jinode);
EXT4_I(inode)->jinode = NULL;
}
fscrypt_put_encryption_info(inode);
fsverity_cleanup_inode(inode);
}
static struct inode *ext4_nfs_get_inode(struct super_block *sb,
u64 ino, u32 generation)
{
struct inode *inode;
/*
* Currently we don't know the generation for parent directory, so
* a generation of 0 means "accept any"
*/
inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (generation && inode->i_generation != generation) {
iput(inode);
return ERR_PTR(-ESTALE);
}
return inode;
}
static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
ext4_nfs_get_inode);
}
static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
ext4_nfs_get_inode);
}
static int ext4_nfs_commit_metadata(struct inode *inode)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL
};
trace_ext4_nfs_commit_metadata(inode);
return ext4_write_inode(inode, &wbc);
}
#ifdef CONFIG_FS_ENCRYPTION
static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
{
return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
}
static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
void *fs_data)
{
handle_t *handle = fs_data;
int res, res2, credits, retries = 0;
/*
* Encrypting the root directory is not allowed because e2fsck expects
* lost+found to exist and be unencrypted, and encrypting the root
* directory would imply encrypting the lost+found directory as well as
* the filename "lost+found" itself.
*/
if (inode->i_ino == EXT4_ROOT_INO)
return -EPERM;
if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
return -EINVAL;
if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
return -EOPNOTSUPP;
res = ext4_convert_inline_data(inode);
if (res)
return res;
/*
* If a journal handle was specified, then the encryption context is
* being set on a new inode via inheritance and is part of a larger
* transaction to create the inode. Otherwise the encryption context is
* being set on an existing inode in its own transaction. Only in the
* latter case should the "retry on ENOSPC" logic be used.
*/
if (handle) {
res = ext4_xattr_set_handle(handle, inode,
EXT4_XATTR_INDEX_ENCRYPTION,
EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
ctx, len, 0);
if (!res) {
ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
ext4_clear_inode_state(inode,
EXT4_STATE_MAY_INLINE_DATA);
/*
* Update inode->i_flags - S_ENCRYPTED will be enabled,
* S_DAX may be disabled
*/
ext4_set_inode_flags(inode, false);
}
return res;
}
res = dquot_initialize(inode);
if (res)
return res;
retry:
res = ext4_xattr_set_credits(inode, len, false /* is_create */,
&credits);
if (res)
return res;
handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
if (IS_ERR(handle))
return PTR_ERR(handle);
res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
ctx, len, 0);
if (!res) {
ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
/*
* Update inode->i_flags - S_ENCRYPTED will be enabled,
* S_DAX may be disabled
*/
ext4_set_inode_flags(inode, false);
res = ext4_mark_inode_dirty(handle, inode);
if (res)
EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
}
res2 = ext4_journal_stop(handle);
if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry;
if (!res)
res = res2;
return res;
}
static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
{
return EXT4_SB(sb)->s_dummy_enc_policy.policy;
}
static bool ext4_has_stable_inodes(struct super_block *sb)
{
return ext4_has_feature_stable_inodes(sb);
}
static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
int *ino_bits_ret, int *lblk_bits_ret)
{
*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
}
static const struct fscrypt_operations ext4_cryptops = {
.key_prefix = "ext4:",
.get_context = ext4_get_context,
.set_context = ext4_set_context,
.get_dummy_policy = ext4_get_dummy_policy,
.empty_dir = ext4_empty_dir,
.has_stable_inodes = ext4_has_stable_inodes,
.get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
};
#endif
#ifdef CONFIG_QUOTA
static const char * const quotatypes[] = INITQFNAMES;
#define QTYPE2NAME(t) (quotatypes[t])
static int ext4_write_dquot(struct dquot *dquot);
static int ext4_acquire_dquot(struct dquot *dquot);
static int ext4_release_dquot(struct dquot *dquot);
static int ext4_mark_dquot_dirty(struct dquot *dquot);
static int ext4_write_info(struct super_block *sb, int type);
static int ext4_quota_on(struct super_block *sb, int type, int format_id,
const struct path *path);
static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off);
static ssize_t ext4_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off);
static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
unsigned int flags);
static struct dquot **ext4_get_dquots(struct inode *inode)
{
return EXT4_I(inode)->i_dquot;
}
static const struct dquot_operations ext4_quota_operations = {
.get_reserved_space = ext4_get_reserved_space,
.write_dquot = ext4_write_dquot,
.acquire_dquot = ext4_acquire_dquot,
.release_dquot = ext4_release_dquot,
.mark_dirty = ext4_mark_dquot_dirty,
.write_info = ext4_write_info,
.alloc_dquot = dquot_alloc,
.destroy_dquot = dquot_destroy,
.get_projid = ext4_get_projid,
.get_inode_usage = ext4_get_inode_usage,
.get_next_id = dquot_get_next_id,
};
static const struct quotactl_ops ext4_qctl_operations = {
.quota_on = ext4_quota_on,
.quota_off = ext4_quota_off,
.quota_sync = dquot_quota_sync,
.get_state = dquot_get_state,
.set_info = dquot_set_dqinfo,
.get_dqblk = dquot_get_dqblk,
.set_dqblk = dquot_set_dqblk,
.get_nextdqblk = dquot_get_next_dqblk,
};
#endif
static const struct super_operations ext4_sops = {
.alloc_inode = ext4_alloc_inode,
.free_inode = ext4_free_in_core_inode,
.destroy_inode = ext4_destroy_inode,
.write_inode = ext4_write_inode,
.dirty_inode = ext4_dirty_inode,
.drop_inode = ext4_drop_inode,
.evict_inode = ext4_evict_inode,
.put_super = ext4_put_super,
.sync_fs = ext4_sync_fs,
.freeze_fs = ext4_freeze,
.unfreeze_fs = ext4_unfreeze,
.statfs = ext4_statfs,
.show_options = ext4_show_options,
#ifdef CONFIG_QUOTA
.quota_read = ext4_quota_read,
.quota_write = ext4_quota_write,
.get_dquots = ext4_get_dquots,
#endif
};
static const struct export_operations ext4_export_ops = {
.fh_to_dentry = ext4_fh_to_dentry,
.fh_to_parent = ext4_fh_to_parent,
.get_parent = ext4_get_parent,
.commit_metadata = ext4_nfs_commit_metadata,
};
enum {
Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
Opt_resgid, Opt_resuid, Opt_sb,
Opt_nouid32, Opt_debug, Opt_removed,
Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
Opt_inlinecrypt,
Opt_usrjquota, Opt_grpjquota, Opt_quota,
Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
Opt_inode_readahead_blks, Opt_journal_ioprio,
Opt_dioread_nolock, Opt_dioread_lock,
Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
#ifdef CONFIG_EXT4_DEBUG
Opt_fc_debug_max_replay, Opt_fc_debug_force
#endif
};
static const struct constant_table ext4_param_errors[] = {
{"continue", EXT4_MOUNT_ERRORS_CONT},
{"panic", EXT4_MOUNT_ERRORS_PANIC},
{"remount-ro", EXT4_MOUNT_ERRORS_RO},
{}
};
static const struct constant_table ext4_param_data[] = {
{"journal", EXT4_MOUNT_JOURNAL_DATA},
{"ordered", EXT4_MOUNT_ORDERED_DATA},
{"writeback", EXT4_MOUNT_WRITEBACK_DATA},
{}
};
static const struct constant_table ext4_param_data_err[] = {
{"abort", Opt_data_err_abort},
{"ignore", Opt_data_err_ignore},
{}
};
static const struct constant_table ext4_param_jqfmt[] = {
{"vfsold", QFMT_VFS_OLD},
{"vfsv0", QFMT_VFS_V0},
{"vfsv1", QFMT_VFS_V1},
{}
};
static const struct constant_table ext4_param_dax[] = {
{"always", Opt_dax_always},
{"inode", Opt_dax_inode},
{"never", Opt_dax_never},
{}
};
/* String parameter that allows empty argument */
#define fsparam_string_empty(NAME, OPT) \
__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
/*
* Mount option specification
* We don't use fsparam_flag_no because of the way we set the
* options and the way we show them in _ext4_show_options(). To
* keep the changes to a minimum, let's keep the negative options
* separate for now.
*/
static const struct fs_parameter_spec ext4_param_specs[] = {
fsparam_flag ("bsddf", Opt_bsd_df),
fsparam_flag ("minixdf", Opt_minix_df),
fsparam_flag ("grpid", Opt_grpid),
fsparam_flag ("bsdgroups", Opt_grpid),
fsparam_flag ("nogrpid", Opt_nogrpid),
fsparam_flag ("sysvgroups", Opt_nogrpid),
fsparam_u32 ("resgid", Opt_resgid),
fsparam_u32 ("resuid", Opt_resuid),
fsparam_u32 ("sb", Opt_sb),
fsparam_enum ("errors", Opt_errors, ext4_param_errors),
fsparam_flag ("nouid32", Opt_nouid32),
fsparam_flag ("debug", Opt_debug),
fsparam_flag ("oldalloc", Opt_removed),
fsparam_flag ("orlov", Opt_removed),
fsparam_flag ("user_xattr", Opt_user_xattr),
fsparam_flag ("nouser_xattr", Opt_nouser_xattr),
fsparam_flag ("acl", Opt_acl),
fsparam_flag ("noacl", Opt_noacl),
fsparam_flag ("norecovery", Opt_noload),
fsparam_flag ("noload", Opt_noload),
fsparam_flag ("bh", Opt_removed),
fsparam_flag ("nobh", Opt_removed),
fsparam_u32 ("commit", Opt_commit),
fsparam_u32 ("min_batch_time", Opt_min_batch_time),
fsparam_u32 ("max_batch_time", Opt_max_batch_time),
fsparam_u32 ("journal_dev", Opt_journal_dev),
fsparam_bdev ("journal_path", Opt_journal_path),
fsparam_flag ("journal_checksum", Opt_journal_checksum),
fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
fsparam_flag ("abort", Opt_abort),
fsparam_enum ("data", Opt_data, ext4_param_data),
fsparam_enum ("data_err", Opt_data_err,
ext4_param_data_err),
fsparam_string_empty
("usrjquota", Opt_usrjquota),
fsparam_string_empty
("grpjquota", Opt_grpjquota),
fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
fsparam_flag ("grpquota", Opt_grpquota),
fsparam_flag ("quota", Opt_quota),
fsparam_flag ("noquota", Opt_noquota),
fsparam_flag ("usrquota", Opt_usrquota),
fsparam_flag ("prjquota", Opt_prjquota),
fsparam_flag ("barrier", Opt_barrier),
fsparam_u32 ("barrier", Opt_barrier),
fsparam_flag ("nobarrier", Opt_nobarrier),
fsparam_flag ("i_version", Opt_i_version),
fsparam_flag ("dax", Opt_dax),
fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
fsparam_u32 ("stripe", Opt_stripe),
fsparam_flag ("delalloc", Opt_delalloc),
fsparam_flag ("nodelalloc", Opt_nodelalloc),
fsparam_flag ("warn_on_error", Opt_warn_on_error),
fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
fsparam_u32 ("debug_want_extra_isize",
Opt_debug_want_extra_isize),
fsparam_flag ("mblk_io_submit", Opt_removed),
fsparam_flag ("nomblk_io_submit", Opt_removed),
fsparam_flag ("block_validity", Opt_block_validity),
fsparam_flag ("noblock_validity", Opt_noblock_validity),
fsparam_u32 ("inode_readahead_blks",
Opt_inode_readahead_blks),
fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
fsparam_flag ("dioread_lock", Opt_dioread_lock),
fsparam_flag ("discard", Opt_discard),
fsparam_flag ("nodiscard", Opt_nodiscard),
fsparam_u32 ("init_itable", Opt_init_itable),
fsparam_flag ("init_itable", Opt_init_itable),
fsparam_flag ("noinit_itable", Opt_noinit_itable),
#ifdef CONFIG_EXT4_DEBUG
fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
#endif
fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
fsparam_flag ("test_dummy_encryption",
Opt_test_dummy_encryption),
fsparam_string ("test_dummy_encryption",
Opt_test_dummy_encryption),
fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
fsparam_flag ("nombcache", Opt_nombcache),
fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
fsparam_flag ("prefetch_block_bitmaps",
Opt_removed),
fsparam_flag ("no_prefetch_block_bitmaps",
Opt_no_prefetch_block_bitmaps),
fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
{}
};
#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
#define DEFAULT_MB_OPTIMIZE_SCAN (-1)
static const char deprecated_msg[] =
"Mount option \"%s\" will be removed by %s\n"
"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
#define MOPT_SET 0x0001
#define MOPT_CLEAR 0x0002
#define MOPT_NOSUPPORT 0x0004
#define MOPT_EXPLICIT 0x0008
#ifdef CONFIG_QUOTA
#define MOPT_Q 0
#define MOPT_QFMT 0x0010
#else
#define MOPT_Q MOPT_NOSUPPORT
#define MOPT_QFMT MOPT_NOSUPPORT
#endif
#define MOPT_NO_EXT2 0x0020
#define MOPT_NO_EXT3 0x0040
#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
#define MOPT_SKIP 0x0080
#define MOPT_2 0x0100
static const struct mount_opts {
int token;
int mount_opt;
int flags;
} ext4_mount_opts[] = {
{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
MOPT_EXT4_ONLY | MOPT_SET},
{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
MOPT_EXT4_ONLY | MOPT_CLEAR},
{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
{Opt_delalloc, EXT4_MOUNT_DELALLOC,
MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
MOPT_EXT4_ONLY | MOPT_CLEAR},
{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
MOPT_EXT4_ONLY | MOPT_CLEAR},
{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
EXT4_MOUNT_JOURNAL_CHECKSUM),
MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
{Opt_dax_type, 0, MOPT_EXT4_ONLY},
{Opt_journal_dev, 0, MOPT_NO_EXT2},
{Opt_journal_path, 0, MOPT_NO_EXT2},
{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
{Opt_data, 0, MOPT_NO_EXT2},
{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
#ifdef CONFIG_EXT4_FS_POSIX_ACL
{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
#else
{Opt_acl, 0, MOPT_NOSUPPORT},
{Opt_noacl, 0, MOPT_NOSUPPORT},
#endif
{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
MOPT_SET | MOPT_Q},
{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
MOPT_SET | MOPT_Q},
{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
MOPT_SET | MOPT_Q},
{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
MOPT_CLEAR | MOPT_Q},
{Opt_usrjquota, 0, MOPT_Q},
{Opt_grpjquota, 0, MOPT_Q},
{Opt_jqfmt, 0, MOPT_QFMT},
{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
MOPT_SET},
#ifdef CONFIG_EXT4_DEBUG
{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
#endif
{Opt_err, 0, 0}
};
#ifdef CONFIG_UNICODE
static const struct ext4_sb_encodings {
__u16 magic;
char *name;
char *version;
} ext4_sb_encoding_map[] = {
{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
};
static int ext4_sb_read_encoding(const struct ext4_super_block *es,
const struct ext4_sb_encodings **encoding,
__u16 *flags)
{
__u16 magic = le16_to_cpu(es->s_encoding);
int i;
for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
if (magic == ext4_sb_encoding_map[i].magic)
break;
if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
return -EINVAL;
*encoding = &ext4_sb_encoding_map[i];
*flags = le16_to_cpu(es->s_encoding_flags);
return 0;
}
#endif
static int ext4_set_test_dummy_encryption(struct super_block *sb, char *arg)
{
#ifdef CONFIG_FS_ENCRYPTION
struct ext4_sb_info *sbi = EXT4_SB(sb);
int err;
err = fscrypt_set_test_dummy_encryption(sb, arg,
&sbi->s_dummy_enc_policy);
if (err) {
ext4_msg(sb, KERN_WARNING,
"Error while setting test dummy encryption [%d]", err);
return err;
}
ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
#endif
return 0;
}
#define EXT4_SPEC_JQUOTA (1 << 0)
#define EXT4_SPEC_JQFMT (1 << 1)
#define EXT4_SPEC_DATAJ (1 << 2)
#define EXT4_SPEC_SB_BLOCK (1 << 3)
#define EXT4_SPEC_JOURNAL_DEV (1 << 4)
#define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
#define EXT4_SPEC_DUMMY_ENCRYPTION (1 << 6)
#define EXT4_SPEC_s_want_extra_isize (1 << 7)
#define EXT4_SPEC_s_max_batch_time (1 << 8)
#define EXT4_SPEC_s_min_batch_time (1 << 9)
#define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
#define EXT4_SPEC_s_li_wait_mult (1 << 11)
#define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
#define EXT4_SPEC_s_stripe (1 << 13)
#define EXT4_SPEC_s_resuid (1 << 14)
#define EXT4_SPEC_s_resgid (1 << 15)
#define EXT4_SPEC_s_commit_interval (1 << 16)
#define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
#define EXT4_SPEC_s_sb_block (1 << 18)
struct ext4_fs_context {
char *s_qf_names[EXT4_MAXQUOTAS];
char *test_dummy_enc_arg;
int s_jquota_fmt; /* Format of quota to use */
int mb_optimize_scan;
#ifdef CONFIG_EXT4_DEBUG
int s_fc_debug_max_replay;
#endif
unsigned short qname_spec;
unsigned long vals_s_flags; /* Bits to set in s_flags */
unsigned long mask_s_flags; /* Bits changed in s_flags */
unsigned long journal_devnum;
unsigned long s_commit_interval;
unsigned long s_stripe;
unsigned int s_inode_readahead_blks;
unsigned int s_want_extra_isize;
unsigned int s_li_wait_mult;
unsigned int s_max_dir_size_kb;
unsigned int journal_ioprio;
unsigned int vals_s_mount_opt;
unsigned int mask_s_mount_opt;
unsigned int vals_s_mount_opt2;
unsigned int mask_s_mount_opt2;
unsigned int vals_s_mount_flags;
unsigned int mask_s_mount_flags;
unsigned int opt_flags; /* MOPT flags */
unsigned int spec;
u32 s_max_batch_time;
u32 s_min_batch_time;
kuid_t s_resuid;
kgid_t s_resgid;
ext4_fsblk_t s_sb_block;
};
static void ext4_fc_free(struct fs_context *fc)
{
struct ext4_fs_context *ctx = fc->fs_private;
int i;
if (!ctx)
return;
for (i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(ctx->s_qf_names[i]);
kfree(ctx->test_dummy_enc_arg);
kfree(ctx);
}
int ext4_init_fs_context(struct fs_context *fc)
{
struct xfs_fs_context *ctx;
ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
fc->fs_private = ctx;
fc->ops = &ext4_context_ops;
return 0;
}
#ifdef CONFIG_QUOTA
/*
* Note the name of the specified quota file.
*/
static int note_qf_name(struct fs_context *fc, int qtype,
struct fs_parameter *param)
{
struct ext4_fs_context *ctx = fc->fs_private;
char *qname;
if (param->size < 1) {
ext4_msg(NULL, KERN_ERR, "Missing quota name");
return -EINVAL;
}
if (strchr(param->string, '/')) {
ext4_msg(NULL, KERN_ERR,
"quotafile must be on filesystem root");
return -EINVAL;
}
if (ctx->s_qf_names[qtype]) {
if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
ext4_msg(NULL, KERN_ERR,
"%s quota file already specified",
QTYPE2NAME(qtype));
return -EINVAL;
}
return 0;
}
qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
if (!qname) {
ext4_msg(NULL, KERN_ERR,
"Not enough memory for storing quotafile name");
return -ENOMEM;
}
ctx->s_qf_names[qtype] = qname;
ctx->qname_spec |= 1 << qtype;
ctx->spec |= EXT4_SPEC_JQUOTA;
return 0;
}
/*
* Clear the name of the specified quota file.
*/
static int unnote_qf_name(struct fs_context *fc, int qtype)
{
struct ext4_fs_context *ctx = fc->fs_private;
if (ctx->s_qf_names[qtype])
kfree(ctx->s_qf_names[qtype]);
ctx->s_qf_names[qtype] = NULL;
ctx->qname_spec |= 1 << qtype;
ctx->spec |= EXT4_SPEC_JQUOTA;
return 0;
}
#endif
#define EXT4_SET_CTX(name) \
static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
unsigned long flag) \
{ \
ctx->mask_s_##name |= flag; \
ctx->vals_s_##name |= flag; \
} \
static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
unsigned long flag) \
{ \
ctx->mask_s_##name |= flag; \
ctx->vals_s_##name &= ~flag; \
} \
static inline unsigned long \
ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
{ \
return (ctx->vals_s_##name & flag); \
} \
EXT4_SET_CTX(flags);
EXT4_SET_CTX(mount_opt);
EXT4_SET_CTX(mount_opt2);
EXT4_SET_CTX(mount_flags);
static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct fs_parse_result result;
const struct mount_opts *m;
int is_remount;
kuid_t uid;
kgid_t gid;
int token;
token = fs_parse(fc, ext4_param_specs, param, &result);
if (token < 0)
return token;
is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
for (m = ext4_mount_opts; m->token != Opt_err; m++)
if (token == m->token)
break;
ctx->opt_flags |= m->flags;
if (m->flags & MOPT_EXPLICIT) {
if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
ctx_set_mount_opt2(ctx,
EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
} else
return -EINVAL;
}
if (m->flags & MOPT_NOSUPPORT) {
ext4_msg(NULL, KERN_ERR, "%s option not supported",
param->key);
return 0;
}
switch (token) {
#ifdef CONFIG_QUOTA
case Opt_usrjquota:
if (!*param->string)
return unnote_qf_name(fc, USRQUOTA);
else
return note_qf_name(fc, USRQUOTA, param);
case Opt_grpjquota:
if (!*param->string)
return unnote_qf_name(fc, GRPQUOTA);
else
return note_qf_name(fc, GRPQUOTA, param);
#endif
case Opt_noacl:
case Opt_nouser_xattr:
ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "3.5");
break;
case Opt_sb:
if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
ext4_msg(NULL, KERN_WARNING,
"Ignoring %s option on remount", param->key);
} else {
ctx->s_sb_block = result.uint_32;
ctx->spec |= EXT4_SPEC_s_sb_block;
}
return 0;
case Opt_removed:
ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
param->key);
return 0;
case Opt_abort:
ctx_set_mount_flags(ctx, EXT4_MF_FS_ABORTED);
return 0;
case Opt_i_version:
ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "5.20");
ext4_msg(NULL, KERN_WARNING, "Use iversion instead\n");
ctx_set_flags(ctx, SB_I_VERSION);
return 0;
case Opt_inlinecrypt:
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
ctx_set_flags(ctx, SB_INLINECRYPT);
#else
ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
#endif
return 0;
case Opt_errors:
ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
ctx_set_mount_opt(ctx, result.uint_32);
return 0;
#ifdef CONFIG_QUOTA
case Opt_jqfmt:
ctx->s_jquota_fmt = result.uint_32;
ctx->spec |= EXT4_SPEC_JQFMT;
return 0;
#endif
case Opt_data:
ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
ctx_set_mount_opt(ctx, result.uint_32);
ctx->spec |= EXT4_SPEC_DATAJ;
return 0;
case Opt_commit:
if (result.uint_32 == 0)
ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
else if (result.uint_32 > INT_MAX / HZ) {
ext4_msg(NULL, KERN_ERR,
"Invalid commit interval %d, "
"must be smaller than %d",
result.uint_32, INT_MAX / HZ);
return -EINVAL;
}
ctx->s_commit_interval = HZ * result.uint_32;
ctx->spec |= EXT4_SPEC_s_commit_interval;
return 0;
case Opt_debug_want_extra_isize:
if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
ext4_msg(NULL, KERN_ERR,
"Invalid want_extra_isize %d", result.uint_32);
return -EINVAL;
}
ctx->s_want_extra_isize = result.uint_32;
ctx->spec |= EXT4_SPEC_s_want_extra_isize;
return 0;
case Opt_max_batch_time:
ctx->s_max_batch_time = result.uint_32;
ctx->spec |= EXT4_SPEC_s_max_batch_time;
return 0;
case Opt_min_batch_time:
ctx->s_min_batch_time = result.uint_32;
ctx->spec |= EXT4_SPEC_s_min_batch_time;
return 0;
case Opt_inode_readahead_blks:
if (result.uint_32 &&
(result.uint_32 > (1 << 30) ||
!is_power_of_2(result.uint_32))) {
ext4_msg(NULL, KERN_ERR,
"EXT4-fs: inode_readahead_blks must be "
"0 or a power of 2 smaller than 2^31");
return -EINVAL;
}
ctx->s_inode_readahead_blks = result.uint_32;
ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
return 0;
case Opt_init_itable:
ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
if (param->type == fs_value_is_string)
ctx->s_li_wait_mult = result.uint_32;
ctx->spec |= EXT4_SPEC_s_li_wait_mult;
return 0;
case Opt_max_dir_size_kb:
ctx->s_max_dir_size_kb = result.uint_32;
ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
return 0;
#ifdef CONFIG_EXT4_DEBUG
case Opt_fc_debug_max_replay:
ctx->s_fc_debug_max_replay = result.uint_32;
ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
return 0;
#endif
case Opt_stripe:
ctx->s_stripe = result.uint_32;
ctx->spec |= EXT4_SPEC_s_stripe;
return 0;
case Opt_resuid:
uid = make_kuid(current_user_ns(), result.uint_32);
if (!uid_valid(uid)) {
ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
result.uint_32);
return -EINVAL;
}
ctx->s_resuid = uid;
ctx->spec |= EXT4_SPEC_s_resuid;
return 0;
case Opt_resgid:
gid = make_kgid(current_user_ns(), result.uint_32);
if (!gid_valid(gid)) {
ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
result.uint_32);
return -EINVAL;
}
ctx->s_resgid = gid;
ctx->spec |= EXT4_SPEC_s_resgid;
return 0;
case Opt_journal_dev:
if (is_remount) {
ext4_msg(NULL, KERN_ERR,
"Cannot specify journal on remount");
return -EINVAL;
}
ctx->journal_devnum = result.uint_32;
ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
return 0;
case Opt_journal_path:
{
struct inode *journal_inode;
struct path path;
int error;
if (is_remount) {
ext4_msg(NULL, KERN_ERR,
"Cannot specify journal on remount");
return -EINVAL;
}
error = fs_lookup_param(fc, param, 1, &path);
if (error) {
ext4_msg(NULL, KERN_ERR, "error: could not find "
"journal device path");
return -EINVAL;
}
journal_inode = d_inode(path.dentry);
ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
path_put(&path);
return 0;
}
case Opt_journal_ioprio:
if (result.uint_32 > 7) {
ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
" (must be 0-7)");
return -EINVAL;
}
ctx->journal_ioprio =
IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
return 0;
case Opt_test_dummy_encryption:
#ifdef CONFIG_FS_ENCRYPTION
if (param->type == fs_value_is_flag) {
ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION;
ctx->test_dummy_enc_arg = NULL;
return 0;
}
if (*param->string &&
!(!strcmp(param->string, "v1") ||
!strcmp(param->string, "v2"))) {
ext4_msg(NULL, KERN_WARNING,
"Value of option \"%s\" is unrecognized",
param->key);
return -EINVAL;
}
ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION;
ctx->test_dummy_enc_arg = kmemdup_nul(param->string, param->size,
GFP_KERNEL);
#else
ext4_msg(NULL, KERN_WARNING,
"Test dummy encryption mount option ignored");
#endif
return 0;
case Opt_dax:
case Opt_dax_type:
#ifdef CONFIG_FS_DAX
{
int type = (token == Opt_dax) ?
Opt_dax : result.uint_32;
switch (type) {
case Opt_dax:
case Opt_dax_always:
ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
break;
case Opt_dax_never:
ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
break;
case Opt_dax_inode:
ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
/* Strictly for printing options */
ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
break;
}
return 0;
}
#else
ext4_msg(NULL, KERN_INFO, "dax option not supported");
return -EINVAL;
#endif
case Opt_data_err:
if (result.uint_32 == Opt_data_err_abort)
ctx_set_mount_opt(ctx, m->mount_opt);
else if (result.uint_32 == Opt_data_err_ignore)
ctx_clear_mount_opt(ctx, m->mount_opt);
return 0;
case Opt_mb_optimize_scan:
if (result.int_32 != 0 && result.int_32 != 1) {
ext4_msg(NULL, KERN_WARNING,
"mb_optimize_scan should be set to 0 or 1.");
return -EINVAL;
}
ctx->mb_optimize_scan = result.int_32;
return 0;
}
/*
* At this point we should only be getting options requiring MOPT_SET,
* or MOPT_CLEAR. Anything else is a bug
*/
if (m->token == Opt_err) {
ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
param->key);
WARN_ON(1);
return -EINVAL;
}
else {
unsigned int set = 0;
if ((param->type == fs_value_is_flag) ||
result.uint_32 > 0)
set = 1;
if (m->flags & MOPT_CLEAR)
set = !set;
else if (unlikely(!(m->flags & MOPT_SET))) {
ext4_msg(NULL, KERN_WARNING,
"buggy handling of option %s",
param->key);
WARN_ON(1);
return -EINVAL;
}
if (m->flags & MOPT_2) {
if (set != 0)
ctx_set_mount_opt2(ctx, m->mount_opt);
else
ctx_clear_mount_opt2(ctx, m->mount_opt);
} else {
if (set != 0)
ctx_set_mount_opt(ctx, m->mount_opt);
else
ctx_clear_mount_opt(ctx, m->mount_opt);
}
}
return 0;
}
static int parse_options(struct fs_context *fc, char *options)
{
struct fs_parameter param;
int ret;
char *key;
if (!options)
return 0;
while ((key = strsep(&options, ",")) != NULL) {
if (*key) {
size_t v_len = 0;
char *value = strchr(key, '=');
param.type = fs_value_is_flag;
param.string = NULL;
if (value) {
if (value == key)
continue;
*value++ = 0;
v_len = strlen(value);
param.string = kmemdup_nul(value, v_len,
GFP_KERNEL);
if (!param.string)
return -ENOMEM;
param.type = fs_value_is_string;
}
param.key = key;
param.size = v_len;
ret = ext4_parse_param(fc, &param);
if (param.string)
kfree(param.string);
if (ret < 0)
return ret;
}
}
ret = ext4_validate_options(fc);
if (ret < 0)
return ret;
return 0;
}
static int parse_apply_sb_mount_options(struct super_block *sb,
struct ext4_fs_context *m_ctx)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
char *s_mount_opts = NULL;
struct ext4_fs_context *s_ctx = NULL;
struct fs_context *fc = NULL;
int ret = -ENOMEM;
if (!sbi->s_es->s_mount_opts[0])
return 0;
s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
sizeof(sbi->s_es->s_mount_opts),
GFP_KERNEL);
if (!s_mount_opts)
return ret;
fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
if (!fc)
goto out_free;
s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
if (!s_ctx)
goto out_free;
fc->fs_private = s_ctx;
fc->s_fs_info = sbi;
ret = parse_options(fc, s_mount_opts);
if (ret < 0)
goto parse_failed;
ret = ext4_check_opt_consistency(fc, sb);
if (ret < 0) {
parse_failed:
ext4_msg(sb, KERN_WARNING,
"failed to parse options in superblock: %s",
s_mount_opts);
ret = 0;
goto out_free;
}
if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
m_ctx->journal_devnum = s_ctx->journal_devnum;
if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
m_ctx->journal_ioprio = s_ctx->journal_ioprio;
ret = ext4_apply_options(fc, sb);
out_free:
kfree(s_ctx);
kfree(fc);
kfree(s_mount_opts);
return ret;
}
static void ext4_apply_quota_options(struct fs_context *fc,
struct super_block *sb)
{
#ifdef CONFIG_QUOTA
bool quota_feature = ext4_has_feature_quota(sb);
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi = EXT4_SB(sb);
char *qname;
int i;
if (quota_feature)
return;
if (ctx->spec & EXT4_SPEC_JQUOTA) {
for (i = 0; i < EXT4_MAXQUOTAS; i++) {
if (!(ctx->qname_spec & (1 << i)))
continue;
qname = ctx->s_qf_names[i]; /* May be NULL */
if (qname)
set_opt(sb, QUOTA);
ctx->s_qf_names[i] = NULL;
qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
lockdep_is_held(&sb->s_umount));
if (qname)
kfree_rcu(qname);
}
}
if (ctx->spec & EXT4_SPEC_JQFMT)
sbi->s_jquota_fmt = ctx->s_jquota_fmt;
#endif
}
/*
* Check quota settings consistency.
*/
static int ext4_check_quota_consistency(struct fs_context *fc,
struct super_block *sb)
{
#ifdef CONFIG_QUOTA
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi = EXT4_SB(sb);
bool quota_feature = ext4_has_feature_quota(sb);
bool quota_loaded = sb_any_quota_loaded(sb);
bool usr_qf_name, grp_qf_name, usrquota, grpquota;
int quota_flags, i;
/*
* We do the test below only for project quotas. 'usrquota' and
* 'grpquota' mount options are allowed even without quota feature
* to support legacy quotas in quota files.
*/
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
!ext4_has_feature_project(sb)) {
ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
"Cannot enable project quota enforcement.");
return -EINVAL;
}
quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
if (quota_loaded &&
ctx->mask_s_mount_opt & quota_flags &&
!ctx_test_mount_opt(ctx, quota_flags))
goto err_quota_change;
if (ctx->spec & EXT4_SPEC_JQUOTA) {
for (i = 0; i < EXT4_MAXQUOTAS; i++) {
if (!(ctx->qname_spec & (1 << i)))
continue;
if (quota_loaded &&
!!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
goto err_jquota_change;
if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
strcmp(get_qf_name(sb, sbi, i),
ctx->s_qf_names[i]) != 0)
goto err_jquota_specified;
}
if (quota_feature) {
ext4_msg(NULL, KERN_INFO,
"Journaled quota options ignored when "
"QUOTA feature is enabled");
return 0;
}
}
if (ctx->spec & EXT4_SPEC_JQFMT) {
if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
goto err_jquota_change;
if (quota_feature) {
ext4_msg(NULL, KERN_INFO, "Quota format mount options "
"ignored when QUOTA feature is enabled");
return 0;
}
}
/* Make sure we don't mix old and new quota format */
usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
ctx->s_qf_names[USRQUOTA]);
grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
ctx->s_qf_names[GRPQUOTA]);
usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
test_opt(sb, USRQUOTA));
grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
test_opt(sb, GRPQUOTA));
if (usr_qf_name) {
ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
usrquota = false;
}
if (grp_qf_name) {
ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
grpquota = false;
}
if (usr_qf_name || grp_qf_name) {
if (usrquota || grpquota) {
ext4_msg(NULL, KERN_ERR, "old and new quota "
"format mixing");
return -EINVAL;
}
if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
ext4_msg(NULL, KERN_ERR, "journaled quota format "
"not specified");
return -EINVAL;
}
}
return 0;
err_quota_change:
ext4_msg(NULL, KERN_ERR,
"Cannot change quota options when quota turned on");
return -EINVAL;
err_jquota_change:
ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
"options when quota turned on");
return -EINVAL;
err_jquota_specified:
ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
QTYPE2NAME(i));
return -EINVAL;
#else
return 0;
#endif
}
static int ext4_check_opt_consistency(struct fs_context *fc,
struct super_block *sb)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi = fc->s_fs_info;
int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
ext4_msg(NULL, KERN_ERR,
"Mount option(s) incompatible with ext2");
return -EINVAL;
}
if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
ext4_msg(NULL, KERN_ERR,
"Mount option(s) incompatible with ext3");
return -EINVAL;
}
if (ctx->s_want_extra_isize >
(sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
ext4_msg(NULL, KERN_ERR,
"Invalid want_extra_isize %d",
ctx->s_want_extra_isize);
return -EINVAL;
}
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
int blocksize =
BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
if (blocksize < PAGE_SIZE)
ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
"experimental mount option 'dioread_nolock' "
"for blocksize < PAGE_SIZE");
}
#ifdef CONFIG_FS_ENCRYPTION
/*
* This mount option is just for testing, and it's not worthwhile to
* implement the extra complexity (e.g. RCU protection) that would be
* needed to allow it to be set or changed during remount. We do allow
* it to be specified during remount, but only if there is no change.
*/
if ((ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION) &&
is_remount && !sbi->s_dummy_enc_policy.policy) {
ext4_msg(NULL, KERN_WARNING,
"Can't set test_dummy_encryption on remount");
return -1;
}
#endif
if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
if (!sbi->s_journal) {
ext4_msg(NULL, KERN_WARNING,
"Remounting file system with no journal "
"so ignoring journalled data option");
ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
test_opt(sb, DATA_FLAGS)) {
ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
"on remount");
return -EINVAL;
}
}
if (is_remount) {
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
ext4_msg(NULL, KERN_ERR, "can't mount with "
"both data=journal and dax");
return -EINVAL;
}
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
(!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
fail_dax_change_remount:
ext4_msg(NULL, KERN_ERR, "can't change "
"dax mount option while remounting");
return -EINVAL;
} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
(!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
goto fail_dax_change_remount;
} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
goto fail_dax_change_remount;
}
}
return ext4_check_quota_consistency(fc, sb);
}
static int ext4_apply_options(struct fs_context *fc, struct super_block *sb)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi = fc->s_fs_info;
int ret = 0;
sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
sbi->s_mount_opt |= ctx->vals_s_mount_opt;
sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
sbi->s_mount_flags |= ctx->vals_s_mount_flags;
sb->s_flags &= ~ctx->mask_s_flags;
sb->s_flags |= ctx->vals_s_flags;
/*
* i_version differs from common mount option iversion so we have
* to let vfs know that it was set, otherwise it would get cleared
* on remount
*/
if (ctx->mask_s_flags & SB_I_VERSION)
fc->sb_flags |= SB_I_VERSION;
#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
APPLY(s_commit_interval);
APPLY(s_stripe);
APPLY(s_max_batch_time);
APPLY(s_min_batch_time);
APPLY(s_want_extra_isize);
APPLY(s_inode_readahead_blks);
APPLY(s_max_dir_size_kb);
APPLY(s_li_wait_mult);
APPLY(s_resgid);
APPLY(s_resuid);
#ifdef CONFIG_EXT4_DEBUG
APPLY(s_fc_debug_max_replay);
#endif
ext4_apply_quota_options(fc, sb);
if (ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION)
ret = ext4_set_test_dummy_encryption(sb, ctx->test_dummy_enc_arg);
return ret;
}
static int ext4_validate_options(struct fs_context *fc)
{
#ifdef CONFIG_QUOTA
struct ext4_fs_context *ctx = fc->fs_private;
char *usr_qf_name, *grp_qf_name;
usr_qf_name = ctx->s_qf_names[USRQUOTA];
grp_qf_name = ctx->s_qf_names[GRPQUOTA];
if (usr_qf_name || grp_qf_name) {
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
ext4_msg(NULL, KERN_ERR, "old and new quota "
"format mixing");
return -EINVAL;
}
}
#endif
return 1;
}
static inline void ext4_show_quota_options(struct seq_file *seq,
struct super_block *sb)
{
#if defined(CONFIG_QUOTA)
struct ext4_sb_info *sbi = EXT4_SB(sb);
char *usr_qf_name, *grp_qf_name;
if (sbi->s_jquota_fmt) {
char *fmtname = "";
switch (sbi->s_jquota_fmt) {
case QFMT_VFS_OLD:
fmtname = "vfsold";
break;
case QFMT_VFS_V0:
fmtname = "vfsv0";
break;
case QFMT_VFS_V1:
fmtname = "vfsv1";
break;
}
seq_printf(seq, ",jqfmt=%s", fmtname);
}
rcu_read_lock();
usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
if (usr_qf_name)
seq_show_option(seq, "usrjquota", usr_qf_name);
if (grp_qf_name)
seq_show_option(seq, "grpjquota", grp_qf_name);
rcu_read_unlock();
#endif
}
static const char *token2str(int token)
{
const struct fs_parameter_spec *spec;
for (spec = ext4_param_specs; spec->name != NULL; spec++)
if (spec->opt == token && !spec->type)
break;
return spec->name;
}
/*
* Show an option if
* - it's set to a non-default value OR
* - if the per-sb default is different from the global default
*/
static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
int nodefs)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
int def_errors, def_mount_opt = sbi->s_def_mount_opt;
const struct mount_opts *m;
char sep = nodefs ? '\n' : ',';
#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
if (sbi->s_sb_block != 1)
SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
for (m = ext4_mount_opts; m->token != Opt_err; m++) {
int want_set = m->flags & MOPT_SET;
if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
m->flags & MOPT_SKIP)
continue;
if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
continue; /* skip if same as the default */
if ((want_set &&
(sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
(!want_set && (sbi->s_mount_opt & m->mount_opt)))
continue; /* select Opt_noFoo vs Opt_Foo */
SEQ_OPTS_PRINT("%s", token2str(m->token));
}
if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
SEQ_OPTS_PRINT("resuid=%u",
from_kuid_munged(&init_user_ns, sbi->s_resuid));
if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
SEQ_OPTS_PRINT("resgid=%u",
from_kgid_munged(&init_user_ns, sbi->s_resgid));
def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
SEQ_OPTS_PUTS("errors=remount-ro");
if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
SEQ_OPTS_PUTS("errors=continue");
if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
SEQ_OPTS_PUTS("errors=panic");
if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
if (sb->s_flags & SB_I_VERSION)
SEQ_OPTS_PUTS("i_version");
if (nodefs || sbi->s_stripe)
SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
if (nodefs || EXT4_MOUNT_DATA_FLAGS &
(sbi->s_mount_opt ^ def_mount_opt)) {
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
SEQ_OPTS_PUTS("data=journal");
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
SEQ_OPTS_PUTS("data=ordered");
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
SEQ_OPTS_PUTS("data=writeback");
}
if (nodefs ||
sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
SEQ_OPTS_PRINT("inode_readahead_blks=%u",
sbi->s_inode_readahead_blks);
if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
(sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
if (nodefs || sbi->s_max_dir_size_kb)
SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
if (test_opt(sb, DATA_ERR_ABORT))
SEQ_OPTS_PUTS("data_err=abort");
fscrypt_show_test_dummy_encryption(seq, sep, sb);
if (sb->s_flags & SB_INLINECRYPT)
SEQ_OPTS_PUTS("inlinecrypt");
if (test_opt(sb, DAX_ALWAYS)) {
if (IS_EXT2_SB(sb))
SEQ_OPTS_PUTS("dax");
else
SEQ_OPTS_PUTS("dax=always");
} else if (test_opt2(sb, DAX_NEVER)) {
SEQ_OPTS_PUTS("dax=never");
} else if (test_opt2(sb, DAX_INODE)) {
SEQ_OPTS_PUTS("dax=inode");
}
ext4_show_quota_options(seq, sb);
return 0;
}
static int ext4_show_options(struct seq_file *seq, struct dentry *root)
{
return _ext4_show_options(seq, root->d_sb, 0);
}
int ext4_seq_options_show(struct seq_file *seq, void *offset)
{
struct super_block *sb = seq->private;
int rc;
seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
rc = _ext4_show_options(seq, sb, 1);
seq_puts(seq, "\n");
return rc;
}
static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
int read_only)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
int err = 0;
if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
ext4_msg(sb, KERN_ERR, "revision level too high, "
"forcing read-only mode");
err = -EROFS;
goto done;
}
if (read_only)
goto done;
if (!(sbi->s_mount_state & EXT4_VALID_FS))
ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
"running e2fsck is recommended");
else if (sbi->s_mount_state & EXT4_ERROR_FS)
ext4_msg(sb, KERN_WARNING,
"warning: mounting fs with errors, "
"running e2fsck is recommended");
else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
le16_to_cpu(es->s_mnt_count) >=
(unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
ext4_msg(sb, KERN_WARNING,
"warning: maximal mount count reached, "
"running e2fsck is recommended");
else if (le32_to_cpu(es->s_checkinterval) &&
(ext4_get_tstamp(es, s_lastcheck) +
le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
ext4_msg(sb, KERN_WARNING,
"warning: checktime reached, "
"running e2fsck is recommended");
if (!sbi->s_journal)
es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
le16_add_cpu(&es->s_mnt_count, 1);
ext4_update_tstamp(es, s_mtime);
if (sbi->s_journal) {
ext4_set_feature_journal_needs_recovery(sb);
if (ext4_has_feature_orphan_file(sb))
ext4_set_feature_orphan_present(sb);
}
err = ext4_commit_super(sb);
done:
if (test_opt(sb, DEBUG))
printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
sb->s_blocksize,
sbi->s_groups_count,
EXT4_BLOCKS_PER_GROUP(sb),
EXT4_INODES_PER_GROUP(sb),
sbi->s_mount_opt, sbi->s_mount_opt2);
cleancache_init_fs(sb);
return err;
}
int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct flex_groups **old_groups, **new_groups;
int size, i, j;
if (!sbi->s_log_groups_per_flex)
return 0;
size = ext4_flex_group(sbi, ngroup - 1) + 1;
if (size <= sbi->s_flex_groups_allocated)
return 0;
new_groups = kvzalloc(roundup_pow_of_two(size *
sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
if (!new_groups) {
ext4_msg(sb, KERN_ERR,
"not enough memory for %d flex group pointers", size);
return -ENOMEM;
}
for (i = sbi->s_flex_groups_allocated; i < size; i++) {
new_groups[i] = kvzalloc(roundup_pow_of_two(
sizeof(struct flex_groups)),
GFP_KERNEL);
if (!new_groups[i]) {
for (j = sbi->s_flex_groups_allocated; j < i; j++)
kvfree(new_groups[j]);
kvfree(new_groups);
ext4_msg(sb, KERN_ERR,
"not enough memory for %d flex groups", size);
return -ENOMEM;
}
}
rcu_read_lock();
old_groups = rcu_dereference(sbi->s_flex_groups);
if (old_groups)
memcpy(new_groups, old_groups,
(sbi->s_flex_groups_allocated *
sizeof(struct flex_groups *)));
rcu_read_unlock();
rcu_assign_pointer(sbi->s_flex_groups, new_groups);
sbi->s_flex_groups_allocated = size;
if (old_groups)
ext4_kvfree_array_rcu(old_groups);
return 0;
}
static int ext4_fill_flex_info(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *gdp = NULL;
struct flex_groups *fg;
ext4_group_t flex_group;
int i, err;
sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
sbi->s_log_groups_per_flex = 0;
return 1;
}
err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
if (err)
goto failed;
for (i = 0; i < sbi->s_groups_count; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
flex_group = ext4_flex_group(sbi, i);
fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
atomic64_add(ext4_free_group_clusters(sb, gdp),
&fg->free_clusters);
atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
}
return 1;
failed:
return 0;
}
static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
struct ext4_group_desc *gdp)
{
int offset = offsetof(struct ext4_group_desc, bg_checksum);
__u16 crc = 0;
__le32 le_group = cpu_to_le32(block_group);
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (ext4_has_metadata_csum(sbi->s_sb)) {
/* Use new metadata_csum algorithm */
__u32 csum32;
__u16 dummy_csum = 0;
csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
sizeof(le_group));
csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
sizeof(dummy_csum));
offset += sizeof(dummy_csum);
if (offset < sbi->s_desc_size)
csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
sbi->s_desc_size - offset);
crc = csum32 & 0xFFFF;
goto out;
}
/* old crc16 code */
if (!ext4_has_feature_gdt_csum(sb))
return 0;
crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
crc = crc16(crc, (__u8 *)gdp, offset);
offset += sizeof(gdp->bg_checksum); /* skip checksum */
/* for checksum of struct ext4_group_desc do the rest...*/
if (ext4_has_feature_64bit(sb) &&
offset < le16_to_cpu(sbi->s_es->s_desc_size))
crc = crc16(crc, (__u8 *)gdp + offset,
le16_to_cpu(sbi->s_es->s_desc_size) -
offset);
out:
return cpu_to_le16(crc);
}
int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
struct ext4_group_desc *gdp)
{
if (ext4_has_group_desc_csum(sb) &&
(gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
return 0;
return 1;
}
void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
struct ext4_group_desc *gdp)
{
if (!ext4_has_group_desc_csum(sb))
return;
gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
}
/* Called at mount-time, super-block is locked */
static int ext4_check_descriptors(struct super_block *sb,
ext4_fsblk_t sb_block,
ext4_group_t *first_not_zeroed)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
ext4_fsblk_t last_block;
ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
ext4_fsblk_t block_bitmap;
ext4_fsblk_t inode_bitmap;
ext4_fsblk_t inode_table;
int flexbg_flag = 0;
ext4_group_t i, grp = sbi->s_groups_count;
if (ext4_has_feature_flex_bg(sb))
flexbg_flag = 1;
ext4_debug("Checking group descriptors");
for (i = 0; i < sbi->s_groups_count; i++) {
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
if (i == sbi->s_groups_count - 1 || flexbg_flag)
last_block = ext4_blocks_count(sbi->s_es) - 1;
else
last_block = first_block +
(EXT4_BLOCKS_PER_GROUP(sb) - 1);
if ((grp == sbi->s_groups_count) &&
!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
grp = i;
block_bitmap = ext4_block_bitmap(sb, gdp);
if (block_bitmap == sb_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Block bitmap for group %u overlaps "
"superblock", i);
if (!sb_rdonly(sb))
return 0;
}
if (block_bitmap >= sb_block + 1 &&
block_bitmap <= last_bg_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Block bitmap for group %u overlaps "
"block group descriptors", i);
if (!sb_rdonly(sb))
return 0;
}
if (block_bitmap < first_block || block_bitmap > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Block bitmap for group %u not in group "
"(block %llu)!", i, block_bitmap);
return 0;
}
inode_bitmap = ext4_inode_bitmap(sb, gdp);
if (inode_bitmap == sb_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode bitmap for group %u overlaps "
"superblock", i);
if (!sb_rdonly(sb))
return 0;
}
if (inode_bitmap >= sb_block + 1 &&
inode_bitmap <= last_bg_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode bitmap for group %u overlaps "
"block group descriptors", i);
if (!sb_rdonly(sb))
return 0;
}
if (inode_bitmap < first_block || inode_bitmap > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode bitmap for group %u not in group "
"(block %llu)!", i, inode_bitmap);
return 0;
}
inode_table = ext4_inode_table(sb, gdp);
if (inode_table == sb_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode table for group %u overlaps "
"superblock", i);
if (!sb_rdonly(sb))
return 0;
}
if (inode_table >= sb_block + 1 &&
inode_table <= last_bg_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode table for group %u overlaps "
"block group descriptors", i);
if (!sb_rdonly(sb))
return 0;
}
if (inode_table < first_block ||
inode_table + sbi->s_itb_per_group - 1 > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode table for group %u not in group "
"(block %llu)!", i, inode_table);
return 0;
}
ext4_lock_group(sb, i);
if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Checksum for group %u failed (%u!=%u)",
i, le16_to_cpu(ext4_group_desc_csum(sb, i,
gdp)), le16_to_cpu(gdp->bg_checksum));
if (!sb_rdonly(sb)) {
ext4_unlock_group(sb, i);
return 0;
}
}
ext4_unlock_group(sb, i);
if (!flexbg_flag)
first_block += EXT4_BLOCKS_PER_GROUP(sb);
}
if (NULL != first_not_zeroed)
*first_not_zeroed = grp;
return 1;
}
/*
* Maximal extent format file size.
* Resulting logical blkno at s_maxbytes must fit in our on-disk
* extent format containers, within a sector_t, and within i_blocks
* in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
* so that won't be a limiting factor.
*
* However there is other limiting factor. We do store extents in the form
* of starting block and length, hence the resulting length of the extent
* covering maximum file size must fit into on-disk format containers as
* well. Given that length is always by 1 unit bigger than max unit (because
* we count 0 as well) we have to lower the s_maxbytes by one fs block.
*
* Note, this does *not* consider any metadata overhead for vfs i_blocks.
*/
static loff_t ext4_max_size(int blkbits, int has_huge_files)
{
loff_t res;
loff_t upper_limit = MAX_LFS_FILESIZE;
BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
if (!has_huge_files) {
upper_limit = (1LL << 32) - 1;
/* total blocks in file system block size */
upper_limit >>= (blkbits - 9);
upper_limit <<= blkbits;
}
/*
* 32-bit extent-start container, ee_block. We lower the maxbytes
* by one fs block, so ee_len can cover the extent of maximum file
* size
*/
res = (1LL << 32) - 1;
res <<= blkbits;
/* Sanity check against vm- & vfs- imposed limits */
if (res > upper_limit)
res = upper_limit;
return res;
}
/*
* Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
* block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
* We need to be 1 filesystem block less than the 2^48 sector limit.
*/
static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
{
unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
int meta_blocks;
/*
* This is calculated to be the largest file size for a dense, block
* mapped file such that the file's total number of 512-byte sectors,
* including data and all indirect blocks, does not exceed (2^48 - 1).
*
* __u32 i_blocks_lo and _u16 i_blocks_high represent the total
* number of 512-byte sectors of the file.
*/
if (!has_huge_files) {
/*
* !has_huge_files or implies that the inode i_block field
* represents total file blocks in 2^32 512-byte sectors ==
* size of vfs inode i_blocks * 8
*/
upper_limit = (1LL << 32) - 1;
/* total blocks in file system block size */
upper_limit >>= (bits - 9);
} else {
/*
* We use 48 bit ext4_inode i_blocks
* With EXT4_HUGE_FILE_FL set the i_blocks
* represent total number of blocks in
* file system block size
*/
upper_limit = (1LL << 48) - 1;
}
/* indirect blocks */
meta_blocks = 1;
/* double indirect blocks */
meta_blocks += 1 + (1LL << (bits-2));
/* tripple indirect blocks */
meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
upper_limit -= meta_blocks;
upper_limit <<= bits;
res += 1LL << (bits-2);
res += 1LL << (2*(bits-2));
res += 1LL << (3*(bits-2));
res <<= bits;
if (res > upper_limit)
res = upper_limit;
if (res > MAX_LFS_FILESIZE)
res = MAX_LFS_FILESIZE;
return (loff_t)res;
}
static ext4_fsblk_t descriptor_loc(struct super_block *sb,
ext4_fsblk_t logical_sb_block, int nr)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_group_t bg, first_meta_bg;
int has_super = 0;
first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
return logical_sb_block + nr + 1;
bg = sbi->s_desc_per_block * nr;
if (ext4_bg_has_super(sb, bg))
has_super = 1;
/*
* If we have a meta_bg fs with 1k blocks, group 0's GDT is at
* block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
* on modern mke2fs or blksize > 1k on older mke2fs) then we must
* compensate.
*/
if (sb->s_blocksize == 1024 && nr == 0 &&
le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
has_super++;
return (has_super + ext4_group_first_block_no(sb, bg));
}
/**
* ext4_get_stripe_size: Get the stripe size.
* @sbi: In memory super block info
*
* If we have specified it via mount option, then
* use the mount option value. If the value specified at mount time is
* greater than the blocks per group use the super block value.
* If the super block value is greater than blocks per group return 0.
* Allocator needs it be less than blocks per group.
*
*/
static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
{
unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
unsigned long stripe_width =
le32_to_cpu(sbi->s_es->s_raid_stripe_width);
int ret;
if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
ret = sbi->s_stripe;
else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
ret = stripe_width;
else if (stride && stride <= sbi->s_blocks_per_group)
ret = stride;
else
ret = 0;
/*
* If the stripe width is 1, this makes no sense and
* we set it to 0 to turn off stripe handling code.
*/
if (ret <= 1)
ret = 0;
return ret;
}
/*
* Check whether this filesystem can be mounted based on
* the features present and the RDONLY/RDWR mount requested.
* Returns 1 if this filesystem can be mounted as requested,
* 0 if it cannot be.
*/
int ext4_feature_set_ok(struct super_block *sb, int readonly)
{
if (ext4_has_unknown_ext4_incompat_features(sb)) {
ext4_msg(sb, KERN_ERR,
"Couldn't mount because of "
"unsupported optional features (%x)",
(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
~EXT4_FEATURE_INCOMPAT_SUPP));
return 0;
}
#ifndef CONFIG_UNICODE
if (ext4_has_feature_casefold(sb)) {
ext4_msg(sb, KERN_ERR,
"Filesystem with casefold feature cannot be "
"mounted without CONFIG_UNICODE");
return 0;
}
#endif
if (readonly)
return 1;
if (ext4_has_feature_readonly(sb)) {
ext4_msg(sb, KERN_INFO, "filesystem is read-only");
sb->s_flags |= SB_RDONLY;
return 1;
}
/* Check that feature set is OK for a read-write mount */
if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
"unsupported optional features (%x)",
(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
~EXT4_FEATURE_RO_COMPAT_SUPP));
return 0;
}
if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
ext4_msg(sb, KERN_ERR,
"Can't support bigalloc feature without "
"extents feature\n");
return 0;
}
#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
if (!readonly && (ext4_has_feature_quota(sb) ||
ext4_has_feature_project(sb))) {
ext4_msg(sb, KERN_ERR,
"The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
return 0;
}
#endif /* CONFIG_QUOTA */
return 1;
}
/*
* This function is called once a day if we have errors logged
* on the file system
*/
static void print_daily_error_info(struct timer_list *t)
{
struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
struct super_block *sb = sbi->s_sb;
struct ext4_super_block *es = sbi->s_es;
if (es->s_error_count)
/* fsck newer than v1.41.13 is needed to clean this condition. */
ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
le32_to_cpu(es->s_error_count));
if (es->s_first_error_time) {
printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
sb->s_id,
ext4_get_tstamp(es, s_first_error_time),
(int) sizeof(es->s_first_error_func),
es->s_first_error_func,
le32_to_cpu(es->s_first_error_line));
if (es->s_first_error_ino)
printk(KERN_CONT ": inode %u",
le32_to_cpu(es->s_first_error_ino));
if (es->s_first_error_block)
printk(KERN_CONT ": block %llu", (unsigned long long)
le64_to_cpu(es->s_first_error_block));
printk(KERN_CONT "\n");
}
if (es->s_last_error_time) {
printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
sb->s_id,
ext4_get_tstamp(es, s_last_error_time),
(int) sizeof(es->s_last_error_func),
es->s_last_error_func,
le32_to_cpu(es->s_last_error_line));
if (es->s_last_error_ino)
printk(KERN_CONT ": inode %u",
le32_to_cpu(es->s_last_error_ino));
if (es->s_last_error_block)
printk(KERN_CONT ": block %llu", (unsigned long long)
le64_to_cpu(es->s_last_error_block));
printk(KERN_CONT "\n");
}
mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
}
/* Find next suitable group and run ext4_init_inode_table */
static int ext4_run_li_request(struct ext4_li_request *elr)
{
struct ext4_group_desc *gdp = NULL;
struct super_block *sb = elr->lr_super;
ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
ext4_group_t group = elr->lr_next_group;
unsigned int prefetch_ios = 0;
int ret = 0;
u64 start_time;
if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
elr->lr_next_group = ext4_mb_prefetch(sb, group,
EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
if (prefetch_ios)
ext4_mb_prefetch_fini(sb, elr->lr_next_group,
prefetch_ios);
trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
prefetch_ios);
if (group >= elr->lr_next_group) {
ret = 1;
if (elr->lr_first_not_zeroed != ngroups &&
!sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
elr->lr_next_group = elr->lr_first_not_zeroed;
elr->lr_mode = EXT4_LI_MODE_ITABLE;
ret = 0;
}
}
return ret;
}
for (; group < ngroups; group++) {
gdp = ext4_get_group_desc(sb, group, NULL);
if (!gdp) {
ret = 1;
break;
}
if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
break;
}
if (group >= ngroups)
ret = 1;
if (!ret) {
start_time = ktime_get_real_ns();
ret = ext4_init_inode_table(sb, group,
elr->lr_timeout ? 0 : 1);
trace_ext4_lazy_itable_init(sb, group);
if (elr->lr_timeout == 0) {
elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
EXT4_SB(elr->lr_super)->s_li_wait_mult);
}
elr->lr_next_sched = jiffies + elr->lr_timeout;
elr->lr_next_group = group + 1;
}
return ret;
}
/*
* Remove lr_request from the list_request and free the
* request structure. Should be called with li_list_mtx held
*/
static void ext4_remove_li_request(struct ext4_li_request *elr)
{
if (!elr)
return;
list_del(&elr->lr_request);
EXT4_SB(elr->lr_super)->s_li_request = NULL;
kfree(elr);
}
static void ext4_unregister_li_request(struct super_block *sb)
{
mutex_lock(&ext4_li_mtx);
if (!ext4_li_info) {
mutex_unlock(&ext4_li_mtx);
return;
}
mutex_lock(&ext4_li_info->li_list_mtx);
ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
mutex_unlock(&ext4_li_info->li_list_mtx);
mutex_unlock(&ext4_li_mtx);
}
static struct task_struct *ext4_lazyinit_task;
/*
* This is the function where ext4lazyinit thread lives. It walks
* through the request list searching for next scheduled filesystem.
* When such a fs is found, run the lazy initialization request
* (ext4_rn_li_request) and keep track of the time spend in this
* function. Based on that time we compute next schedule time of
* the request. When walking through the list is complete, compute
* next waking time and put itself into sleep.
*/
static int ext4_lazyinit_thread(void *arg)
{
struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
struct list_head *pos, *n;
struct ext4_li_request *elr;
unsigned long next_wakeup, cur;
BUG_ON(NULL == eli);
cont_thread:
while (true) {
next_wakeup = MAX_JIFFY_OFFSET;
mutex_lock(&eli->li_list_mtx);
if (list_empty(&eli->li_request_list)) {
mutex_unlock(&eli->li_list_mtx);
goto exit_thread;
}
list_for_each_safe(pos, n, &eli->li_request_list) {
int err = 0;
int progress = 0;
elr = list_entry(pos, struct ext4_li_request,
lr_request);
if (time_before(jiffies, elr->lr_next_sched)) {
if (time_before(elr->lr_next_sched, next_wakeup))
next_wakeup = elr->lr_next_sched;
continue;
}
if (down_read_trylock(&elr->lr_super->s_umount)) {
if (sb_start_write_trylock(elr->lr_super)) {
progress = 1;
/*
* We hold sb->s_umount, sb can not
* be removed from the list, it is
* now safe to drop li_list_mtx
*/
mutex_unlock(&eli->li_list_mtx);
err = ext4_run_li_request(elr);
sb_end_write(elr->lr_super);
mutex_lock(&eli->li_list_mtx);
n = pos->next;
}
up_read((&elr->lr_super->s_umount));
}
/* error, remove the lazy_init job */
if (err) {
ext4_remove_li_request(elr);
continue;
}
if (!progress) {
elr->lr_next_sched = jiffies +
(prandom_u32()
% (EXT4_DEF_LI_MAX_START_DELAY * HZ));
}
if (time_before(elr->lr_next_sched, next_wakeup))
next_wakeup = elr->lr_next_sched;
}
mutex_unlock(&eli->li_list_mtx);
try_to_freeze();
cur = jiffies;
if ((time_after_eq(cur, next_wakeup)) ||
(MAX_JIFFY_OFFSET == next_wakeup)) {
cond_resched();
continue;
}
schedule_timeout_interruptible(next_wakeup - cur);
if (kthread_should_stop()) {
ext4_clear_request_list();
goto exit_thread;
}
}
exit_thread:
/*
* It looks like the request list is empty, but we need
* to check it under the li_list_mtx lock, to prevent any
* additions into it, and of course we should lock ext4_li_mtx
* to atomically free the list and ext4_li_info, because at
* this point another ext4 filesystem could be registering
* new one.
*/
mutex_lock(&ext4_li_mtx);
mutex_lock(&eli->li_list_mtx);
if (!list_empty(&eli->li_request_list)) {
mutex_unlock(&eli->li_list_mtx);
mutex_unlock(&ext4_li_mtx);
goto cont_thread;
}
mutex_unlock(&eli->li_list_mtx);
kfree(ext4_li_info);
ext4_li_info = NULL;
mutex_unlock(&ext4_li_mtx);
return 0;
}
static void ext4_clear_request_list(void)
{
struct list_head *pos, *n;
struct ext4_li_request *elr;
mutex_lock(&ext4_li_info->li_list_mtx);
list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
elr = list_entry(pos, struct ext4_li_request,
lr_request);
ext4_remove_li_request(elr);
}
mutex_unlock(&ext4_li_info->li_list_mtx);
}
static int ext4_run_lazyinit_thread(void)
{
ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
ext4_li_info, "ext4lazyinit");
if (IS_ERR(ext4_lazyinit_task)) {
int err = PTR_ERR(ext4_lazyinit_task);
ext4_clear_request_list();
kfree(ext4_li_info);
ext4_li_info = NULL;
printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
"initialization thread\n",
err);
return err;
}
ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
return 0;
}
/*
* Check whether it make sense to run itable init. thread or not.
* If there is at least one uninitialized inode table, return
* corresponding group number, else the loop goes through all
* groups and return total number of groups.
*/
static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
{
ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
struct ext4_group_desc *gdp = NULL;
if (!ext4_has_group_desc_csum(sb))
return ngroups;
for (group = 0; group < ngroups; group++) {
gdp = ext4_get_group_desc(sb, group, NULL);
if (!gdp)
continue;
if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
break;
}
return group;
}
static int ext4_li_info_new(void)
{
struct ext4_lazy_init *eli = NULL;
eli = kzalloc(sizeof(*eli), GFP_KERNEL);
if (!eli)
return -ENOMEM;
INIT_LIST_HEAD(&eli->li_request_list);
mutex_init(&eli->li_list_mtx);
eli->li_state |= EXT4_LAZYINIT_QUIT;
ext4_li_info = eli;
return 0;
}
static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
ext4_group_t start)
{
struct ext4_li_request *elr;
elr = kzalloc(sizeof(*elr), GFP_KERNEL);
if (!elr)
return NULL;
elr->lr_super = sb;
elr->lr_first_not_zeroed = start;
if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
elr->lr_mode = EXT4_LI_MODE_ITABLE;
elr->lr_next_group = start;
} else {
elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
}
/*
* Randomize first schedule time of the request to
* spread the inode table initialization requests
* better.
*/
elr->lr_next_sched = jiffies + (prandom_u32() %
(EXT4_DEF_LI_MAX_START_DELAY * HZ));
return elr;
}
int ext4_register_li_request(struct super_block *sb,
ext4_group_t first_not_zeroed)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_li_request *elr = NULL;
ext4_group_t ngroups = sbi->s_groups_count;
int ret = 0;
mutex_lock(&ext4_li_mtx);
if (sbi->s_li_request != NULL) {
/*
* Reset timeout so it can be computed again, because
* s_li_wait_mult might have changed.
*/
sbi->s_li_request->lr_timeout = 0;
goto out;
}
if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
(first_not_zeroed == ngroups || sb_rdonly(sb) ||
!test_opt(sb, INIT_INODE_TABLE)))
goto out;
elr = ext4_li_request_new(sb, first_not_zeroed);
if (!elr) {
ret = -ENOMEM;
goto out;
}
if (NULL == ext4_li_info) {
ret = ext4_li_info_new();
if (ret)
goto out;
}
mutex_lock(&ext4_li_info->li_list_mtx);
list_add(&elr->lr_request, &ext4_li_info->li_request_list);
mutex_unlock(&ext4_li_info->li_list_mtx);
sbi->s_li_request = elr;
/*
* set elr to NULL here since it has been inserted to
* the request_list and the removal and free of it is
* handled by ext4_clear_request_list from now on.
*/
elr = NULL;
if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
ret = ext4_run_lazyinit_thread();
if (ret)
goto out;
}
out:
mutex_unlock(&ext4_li_mtx);
if (ret)
kfree(elr);
return ret;
}
/*
* We do not need to lock anything since this is called on
* module unload.
*/
static void ext4_destroy_lazyinit_thread(void)
{
/*
* If thread exited earlier
* there's nothing to be done.
*/
if (!ext4_li_info || !ext4_lazyinit_task)
return;
kthread_stop(ext4_lazyinit_task);
}
static int set_journal_csum_feature_set(struct super_block *sb)
{
int ret = 1;
int compat, incompat;
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (ext4_has_metadata_csum(sb)) {
/* journal checksum v3 */
compat = 0;
incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
} else {
/* journal checksum v1 */
compat = JBD2_FEATURE_COMPAT_CHECKSUM;
incompat = 0;
}
jbd2_journal_clear_features(sbi->s_journal,
JBD2_FEATURE_COMPAT_CHECKSUM, 0,
JBD2_FEATURE_INCOMPAT_CSUM_V3 |
JBD2_FEATURE_INCOMPAT_CSUM_V2);
if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
ret = jbd2_journal_set_features(sbi->s_journal,
compat, 0,
JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
incompat);
} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
ret = jbd2_journal_set_features(sbi->s_journal,
compat, 0,
incompat);
jbd2_journal_clear_features(sbi->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
} else {
jbd2_journal_clear_features(sbi->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
}
return ret;
}
/*
* Note: calculating the overhead so we can be compatible with
* historical BSD practice is quite difficult in the face of
* clusters/bigalloc. This is because multiple metadata blocks from
* different block group can end up in the same allocation cluster.
* Calculating the exact overhead in the face of clustered allocation
* requires either O(all block bitmaps) in memory or O(number of block
* groups**2) in time. We will still calculate the superblock for
* older file systems --- and if we come across with a bigalloc file
* system with zero in s_overhead_clusters the estimate will be close to
* correct especially for very large cluster sizes --- but for newer
* file systems, it's better to calculate this figure once at mkfs
* time, and store it in the superblock. If the superblock value is
* present (even for non-bigalloc file systems), we will use it.
*/
static int count_overhead(struct super_block *sb, ext4_group_t grp,
char *buf)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *gdp;
ext4_fsblk_t first_block, last_block, b;
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
int s, j, count = 0;
if (!ext4_has_feature_bigalloc(sb))
return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
sbi->s_itb_per_group + 2);
first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
(grp * EXT4_BLOCKS_PER_GROUP(sb));
last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
for (i = 0; i < ngroups; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
b = ext4_block_bitmap(sb, gdp);
if (b >= first_block && b <= last_block) {
ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
count++;
}
b = ext4_inode_bitmap(sb, gdp);
if (b >= first_block && b <= last_block) {
ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
count++;
}
b = ext4_inode_table(sb, gdp);
if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
int c = EXT4_B2C(sbi, b - first_block);
ext4_set_bit(c, buf);
count++;
}
if (i != grp)
continue;
s = 0;
if (ext4_bg_has_super(sb, grp)) {
ext4_set_bit(s++, buf);
count++;
}
j = ext4_bg_num_gdb(sb, grp);
if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
ext4_error(sb, "Invalid number of block group "
"descriptor blocks: %d", j);
j = EXT4_BLOCKS_PER_GROUP(sb) - s;
}
count += j;
for (; j > 0; j--)
ext4_set_bit(EXT4_B2C(sbi, s++), buf);
}
if (!count)
return 0;
return EXT4_CLUSTERS_PER_GROUP(sb) -
ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
}
/*
* Compute the overhead and stash it in sbi->s_overhead
*/
int ext4_calculate_overhead(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
struct inode *j_inode;
unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
ext4_fsblk_t overhead = 0;
char *buf = (char *) get_zeroed_page(GFP_NOFS);
if (!buf)
return -ENOMEM;
/*
* Compute the overhead (FS structures). This is constant
* for a given filesystem unless the number of block groups
* changes so we cache the previous value until it does.
*/
/*
* All of the blocks before first_data_block are overhead
*/
overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
/*
* Add the overhead found in each block group
*/
for (i = 0; i < ngroups; i++) {
int blks;
blks = count_overhead(sb, i, buf);
overhead += blks;
if (blks)
memset(buf, 0, PAGE_SIZE);
cond_resched();
}
/*
* Add the internal journal blocks whether the journal has been
* loaded or not
*/
if (sbi->s_journal && !sbi->s_journal_bdev)
overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
/* j_inum for internal journal is non-zero */
j_inode = ext4_get_journal_inode(sb, j_inum);
if (j_inode) {
j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
overhead += EXT4_NUM_B2C(sbi, j_blocks);
iput(j_inode);
} else {
ext4_msg(sb, KERN_ERR, "can't get journal size");
}
}
sbi->s_overhead = overhead;
smp_wmb();
free_page((unsigned long) buf);
return 0;
}
static void ext4_set_resv_clusters(struct super_block *sb)
{
ext4_fsblk_t resv_clusters;
struct ext4_sb_info *sbi = EXT4_SB(sb);
/*
* There's no need to reserve anything when we aren't using extents.
* The space estimates are exact, there are no unwritten extents,
* hole punching doesn't need new metadata... This is needed especially
* to keep ext2/3 backward compatibility.
*/
if (!ext4_has_feature_extents(sb))
return;
/*
* By default we reserve 2% or 4096 clusters, whichever is smaller.
* This should cover the situations where we can not afford to run
* out of space like for example punch hole, or converting
* unwritten extents in delalloc path. In most cases such
* allocation would require 1, or 2 blocks, higher numbers are
* very rare.
*/
resv_clusters = (ext4_blocks_count(sbi->s_es) >>
sbi->s_cluster_bits);
do_div(resv_clusters, 50);
resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
atomic64_set(&sbi->s_resv_clusters, resv_clusters);
}
static const char *ext4_quota_mode(struct super_block *sb)
{
#ifdef CONFIG_QUOTA
if (!ext4_quota_capable(sb))
return "none";
if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
return "journalled";
else
return "writeback";
#else
return "disabled";
#endif
}
static void ext4_setup_csum_trigger(struct super_block *sb,
enum ext4_journal_trigger_type type,
void (*trigger)(
struct jbd2_buffer_trigger_type *type,
struct buffer_head *bh,
void *mapped_data,
size_t size))
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
sbi->s_journal_triggers[type].sb = sb;
sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
}
static void ext4_free_sbi(struct ext4_sb_info *sbi)
{
if (!sbi)
return;
kfree(sbi->s_blockgroup_lock);
fs_put_dax(sbi->s_daxdev);
kfree(sbi);
}
static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
{
struct ext4_sb_info *sbi;
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)
return NULL;
sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev);
sbi->s_blockgroup_lock =
kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
if (!sbi->s_blockgroup_lock)
goto err_out;
sb->s_fs_info = sbi;
sbi->s_sb = sb;
return sbi;
err_out:
fs_put_dax(sbi->s_daxdev);
kfree(sbi);
return NULL;
}
static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
{
struct buffer_head *bh, **group_desc;
struct ext4_super_block *es = NULL;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct flex_groups **flex_groups;
ext4_fsblk_t block;
ext4_fsblk_t logical_sb_block;
unsigned long offset = 0;
unsigned long def_mount_opts;
struct inode *root;
int ret = -ENOMEM;
int blocksize, clustersize;
unsigned int db_count;
unsigned int i;
int needs_recovery, has_huge_files;
__u64 blocks_count;
int err = 0;
ext4_group_t first_not_zeroed;
struct ext4_fs_context *ctx = fc->fs_private;
int silent = fc->sb_flags & SB_SILENT;
/* Set defaults for the variables that will be set during parsing */
ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
ctx->mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
sbi->s_sectors_written_start =
part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
/* -EINVAL is default */
ret = -EINVAL;
blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
if (!blocksize) {
ext4_msg(sb, KERN_ERR, "unable to set blocksize");
goto out_fail;
}
/*
* The ext4 superblock will not be buffer aligned for other than 1kB
* block sizes. We need to calculate the offset from buffer start.
*/
if (blocksize != EXT4_MIN_BLOCK_SIZE) {
logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
offset = do_div(logical_sb_block, blocksize);
} else {
logical_sb_block = sbi->s_sb_block;
}
bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
if (IS_ERR(bh)) {
ext4_msg(sb, KERN_ERR, "unable to read superblock");
ret = PTR_ERR(bh);
goto out_fail;
}
/*
* Note: s_es must be initialized as soon as possible because
* some ext4 macro-instructions depend on its value
*/
es = (struct ext4_super_block *) (bh->b_data + offset);
sbi->s_es = es;
sb->s_magic = le16_to_cpu(es->s_magic);
if (sb->s_magic != EXT4_SUPER_MAGIC)
goto cantfind_ext4;
sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
/* Warn if metadata_csum and gdt_csum are both set. */
if (ext4_has_feature_metadata_csum(sb) &&
ext4_has_feature_gdt_csum(sb))
ext4_warning(sb, "metadata_csum and uninit_bg are "
"redundant flags; please run fsck.");
/* Check for a known checksum algorithm */
if (!ext4_verify_csum_type(sb, es)) {
ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
"unknown checksum algorithm.");
silent = 1;
goto cantfind_ext4;
}
ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
ext4_orphan_file_block_trigger);
/* Load the checksum driver */
sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
if (IS_ERR(sbi->s_chksum_driver)) {
ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
ret = PTR_ERR(sbi->s_chksum_driver);
sbi->s_chksum_driver = NULL;
goto failed_mount;
}
/* Check superblock checksum */
if (!ext4_superblock_csum_verify(sb, es)) {
ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
"invalid superblock checksum. Run e2fsck?");
silent = 1;
ret = -EFSBADCRC;
goto cantfind_ext4;
}
/* Precompute checksum seed for all metadata */
if (ext4_has_feature_csum_seed(sb))
sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
sizeof(es->s_uuid));
/* Set defaults before we parse the mount options */
def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
set_opt(sb, INIT_INODE_TABLE);
if (def_mount_opts & EXT4_DEFM_DEBUG)
set_opt(sb, DEBUG);
if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
set_opt(sb, GRPID);
if (def_mount_opts & EXT4_DEFM_UID16)
set_opt(sb, NO_UID32);
/* xattr user namespace & acls are now defaulted on */
set_opt(sb, XATTR_USER);
#ifdef CONFIG_EXT4_FS_POSIX_ACL
set_opt(sb, POSIX_ACL);
#endif
if (ext4_has_feature_fast_commit(sb))
set_opt2(sb, JOURNAL_FAST_COMMIT);
/* don't forget to enable journal_csum when metadata_csum is enabled. */
if (ext4_has_metadata_csum(sb))
set_opt(sb, JOURNAL_CHECKSUM);
if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
set_opt(sb, JOURNAL_DATA);
else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
set_opt(sb, ORDERED_DATA);
else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
set_opt(sb, WRITEBACK_DATA);
if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
set_opt(sb, ERRORS_PANIC);
else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
set_opt(sb, ERRORS_CONT);
else
set_opt(sb, ERRORS_RO);
/* block_validity enabled by default; disable with noblock_validity */
set_opt(sb, BLOCK_VALIDITY);
if (def_mount_opts & EXT4_DEFM_DISCARD)
set_opt(sb, DISCARD);
sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
set_opt(sb, BARRIER);
/*
* enable delayed allocation by default
* Use -o nodelalloc to turn it off
*/
if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
set_opt(sb, DELALLOC);
/*
* set default s_li_wait_mult for lazyinit, for the case there is
* no mount option specified.
*/
sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
if (le32_to_cpu(es->s_log_block_size) >
(EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
ext4_msg(sb, KERN_ERR,
"Invalid log block size: %u",
le32_to_cpu(es->s_log_block_size));
goto failed_mount;
}
if (le32_to_cpu(es->s_log_cluster_size) >
(EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
ext4_msg(sb, KERN_ERR,
"Invalid log cluster size: %u",
le32_to_cpu(es->s_log_cluster_size));
goto failed_mount;
}
blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
if (blocksize == PAGE_SIZE)
set_opt(sb, DIOREAD_NOLOCK);
if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
} else {
sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
sbi->s_first_ino);
goto failed_mount;
}
if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
(!is_power_of_2(sbi->s_inode_size)) ||
(sbi->s_inode_size > blocksize)) {
ext4_msg(sb, KERN_ERR,
"unsupported inode size: %d",
sbi->s_inode_size);
ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
goto failed_mount;
}
/*
* i_atime_extra is the last extra field available for
* [acm]times in struct ext4_inode. Checking for that
* field should suffice to ensure we have extra space
* for all three.
*/
if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
sb->s_time_gran = 1;
sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
} else {
sb->s_time_gran = NSEC_PER_SEC;
sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
}
sb->s_time_min = EXT4_TIMESTAMP_MIN;
}
if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
EXT4_GOOD_OLD_INODE_SIZE;
if (ext4_has_feature_extra_isize(sb)) {
unsigned v, max = (sbi->s_inode_size -
EXT4_GOOD_OLD_INODE_SIZE);
v = le16_to_cpu(es->s_want_extra_isize);
if (v > max) {
ext4_msg(sb, KERN_ERR,
"bad s_want_extra_isize: %d", v);
goto failed_mount;
}
if (sbi->s_want_extra_isize < v)
sbi->s_want_extra_isize = v;
v = le16_to_cpu(es->s_min_extra_isize);
if (v > max) {
ext4_msg(sb, KERN_ERR,
"bad s_min_extra_isize: %d", v);
goto failed_mount;
}
if (sbi->s_want_extra_isize < v)
sbi->s_want_extra_isize = v;
}
}
err = parse_apply_sb_mount_options(sb, ctx);
if (err < 0)
goto failed_mount;
sbi->s_def_mount_opt = sbi->s_mount_opt;
err = ext4_check_opt_consistency(fc, sb);
if (err < 0)
goto failed_mount;
err = ext4_apply_options(fc, sb);
if (err < 0)
goto failed_mount;
#ifdef CONFIG_UNICODE
if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
const struct ext4_sb_encodings *encoding_info;
struct unicode_map *encoding;
__u16 encoding_flags;
if (ext4_sb_read_encoding(es, &encoding_info,
&encoding_flags)) {
ext4_msg(sb, KERN_ERR,
"Encoding requested by superblock is unknown");
goto failed_mount;
}
encoding = utf8_load(encoding_info->version);
if (IS_ERR(encoding)) {
ext4_msg(sb, KERN_ERR,
"can't mount with superblock charset: %s-%s "
"not supported by the kernel. flags: 0x%x.",
encoding_info->name, encoding_info->version,
encoding_flags);
goto failed_mount;
}
ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
"%s-%s with flags 0x%hx", encoding_info->name,
encoding_info->version?:"\b", encoding_flags);
sb->s_encoding = encoding;
sb->s_encoding_flags = encoding_flags;
}
#endif
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
/* can't mount with both data=journal and dioread_nolock. */
clear_opt(sb, DIOREAD_NOLOCK);
clear_opt2(sb, JOURNAL_FAST_COMMIT);
if (test_opt2(sb, EXPLICIT_DELALLOC)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and delalloc");
goto failed_mount;
}
if (test_opt(sb, DAX_ALWAYS)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and dax");
goto failed_mount;
}
if (ext4_has_feature_encrypt(sb)) {
ext4_msg(sb, KERN_WARNING,
"encrypted files will use data=ordered "
"instead of data journaling mode");
}
if (test_opt(sb, DELALLOC))
clear_opt(sb, DELALLOC);
} else {
sb->s_iflags |= SB_I_CGROUPWB;
}
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
(ext4_has_compat_features(sb) ||
ext4_has_ro_compat_features(sb) ||
ext4_has_incompat_features(sb)))
ext4_msg(sb, KERN_WARNING,
"feature flags set on rev 0 fs, "
"running e2fsck is recommended");
if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
set_opt2(sb, HURD_COMPAT);
if (ext4_has_feature_64bit(sb)) {
ext4_msg(sb, KERN_ERR,
"The Hurd can't support 64-bit file systems");
goto failed_mount;
}
/*
* ea_inode feature uses l_i_version field which is not
* available in HURD_COMPAT mode.
*/
if (ext4_has_feature_ea_inode(sb)) {
ext4_msg(sb, KERN_ERR,
"ea_inode feature is not supported for Hurd");
goto failed_mount;
}
}
if (IS_EXT2_SB(sb)) {
if (ext2_feature_set_ok(sb))
ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
"using the ext4 subsystem");
else {
/*
* If we're probing be silent, if this looks like
* it's actually an ext[34] filesystem.
*/
if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
goto failed_mount;
ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
"to feature incompatibilities");
goto failed_mount;
}
}
if (IS_EXT3_SB(sb)) {
if (ext3_feature_set_ok(sb))
ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
"using the ext4 subsystem");
else {
/*
* If we're probing be silent, if this looks like
* it's actually an ext4 filesystem.
*/
if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
goto failed_mount;
ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
"to feature incompatibilities");
goto failed_mount;
}
}
/*
* Check feature flags regardless of the revision level, since we
* previously didn't change the revision level when setting the flags,
* so there is a chance incompat flags are set on a rev 0 filesystem.
*/
if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
goto failed_mount;
if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
ext4_msg(sb, KERN_ERR,
"Number of reserved GDT blocks insanely large: %d",
le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
goto failed_mount;
}
if (dax_supported(sbi->s_daxdev, sb->s_bdev, blocksize, 0,
bdev_nr_sectors(sb->s_bdev)))
set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
if (ext4_has_feature_inline_data(sb)) {
ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
" that may contain inline data");
goto failed_mount;
}
if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
ext4_msg(sb, KERN_ERR,
"DAX unsupported by block device.");
goto failed_mount;
}
}
if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
es->s_encryption_level);
goto failed_mount;
}
if (sb->s_blocksize != blocksize) {
/*
* bh must be released before kill_bdev(), otherwise
* it won't be freed and its page also. kill_bdev()
* is called by sb_set_blocksize().
*/
brelse(bh);
/* Validate the filesystem blocksize */
if (!sb_set_blocksize(sb, blocksize)) {
ext4_msg(sb, KERN_ERR, "bad block size %d",
blocksize);
bh = NULL;
goto failed_mount;
}
logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
offset = do_div(logical_sb_block, blocksize);
bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
if (IS_ERR(bh)) {
ext4_msg(sb, KERN_ERR,
"Can't read superblock on 2nd try");
ret = PTR_ERR(bh);
bh = NULL;
goto failed_mount;
}
es = (struct ext4_super_block *)(bh->b_data + offset);
sbi->s_es = es;
if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
ext4_msg(sb, KERN_ERR,
"Magic mismatch, very weird!");
goto failed_mount;
}
}
has_huge_files = ext4_has_feature_huge_file(sb);
sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
has_huge_files);
sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
if (ext4_has_feature_64bit(sb)) {
if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
!is_power_of_2(sbi->s_desc_size)) {
ext4_msg(sb, KERN_ERR,
"unsupported descriptor size %lu",
sbi->s_desc_size);
goto failed_mount;
}
} else
sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
if (sbi->s_inodes_per_block == 0)
goto cantfind_ext4;
if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
sbi->s_inodes_per_group > blocksize * 8) {
ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
sbi->s_inodes_per_group);
goto failed_mount;
}
sbi->s_itb_per_group = sbi->s_inodes_per_group /
sbi->s_inodes_per_block;
sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
sbi->s_sbh = bh;
sbi->s_mount_state = le16_to_cpu(es->s_state);
sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
for (i = 0; i < 4; i++)
sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
sbi->s_def_hash_version = es->s_def_hash_version;
if (ext4_has_feature_dir_index(sb)) {
i = le32_to_cpu(es->s_flags);
if (i & EXT2_FLAGS_UNSIGNED_HASH)
sbi->s_hash_unsigned = 3;
else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
#ifdef __CHAR_UNSIGNED__
if (!sb_rdonly(sb))
es->s_flags |=
cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
sbi->s_hash_unsigned = 3;
#else
if (!sb_rdonly(sb))
es->s_flags |=
cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
#endif
}
}
/* Handle clustersize */
clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
if (ext4_has_feature_bigalloc(sb)) {
if (clustersize < blocksize) {
ext4_msg(sb, KERN_ERR,
"cluster size (%d) smaller than "
"block size (%d)", clustersize, blocksize);
goto failed_mount;
}
sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
le32_to_cpu(es->s_log_block_size);
sbi->s_clusters_per_group =
le32_to_cpu(es->s_clusters_per_group);
if (sbi->s_clusters_per_group > blocksize * 8) {
ext4_msg(sb, KERN_ERR,
"#clusters per group too big: %lu",
sbi->s_clusters_per_group);
goto failed_mount;
}
if (sbi->s_blocks_per_group !=
(sbi->s_clusters_per_group * (clustersize / blocksize))) {
ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
"clusters per group (%lu) inconsistent",
sbi->s_blocks_per_group,
sbi->s_clusters_per_group);
goto failed_mount;
}
} else {
if (clustersize != blocksize) {
ext4_msg(sb, KERN_ERR,
"fragment/cluster size (%d) != "
"block size (%d)", clustersize, blocksize);
goto failed_mount;
}
if (sbi->s_blocks_per_group > blocksize * 8) {
ext4_msg(sb, KERN_ERR,
"#blocks per group too big: %lu",
sbi->s_blocks_per_group);
goto failed_mount;
}
sbi->s_clusters_per_group = sbi->s_blocks_per_group;
sbi->s_cluster_bits = 0;
}
sbi->s_cluster_ratio = clustersize / blocksize;
/* Do we have standard group size of clustersize * 8 blocks ? */
if (sbi->s_blocks_per_group == clustersize << 3)
set_opt2(sb, STD_GROUP_SIZE);
/*
* Test whether we have more sectors than will fit in sector_t,
* and whether the max offset is addressable by the page cache.
*/
err = generic_check_addressable(sb->s_blocksize_bits,
ext4_blocks_count(es));
if (err) {
ext4_msg(sb, KERN_ERR, "filesystem"
" too large to mount safely on this system");
goto failed_mount;
}
if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
goto cantfind_ext4;
/* check blocks count against device size */
blocks_count = sb_bdev_nr_blocks(sb);
if (blocks_count && ext4_blocks_count(es) > blocks_count) {
ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
"exceeds size of device (%llu blocks)",
ext4_blocks_count(es), blocks_count);
goto failed_mount;
}
/*
* It makes no sense for the first data block to be beyond the end
* of the filesystem.
*/
if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
"block %u is beyond end of filesystem (%llu)",
le32_to_cpu(es->s_first_data_block),
ext4_blocks_count(es));
goto failed_mount;
}
if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
(sbi->s_cluster_ratio == 1)) {
ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
"block is 0 with a 1k block and cluster size");
goto failed_mount;
}
blocks_count = (ext4_blocks_count(es) -
le32_to_cpu(es->s_first_data_block) +
EXT4_BLOCKS_PER_GROUP(sb) - 1);
do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
"(block count %llu, first data block %u, "
"blocks per group %lu)", blocks_count,
ext4_blocks_count(es),
le32_to_cpu(es->s_first_data_block),
EXT4_BLOCKS_PER_GROUP(sb));
goto failed_mount;
}
sbi->s_groups_count = blocks_count;
sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
le32_to_cpu(es->s_inodes_count)) {
ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
le32_to_cpu(es->s_inodes_count),
((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
ret = -EINVAL;
goto failed_mount;
}
db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
EXT4_DESC_PER_BLOCK(sb);
if (ext4_has_feature_meta_bg(sb)) {
if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
ext4_msg(sb, KERN_WARNING,
"first meta block group too large: %u "
"(group descriptor block count %u)",
le32_to_cpu(es->s_first_meta_bg), db_count);
goto failed_mount;
}
}
rcu_assign_pointer(sbi->s_group_desc,
kvmalloc_array(db_count,
sizeof(struct buffer_head *),
GFP_KERNEL));
if (sbi->s_group_desc == NULL) {
ext4_msg(sb, KERN_ERR, "not enough memory");
ret = -ENOMEM;
goto failed_mount;
}
bgl_lock_init(sbi->s_blockgroup_lock);
/* Pre-read the descriptors into the buffer cache */
for (i = 0; i < db_count; i++) {
block = descriptor_loc(sb, logical_sb_block, i);
ext4_sb_breadahead_unmovable(sb, block);
}
for (i = 0; i < db_count; i++) {
struct buffer_head *bh;
block = descriptor_loc(sb, logical_sb_block, i);
bh = ext4_sb_bread_unmovable(sb, block);
if (IS_ERR(bh)) {
ext4_msg(sb, KERN_ERR,
"can't read group descriptor %d", i);
db_count = i;
ret = PTR_ERR(bh);
goto failed_mount2;
}
rcu_read_lock();
rcu_dereference(sbi->s_group_desc)[i] = bh;
rcu_read_unlock();
}
sbi->s_gdb_count = db_count;
if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
ret = -EFSCORRUPTED;
goto failed_mount2;
}
timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
spin_lock_init(&sbi->s_error_lock);
INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
/* Register extent status tree shrinker */
if (ext4_es_register_shrinker(sbi))
goto failed_mount3;
sbi->s_stripe = ext4_get_stripe_size(sbi);
sbi->s_extent_max_zeroout_kb = 32;
/*
* set up enough so that it can read an inode
*/
sb->s_op = &ext4_sops;
sb->s_export_op = &ext4_export_ops;
sb->s_xattr = ext4_xattr_handlers;
#ifdef CONFIG_FS_ENCRYPTION
sb->s_cop = &ext4_cryptops;
#endif
#ifdef CONFIG_FS_VERITY
sb->s_vop = &ext4_verityops;
#endif
#ifdef CONFIG_QUOTA
sb->dq_op = &ext4_quota_operations;
if (ext4_has_feature_quota(sb))
sb->s_qcop = &dquot_quotactl_sysfile_ops;
else
sb->s_qcop = &ext4_qctl_operations;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
#endif
memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
mutex_init(&sbi->s_orphan_lock);
/* Initialize fast commit stuff */
atomic_set(&sbi->s_fc_subtid, 0);
INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
sbi->s_fc_bytes = 0;
ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
spin_lock_init(&sbi->s_fc_lock);
memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
sbi->s_fc_replay_state.fc_regions = NULL;
sbi->s_fc_replay_state.fc_regions_size = 0;
sbi->s_fc_replay_state.fc_regions_used = 0;
sbi->s_fc_replay_state.fc_regions_valid = 0;
sbi->s_fc_replay_state.fc_modified_inodes = NULL;
sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
sb->s_root = NULL;
needs_recovery = (es->s_last_orphan != 0 ||
ext4_has_feature_orphan_present(sb) ||
ext4_has_feature_journal_needs_recovery(sb));
if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
goto failed_mount3a;
/*
* The first inode we look at is the journal inode. Don't try
* root first: it may be modified in the journal!
*/
if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
err = ext4_load_journal(sb, es, ctx->journal_devnum);
if (err)
goto failed_mount3a;
} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
ext4_has_feature_journal_needs_recovery(sb)) {
ext4_msg(sb, KERN_ERR, "required journal recovery "
"suppressed and not mounted read-only");
goto failed_mount_wq;
} else {
/* Nojournal mode, all journal mount options are illegal */
if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"journal_checksum, fs mounted w/o journal");
goto failed_mount_wq;
}
if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"journal_async_commit, fs mounted w/o journal");
goto failed_mount_wq;
}
if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"commit=%lu, fs mounted w/o journal",
sbi->s_commit_interval / HZ);
goto failed_mount_wq;
}
if (EXT4_MOUNT_DATA_FLAGS &
(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"data=, fs mounted w/o journal");
goto failed_mount_wq;
}
sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
clear_opt(sb, JOURNAL_CHECKSUM);
clear_opt(sb, DATA_FLAGS);
clear_opt2(sb, JOURNAL_FAST_COMMIT);
sbi->s_journal = NULL;
needs_recovery = 0;
goto no_journal;
}
if (ext4_has_feature_64bit(sb) &&
!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_64BIT)) {
ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
goto failed_mount_wq;
}
if (!set_journal_csum_feature_set(sb)) {
ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
"feature set");
goto failed_mount_wq;
}
if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
ext4_msg(sb, KERN_ERR,
"Failed to set fast commit journal feature");
goto failed_mount_wq;
}
/* We have now updated the journal if required, so we can
* validate the data journaling mode. */
switch (test_opt(sb, DATA_FLAGS)) {
case 0:
/* No mode set, assume a default based on the journal
* capabilities: ORDERED_DATA if the journal can
* cope, else JOURNAL_DATA
*/
if (jbd2_journal_check_available_features
(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
set_opt(sb, ORDERED_DATA);
sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
} else {
set_opt(sb, JOURNAL_DATA);
sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
}
break;
case EXT4_MOUNT_ORDERED_DATA:
case EXT4_MOUNT_WRITEBACK_DATA:
if (!jbd2_journal_check_available_features
(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
ext4_msg(sb, KERN_ERR, "Journal does not support "
"requested data journaling mode");
goto failed_mount_wq;
}
break;
default:
break;
}
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"journal_async_commit in data=ordered mode");
goto failed_mount_wq;
}
set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
sbi->s_journal->j_submit_inode_data_buffers =
ext4_journal_submit_inode_data_buffers;
sbi->s_journal->j_finish_inode_data_buffers =
ext4_journal_finish_inode_data_buffers;
no_journal:
if (!test_opt(sb, NO_MBCACHE)) {
sbi->s_ea_block_cache = ext4_xattr_create_cache();
if (!sbi->s_ea_block_cache) {
ext4_msg(sb, KERN_ERR,
"Failed to create ea_block_cache");
goto failed_mount_wq;
}
if (ext4_has_feature_ea_inode(sb)) {
sbi->s_ea_inode_cache = ext4_xattr_create_cache();
if (!sbi->s_ea_inode_cache) {
ext4_msg(sb, KERN_ERR,
"Failed to create ea_inode_cache");
goto failed_mount_wq;
}
}
}
if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
goto failed_mount_wq;
}
if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
!ext4_has_feature_encrypt(sb)) {
ext4_set_feature_encrypt(sb);
ext4_commit_super(sb);
}
/*
* Get the # of file system overhead blocks from the
* superblock if present.
*/
if (es->s_overhead_clusters)
sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
else {
err = ext4_calculate_overhead(sb);
if (err)
goto failed_mount_wq;
}
/*
* The maximum number of concurrent works can be high and
* concurrency isn't really necessary. Limit it to 1.
*/
EXT4_SB(sb)->rsv_conversion_wq =
alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
if (!EXT4_SB(sb)->rsv_conversion_wq) {
printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
ret = -ENOMEM;
goto failed_mount4;
}
/*
* The jbd2_journal_load will have done any necessary log recovery,
* so we can safely mount the rest of the filesystem now.
*/
root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
if (IS_ERR(root)) {
ext4_msg(sb, KERN_ERR, "get root inode failed");
ret = PTR_ERR(root);
root = NULL;
goto failed_mount4;
}
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
iput(root);
goto failed_mount4;
}
sb->s_root = d_make_root(root);
if (!sb->s_root) {
ext4_msg(sb, KERN_ERR, "get root dentry failed");
ret = -ENOMEM;
goto failed_mount4;
}
ret = ext4_setup_super(sb, es, sb_rdonly(sb));
if (ret == -EROFS) {
sb->s_flags |= SB_RDONLY;
ret = 0;
} else if (ret)
goto failed_mount4a;
ext4_set_resv_clusters(sb);
if (test_opt(sb, BLOCK_VALIDITY)) {
err = ext4_setup_system_zone(sb);
if (err) {
ext4_msg(sb, KERN_ERR, "failed to initialize system "
"zone (%d)", err);
goto failed_mount4a;
}
}
ext4_fc_replay_cleanup(sb);
ext4_ext_init(sb);
/*
* Enable optimize_scan if number of groups is > threshold. This can be
* turned off by passing "mb_optimize_scan=0". This can also be
* turned on forcefully by passing "mb_optimize_scan=1".
*/
if (ctx->mb_optimize_scan == 1)
set_opt2(sb, MB_OPTIMIZE_SCAN);
else if (ctx->mb_optimize_scan == 0)
clear_opt2(sb, MB_OPTIMIZE_SCAN);
else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
set_opt2(sb, MB_OPTIMIZE_SCAN);
err = ext4_mb_init(sb);
if (err) {
ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
err);
goto failed_mount5;
}
/*
* We can only set up the journal commit callback once
* mballoc is initialized
*/
if (sbi->s_journal)
sbi->s_journal->j_commit_callback =
ext4_journal_commit_callback;
block = ext4_count_free_clusters(sb);
ext4_free_blocks_count_set(sbi->s_es,
EXT4_C2B(sbi, block));
err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
GFP_KERNEL);
if (!err) {
unsigned long freei = ext4_count_free_inodes(sb);
sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
GFP_KERNEL);
}
/*
* Update the checksum after updating free space/inode
* counters. Otherwise the superblock can have an incorrect
* checksum in the buffer cache until it is written out and
* e2fsprogs programs trying to open a file system immediately
* after it is mounted can fail.
*/
ext4_superblock_csum_set(sb);
if (!err)
err = percpu_counter_init(&sbi->s_dirs_counter,
ext4_count_dirs(sb), GFP_KERNEL);
if (!err)
err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
GFP_KERNEL);
if (!err)
err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
GFP_KERNEL);
if (!err)
err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
if (err) {
ext4_msg(sb, KERN_ERR, "insufficient memory");
goto failed_mount6;
}
if (ext4_has_feature_flex_bg(sb))
if (!ext4_fill_flex_info(sb)) {
ext4_msg(sb, KERN_ERR,
"unable to initialize "
"flex_bg meta info!");
ret = -ENOMEM;
goto failed_mount6;
}
err = ext4_register_li_request(sb, first_not_zeroed);
if (err)
goto failed_mount6;
err = ext4_register_sysfs(sb);
if (err)
goto failed_mount7;
err = ext4_init_orphan_info(sb);
if (err)
goto failed_mount8;
#ifdef CONFIG_QUOTA
/* Enable quota usage during mount. */
if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
err = ext4_enable_quotas(sb);
if (err)
goto failed_mount9;
}
#endif /* CONFIG_QUOTA */
/*
* Save the original bdev mapping's wb_err value which could be
* used to detect the metadata async write error.
*/
spin_lock_init(&sbi->s_bdev_wb_lock);
errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
&sbi->s_bdev_wb_err);
sb->s_bdev->bd_super = sb;
EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
ext4_orphan_cleanup(sb, es);
EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
if (needs_recovery) {
ext4_msg(sb, KERN_INFO, "recovery complete");
err = ext4_mark_recovery_complete(sb, es);
if (err)
goto failed_mount9;
}
if (test_opt(sb, DISCARD)) {
struct request_queue *q = bdev_get_queue(sb->s_bdev);
if (!blk_queue_discard(q))
ext4_msg(sb, KERN_WARNING,
"mounting with \"discard\" option, but "
"the device does not support discard");
}
if (es->s_error_count)
mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
atomic_set(&sbi->s_warning_count, 0);
atomic_set(&sbi->s_msg_count, 0);
return 0;
cantfind_ext4:
if (!silent)
ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
goto failed_mount;
failed_mount9:
ext4_release_orphan_info(sb);
failed_mount8:
ext4_unregister_sysfs(sb);
kobject_put(&sbi->s_kobj);
failed_mount7:
ext4_unregister_li_request(sb);
failed_mount6:
ext4_mb_release(sb);
rcu_read_lock();
flex_groups = rcu_dereference(sbi->s_flex_groups);
if (flex_groups) {
for (i = 0; i < sbi->s_flex_groups_allocated; i++)
kvfree(flex_groups[i]);
kvfree(flex_groups);
}
rcu_read_unlock();
percpu_counter_destroy(&sbi->s_freeclusters_counter);
percpu_counter_destroy(&sbi->s_freeinodes_counter);
percpu_counter_destroy(&sbi->s_dirs_counter);
percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
percpu_free_rwsem(&sbi->s_writepages_rwsem);
failed_mount5:
ext4_ext_release(sb);
ext4_release_system_zone(sb);
failed_mount4a:
dput(sb->s_root);
sb->s_root = NULL;
failed_mount4:
ext4_msg(sb, KERN_ERR, "mount failed");
if (EXT4_SB(sb)->rsv_conversion_wq)
destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
failed_mount_wq:
ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
sbi->s_ea_inode_cache = NULL;
ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
sbi->s_ea_block_cache = NULL;
if (sbi->s_journal) {
/* flush s_error_work before journal destroy. */
flush_work(&sbi->s_error_work);
jbd2_journal_destroy(sbi->s_journal);
sbi->s_journal = NULL;
}
failed_mount3a:
ext4_es_unregister_shrinker(sbi);
failed_mount3:
/* flush s_error_work before sbi destroy */
flush_work(&sbi->s_error_work);
del_timer_sync(&sbi->s_err_report);
ext4_stop_mmpd(sbi);
failed_mount2:
rcu_read_lock();
group_desc = rcu_dereference(sbi->s_group_desc);
for (i = 0; i < db_count; i++)
brelse(group_desc[i]);
kvfree(group_desc);
rcu_read_unlock();
failed_mount:
if (sbi->s_chksum_driver)
crypto_free_shash(sbi->s_chksum_driver);
#ifdef CONFIG_UNICODE
utf8_unload(sb->s_encoding);
#endif
#ifdef CONFIG_QUOTA
for (i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(get_qf_name(sb, sbi, i));
#endif
fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
brelse(bh);
ext4_blkdev_remove(sbi);
out_fail:
sb->s_fs_info = NULL;
return err ? err : ret;
}
static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_sb_info *sbi;
const char *descr;
int ret;
sbi = ext4_alloc_sbi(sb);
if (!sbi)
ret = -ENOMEM;
fc->s_fs_info = sbi;
/* Cleanup superblock name */
strreplace(sb->s_id, '/', '!');
sbi->s_sb_block = 1; /* Default super block location */
if (ctx->spec & EXT4_SPEC_s_sb_block)
sbi->s_sb_block = ctx->s_sb_block;
ret = __ext4_fill_super(fc, sb);
if (ret < 0)
goto free_sbi;
if (sbi->s_journal) {
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
descr = " journalled data mode";
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
descr = " ordered data mode";
else
descr = " writeback data mode";
} else
descr = "out journal";
if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
"Quota mode: %s.", descr, ext4_quota_mode(sb));
return 0;
free_sbi:
ext4_free_sbi(sbi);
fc->s_fs_info = NULL;
return ret;
}
static int ext4_get_tree(struct fs_context *fc)
{
return get_tree_bdev(fc, ext4_fill_super);
}
/*
* Setup any per-fs journal parameters now. We'll do this both on
* initial mount, once the journal has been initialised but before we've
* done any recovery; and again on any subsequent remount.
*/
static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
journal->j_commit_interval = sbi->s_commit_interval;
journal->j_min_batch_time = sbi->s_min_batch_time;
journal->j_max_batch_time = sbi->s_max_batch_time;
ext4_fc_init(sb, journal);
write_lock(&journal->j_state_lock);
if (test_opt(sb, BARRIER))
journal->j_flags |= JBD2_BARRIER;
else
journal->j_flags &= ~JBD2_BARRIER;
if (test_opt(sb, DATA_ERR_ABORT))
journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
else
journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
write_unlock(&journal->j_state_lock);
}
static struct inode *ext4_get_journal_inode(struct super_block *sb,
unsigned int journal_inum)
{
struct inode *journal_inode;
/*
* Test for the existence of a valid inode on disk. Bad things
* happen if we iget() an unused inode, as the subsequent iput()
* will try to delete it.
*/
journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
if (IS_ERR(journal_inode)) {
ext4_msg(sb, KERN_ERR, "no journal found");
return NULL;
}
if (!journal_inode->i_nlink) {
make_bad_inode(journal_inode);
iput(journal_inode);
ext4_msg(sb, KERN_ERR, "journal inode is deleted");
return NULL;
}
jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
journal_inode, journal_inode->i_size);
if (!S_ISREG(journal_inode->i_mode)) {
ext4_msg(sb, KERN_ERR, "invalid journal inode");
iput(journal_inode);
return NULL;
}
return journal_inode;
}
static journal_t *ext4_get_journal(struct super_block *sb,
unsigned int journal_inum)
{
struct inode *journal_inode;
journal_t *journal;
if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
return NULL;
journal_inode = ext4_get_journal_inode(sb, journal_inum);
if (!journal_inode)
return NULL;
journal = jbd2_journal_init_inode(journal_inode);
if (!journal) {
ext4_msg(sb, KERN_ERR, "Could not load journal inode");
iput(journal_inode);
return NULL;
}
journal->j_private = sb;
ext4_init_journal_params(sb, journal);
return journal;
}
static journal_t *ext4_get_dev_journal(struct super_block *sb,
dev_t j_dev)
{
struct buffer_head *bh;
journal_t *journal;
ext4_fsblk_t start;
ext4_fsblk_t len;
int hblock, blocksize;
ext4_fsblk_t sb_block;
unsigned long offset;
struct ext4_super_block *es;
struct block_device *bdev;
if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
return NULL;
bdev = ext4_blkdev_get(j_dev, sb);
if (bdev == NULL)
return NULL;
blocksize = sb->s_blocksize;
hblock = bdev_logical_block_size(bdev);
if (blocksize < hblock) {
ext4_msg(sb, KERN_ERR,
"blocksize too small for journal device");
goto out_bdev;
}
sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
offset = EXT4_MIN_BLOCK_SIZE % blocksize;
set_blocksize(bdev, blocksize);
if (!(bh = __bread(bdev, sb_block, blocksize))) {
ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
"external journal");
goto out_bdev;
}
es = (struct ext4_super_block *) (bh->b_data + offset);
if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
!(le32_to_cpu(es->s_feature_incompat) &
EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
ext4_msg(sb, KERN_ERR, "external journal has "
"bad superblock");
brelse(bh);
goto out_bdev;
}
if ((le32_to_cpu(es->s_feature_ro_compat) &
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
es->s_checksum != ext4_superblock_csum(sb, es)) {
ext4_msg(sb, KERN_ERR, "external journal has "
"corrupt superblock");
brelse(bh);
goto out_bdev;
}
if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
ext4_msg(sb, KERN_ERR, "journal UUID does not match");
brelse(bh);
goto out_bdev;
}
len = ext4_blocks_count(es);
start = sb_block + 1;
brelse(bh); /* we're done with the superblock */
journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
start, len, blocksize);
if (!journal) {
ext4_msg(sb, KERN_ERR, "failed to create device journal");
goto out_bdev;
}
journal->j_private = sb;
if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
ext4_msg(sb, KERN_ERR, "I/O error on journal device");
goto out_journal;
}
if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
ext4_msg(sb, KERN_ERR, "External journal has more than one "
"user (unsupported) - %d",
be32_to_cpu(journal->j_superblock->s_nr_users));
goto out_journal;
}
EXT4_SB(sb)->s_journal_bdev = bdev;
ext4_init_journal_params(sb, journal);
return journal;
out_journal:
jbd2_journal_destroy(journal);
out_bdev:
ext4_blkdev_put(bdev);
return NULL;
}
static int ext4_load_journal(struct super_block *sb,
struct ext4_super_block *es,
unsigned long journal_devnum)
{
journal_t *journal;
unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
dev_t journal_dev;
int err = 0;
int really_read_only;
int journal_dev_ro;
if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
return -EFSCORRUPTED;
if (journal_devnum &&
journal_devnum != le32_to_cpu(es->s_journal_dev)) {
ext4_msg(sb, KERN_INFO, "external journal device major/minor "
"numbers have changed");
journal_dev = new_decode_dev(journal_devnum);
} else
journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
if (journal_inum && journal_dev) {
ext4_msg(sb, KERN_ERR,
"filesystem has both journal inode and journal device!");
return -EINVAL;
}
if (journal_inum) {
journal = ext4_get_journal(sb, journal_inum);
if (!journal)
return -EINVAL;
} else {
journal = ext4_get_dev_journal(sb, journal_dev);
if (!journal)
return -EINVAL;
}
journal_dev_ro = bdev_read_only(journal->j_dev);
really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
if (journal_dev_ro && !sb_rdonly(sb)) {
ext4_msg(sb, KERN_ERR,
"journal device read-only, try mounting with '-o ro'");
err = -EROFS;
goto err_out;
}
/*
* Are we loading a blank journal or performing recovery after a
* crash? For recovery, we need to check in advance whether we
* can get read-write access to the device.
*/
if (ext4_has_feature_journal_needs_recovery(sb)) {
if (sb_rdonly(sb)) {
ext4_msg(sb, KERN_INFO, "INFO: recovery "
"required on readonly filesystem");
if (really_read_only) {
ext4_msg(sb, KERN_ERR, "write access "
"unavailable, cannot proceed "
"(try mounting with noload)");
err = -EROFS;
goto err_out;
}
ext4_msg(sb, KERN_INFO, "write access will "
"be enabled during recovery");
}
}
if (!(journal->j_flags & JBD2_BARRIER))
ext4_msg(sb, KERN_INFO, "barriers disabled");
if (!ext4_has_feature_journal_needs_recovery(sb))
err = jbd2_journal_wipe(journal, !really_read_only);
if (!err) {
char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
if (save)
memcpy(save, ((char *) es) +
EXT4_S_ERR_START, EXT4_S_ERR_LEN);
err = jbd2_journal_load(journal);
if (save)
memcpy(((char *) es) + EXT4_S_ERR_START,
save, EXT4_S_ERR_LEN);
kfree(save);
}
if (err) {
ext4_msg(sb, KERN_ERR, "error loading journal");
goto err_out;
}
EXT4_SB(sb)->s_journal = journal;
err = ext4_clear_journal_err(sb, es);
if (err) {
EXT4_SB(sb)->s_journal = NULL;
jbd2_journal_destroy(journal);
return err;
}
if (!really_read_only && journal_devnum &&
journal_devnum != le32_to_cpu(es->s_journal_dev)) {
es->s_journal_dev = cpu_to_le32(journal_devnum);
/* Make sure we flush the recovery flag to disk. */
ext4_commit_super(sb);
}
return 0;
err_out:
jbd2_journal_destroy(journal);
return err;
}
/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
static void ext4_update_super(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
struct buffer_head *sbh = sbi->s_sbh;
lock_buffer(sbh);
/*
* If the file system is mounted read-only, don't update the
* superblock write time. This avoids updating the superblock
* write time when we are mounting the root file system
* read/only but we need to replay the journal; at that point,
* for people who are east of GMT and who make their clock
* tick in localtime for Windows bug-for-bug compatibility,
* the clock is set in the future, and this will cause e2fsck
* to complain and force a full file system check.
*/
if (!(sb->s_flags & SB_RDONLY))
ext4_update_tstamp(es, s_wtime);
es->s_kbytes_written =
cpu_to_le64(sbi->s_kbytes_written +
((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
sbi->s_sectors_written_start) >> 1));
if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
ext4_free_blocks_count_set(es,
EXT4_C2B(sbi, percpu_counter_sum_positive(
&sbi->s_freeclusters_counter)));
if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
es->s_free_inodes_count =
cpu_to_le32(percpu_counter_sum_positive(
&sbi->s_freeinodes_counter));
/* Copy error information to the on-disk superblock */
spin_lock(&sbi->s_error_lock);
if (sbi->s_add_error_count > 0) {
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
if (!es->s_first_error_time && !es->s_first_error_time_hi) {
__ext4_update_tstamp(&es->s_first_error_time,
&es->s_first_error_time_hi,
sbi->s_first_error_time);
strncpy(es->s_first_error_func, sbi->s_first_error_func,
sizeof(es->s_first_error_func));
es->s_first_error_line =
cpu_to_le32(sbi->s_first_error_line);
es->s_first_error_ino =
cpu_to_le32(sbi->s_first_error_ino);
es->s_first_error_block =
cpu_to_le64(sbi->s_first_error_block);
es->s_first_error_errcode =
ext4_errno_to_code(sbi->s_first_error_code);
}
__ext4_update_tstamp(&es->s_last_error_time,
&es->s_last_error_time_hi,
sbi->s_last_error_time);
strncpy(es->s_last_error_func, sbi->s_last_error_func,
sizeof(es->s_last_error_func));
es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
es->s_last_error_errcode =
ext4_errno_to_code(sbi->s_last_error_code);
/*
* Start the daily error reporting function if it hasn't been
* started already
*/
if (!es->s_error_count)
mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
sbi->s_add_error_count = 0;
}
spin_unlock(&sbi->s_error_lock);
ext4_superblock_csum_set(sb);
unlock_buffer(sbh);
}
static int ext4_commit_super(struct super_block *sb)
{
struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
int error = 0;
if (!sbh)
return -EINVAL;
if (block_device_ejected(sb))
return -ENODEV;
ext4_update_super(sb);
if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
/*
* Oh, dear. A previous attempt to write the
* superblock failed. This could happen because the
* USB device was yanked out. Or it could happen to
* be a transient write error and maybe the block will
* be remapped. Nothing we can do but to retry the
* write and hope for the best.
*/
ext4_msg(sb, KERN_ERR, "previous I/O error to "
"superblock detected");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
BUFFER_TRACE(sbh, "marking dirty");
mark_buffer_dirty(sbh);
error = __sync_dirty_buffer(sbh,
REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
if (buffer_write_io_error(sbh)) {
ext4_msg(sb, KERN_ERR, "I/O error while writing "
"superblock");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
return error;
}
/*
* Have we just finished recovery? If so, and if we are mounting (or
* remounting) the filesystem readonly, then we will end up with a
* consistent fs on disk. Record that fact.
*/
static int ext4_mark_recovery_complete(struct super_block *sb,
struct ext4_super_block *es)
{
int err;
journal_t *journal = EXT4_SB(sb)->s_journal;
if (!ext4_has_feature_journal(sb)) {
if (journal != NULL) {
ext4_error(sb, "Journal got removed while the fs was "
"mounted!");
return -EFSCORRUPTED;
}
return 0;
}
jbd2_journal_lock_updates(journal);
err = jbd2_journal_flush(journal, 0);
if (err < 0)
goto out;
if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
ext4_has_feature_orphan_present(sb))) {
if (!ext4_orphan_file_empty(sb)) {
ext4_error(sb, "Orphan file not empty on read-only fs.");
err = -EFSCORRUPTED;
goto out;
}
ext4_clear_feature_journal_needs_recovery(sb);
ext4_clear_feature_orphan_present(sb);
ext4_commit_super(sb);
}
out:
jbd2_journal_unlock_updates(journal);
return err;
}
/*
* If we are mounting (or read-write remounting) a filesystem whose journal
* has recorded an error from a previous lifetime, move that error to the
* main filesystem now.
*/
static int ext4_clear_journal_err(struct super_block *sb,
struct ext4_super_block *es)
{
journal_t *journal;
int j_errno;
const char *errstr;
if (!ext4_has_feature_journal(sb)) {
ext4_error(sb, "Journal got removed while the fs was mounted!");
return -EFSCORRUPTED;
}
journal = EXT4_SB(sb)->s_journal;
/*
* Now check for any error status which may have been recorded in the
* journal by a prior ext4_error() or ext4_abort()
*/
j_errno = jbd2_journal_errno(journal);
if (j_errno) {
char nbuf[16];
errstr = ext4_decode_error(sb, j_errno, nbuf);
ext4_warning(sb, "Filesystem error recorded "
"from previous mount: %s", errstr);
ext4_warning(sb, "Marking fs in need of filesystem check.");
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
ext4_commit_super(sb);
jbd2_journal_clear_err(journal);
jbd2_journal_update_sb_errno(journal);
}
return 0;
}
/*
* Force the running and committing transactions to commit,
* and wait on the commit.
*/
int ext4_force_commit(struct super_block *sb)
{
journal_t *journal;
if (sb_rdonly(sb))
return 0;
journal = EXT4_SB(sb)->s_journal;
return ext4_journal_force_commit(journal);
}
static int ext4_sync_fs(struct super_block *sb, int wait)
{
int ret = 0;
tid_t target;
bool needs_barrier = false;
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (unlikely(ext4_forced_shutdown(sbi)))
return 0;
trace_ext4_sync_fs(sb, wait);
flush_workqueue(sbi->rsv_conversion_wq);
/*
* Writeback quota in non-journalled quota case - journalled quota has
* no dirty dquots
*/
dquot_writeback_dquots(sb, -1);
/*
* Data writeback is possible w/o journal transaction, so barrier must
* being sent at the end of the function. But we can skip it if
* transaction_commit will do it for us.
*/
if (sbi->s_journal) {
target = jbd2_get_latest_transaction(sbi->s_journal);
if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
!jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
needs_barrier = true;
if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
if (wait)
ret = jbd2_log_wait_commit(sbi->s_journal,
target);
}
} else if (wait && test_opt(sb, BARRIER))
needs_barrier = true;
if (needs_barrier) {
int err;
err = blkdev_issue_flush(sb->s_bdev);
if (!ret)
ret = err;
}
return ret;
}
/*
* LVM calls this function before a (read-only) snapshot is created. This
* gives us a chance to flush the journal completely and mark the fs clean.
*
* Note that only this function cannot bring a filesystem to be in a clean
* state independently. It relies on upper layer to stop all data & metadata
* modifications.
*/
static int ext4_freeze(struct super_block *sb)
{
int error = 0;
journal_t *journal;
if (sb_rdonly(sb))
return 0;
journal = EXT4_SB(sb)->s_journal;
if (journal) {
/* Now we set up the journal barrier. */
jbd2_journal_lock_updates(journal);
/*
* Don't clear the needs_recovery flag if we failed to
* flush the journal.
*/
error = jbd2_journal_flush(journal, 0);
if (error < 0)
goto out;
/* Journal blocked and flushed, clear needs_recovery flag. */
ext4_clear_feature_journal_needs_recovery(sb);
if (ext4_orphan_file_empty(sb))
ext4_clear_feature_orphan_present(sb);
}
error = ext4_commit_super(sb);
out:
if (journal)
/* we rely on upper layer to stop further updates */
jbd2_journal_unlock_updates(journal);
return error;
}
/*
* Called by LVM after the snapshot is done. We need to reset the RECOVER
* flag here, even though the filesystem is not technically dirty yet.
*/
static int ext4_unfreeze(struct super_block *sb)
{
if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
return 0;
if (EXT4_SB(sb)->s_journal) {
/* Reset the needs_recovery flag before the fs is unlocked. */
ext4_set_feature_journal_needs_recovery(sb);
if (ext4_has_feature_orphan_file(sb))
ext4_set_feature_orphan_present(sb);
}
ext4_commit_super(sb);
return 0;
}
/*
* Structure to save mount options for ext4_remount's benefit
*/
struct ext4_mount_options {
unsigned long s_mount_opt;
unsigned long s_mount_opt2;
kuid_t s_resuid;
kgid_t s_resgid;
unsigned long s_commit_interval;
u32 s_min_batch_time, s_max_batch_time;
#ifdef CONFIG_QUOTA
int s_jquota_fmt;
char *s_qf_names[EXT4_MAXQUOTAS];
#endif
};
static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
{
struct ext4_fs_context *ctx = fc->fs_private;
struct ext4_super_block *es;
struct ext4_sb_info *sbi = EXT4_SB(sb);
unsigned long old_sb_flags;
struct ext4_mount_options old_opts;
ext4_group_t g;
int err = 0;
#ifdef CONFIG_QUOTA
int enable_quota = 0;
int i, j;
char *to_free[EXT4_MAXQUOTAS];
#endif
ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
/* Store the original options */
old_sb_flags = sb->s_flags;
old_opts.s_mount_opt = sbi->s_mount_opt;
old_opts.s_mount_opt2 = sbi->s_mount_opt2;
old_opts.s_resuid = sbi->s_resuid;
old_opts.s_resgid = sbi->s_resgid;
old_opts.s_commit_interval = sbi->s_commit_interval;
old_opts.s_min_batch_time = sbi->s_min_batch_time;
old_opts.s_max_batch_time = sbi->s_max_batch_time;
#ifdef CONFIG_QUOTA
old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
for (i = 0; i < EXT4_MAXQUOTAS; i++)
if (sbi->s_qf_names[i]) {
char *qf_name = get_qf_name(sb, sbi, i);
old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
if (!old_opts.s_qf_names[i]) {
for (j = 0; j < i; j++)
kfree(old_opts.s_qf_names[j]);
return -ENOMEM;
}
} else
old_opts.s_qf_names[i] = NULL;
#endif
if (sbi->s_journal && sbi->s_journal->j_task->io_context)
ctx->journal_ioprio =
sbi->s_journal->j_task->io_context->ioprio;
ext4_apply_options(fc, sb);
if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
test_opt(sb, JOURNAL_CHECKSUM)) {
ext4_msg(sb, KERN_ERR, "changing journal_checksum "
"during remount not supported; ignoring");
sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
}
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
if (test_opt2(sb, EXPLICIT_DELALLOC)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and delalloc");
err = -EINVAL;
goto restore_opts;
}
if (test_opt(sb, DIOREAD_NOLOCK)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and dioread_nolock");
err = -EINVAL;
goto restore_opts;
}
} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"journal_async_commit in data=ordered mode");
err = -EINVAL;
goto restore_opts;
}
}
if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
err = -EINVAL;
goto restore_opts;
}
if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
es = sbi->s_es;
if (sbi->s_journal) {
ext4_init_journal_params(sb, sbi->s_journal);
set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
}
/* Flush outstanding errors before changing fs state */
flush_work(&sbi->s_error_work);
if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
err = -EROFS;
goto restore_opts;
}
if (fc->sb_flags & SB_RDONLY) {
err = sync_filesystem(sb);
if (err < 0)
goto restore_opts;
err = dquot_suspend(sb, -1);
if (err < 0)
goto restore_opts;
/*
* First of all, the unconditional stuff we have to do
* to disable replay of the journal when we next remount
*/
sb->s_flags |= SB_RDONLY;
/*
* OK, test if we are remounting a valid rw partition
* readonly, and if so set the rdonly flag and then
* mark the partition as valid again.
*/
if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
(sbi->s_mount_state & EXT4_VALID_FS))
es->s_state = cpu_to_le16(sbi->s_mount_state);
if (sbi->s_journal) {
/*
* We let remount-ro finish even if marking fs
* as clean failed...
*/
ext4_mark_recovery_complete(sb, es);
}
} else {
/* Make sure we can mount this feature set readwrite */
if (ext4_has_feature_readonly(sb) ||
!ext4_feature_set_ok(sb, 0)) {
err = -EROFS;
goto restore_opts;
}
/*
* Make sure the group descriptor checksums
* are sane. If they aren't, refuse to remount r/w.
*/
for (g = 0; g < sbi->s_groups_count; g++) {
struct ext4_group_desc *gdp =
ext4_get_group_desc(sb, g, NULL);
if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
ext4_msg(sb, KERN_ERR,
"ext4_remount: Checksum for group %u failed (%u!=%u)",
g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
le16_to_cpu(gdp->bg_checksum));
err = -EFSBADCRC;
goto restore_opts;
}
}
/*
* If we have an unprocessed orphan list hanging
* around from a previously readonly bdev mount,
* require a full umount/remount for now.
*/
if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
ext4_msg(sb, KERN_WARNING, "Couldn't "
"remount RDWR because of unprocessed "
"orphan inode list. Please "
"umount/remount instead");
err = -EINVAL;
goto restore_opts;
}
/*
* Mounting a RDONLY partition read-write, so reread
* and store the current valid flag. (It may have
* been changed by e2fsck since we originally mounted
* the partition.)
*/
if (sbi->s_journal) {
err = ext4_clear_journal_err(sb, es);
if (err)
goto restore_opts;
}
sbi->s_mount_state = le16_to_cpu(es->s_state);
err = ext4_setup_super(sb, es, 0);
if (err)
goto restore_opts;
sb->s_flags &= ~SB_RDONLY;
if (ext4_has_feature_mmp(sb))
if (ext4_multi_mount_protect(sb,
le64_to_cpu(es->s_mmp_block))) {
err = -EROFS;
goto restore_opts;
}
#ifdef CONFIG_QUOTA
enable_quota = 1;
#endif
}
}
/*
* Reinitialize lazy itable initialization thread based on
* current settings
*/
if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
ext4_unregister_li_request(sb);
else {
ext4_group_t first_not_zeroed;
first_not_zeroed = ext4_has_uninit_itable(sb);
ext4_register_li_request(sb, first_not_zeroed);
}
/*
* Handle creation of system zone data early because it can fail.
* Releasing of existing data is done when we are sure remount will
* succeed.
*/
if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
err = ext4_setup_system_zone(sb);
if (err)
goto restore_opts;
}
if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
err = ext4_commit_super(sb);
if (err)
goto restore_opts;
}
#ifdef CONFIG_QUOTA
/* Release old quota file names */
for (i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(old_opts.s_qf_names[i]);
if (enable_quota) {
if (sb_any_quota_suspended(sb))
dquot_resume(sb, -1);
else if (ext4_has_feature_quota(sb)) {
err = ext4_enable_quotas(sb);
if (err)
goto restore_opts;
}
}
#endif
if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
ext4_release_system_zone(sb);
if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
ext4_stop_mmpd(sbi);
return 0;
restore_opts:
sb->s_flags = old_sb_flags;
sbi->s_mount_opt = old_opts.s_mount_opt;
sbi->s_mount_opt2 = old_opts.s_mount_opt2;
sbi->s_resuid = old_opts.s_resuid;
sbi->s_resgid = old_opts.s_resgid;
sbi->s_commit_interval = old_opts.s_commit_interval;
sbi->s_min_batch_time = old_opts.s_min_batch_time;
sbi->s_max_batch_time = old_opts.s_max_batch_time;
if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
ext4_release_system_zone(sb);
#ifdef CONFIG_QUOTA
sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
for (i = 0; i < EXT4_MAXQUOTAS; i++) {
to_free[i] = get_qf_name(sb, sbi, i);
rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
}
synchronize_rcu();
for (i = 0; i < EXT4_MAXQUOTAS; i++)
kfree(to_free[i]);
#endif
if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
ext4_stop_mmpd(sbi);
return err;
}
static int ext4_reconfigure(struct fs_context *fc)
{
struct super_block *sb = fc->root->d_sb;
int ret;
fc->s_fs_info = EXT4_SB(sb);
ret = ext4_check_opt_consistency(fc, sb);
if (ret < 0)
return ret;
ret = __ext4_remount(fc, sb);
if (ret < 0)
return ret;
ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.",
ext4_quota_mode(sb));
return 0;
}
#ifdef CONFIG_QUOTA
static int ext4_statfs_project(struct super_block *sb,
kprojid_t projid, struct kstatfs *buf)
{
struct kqid qid;
struct dquot *dquot;
u64 limit;
u64 curblock;
qid = make_kqid_projid(projid);
dquot = dqget(sb, qid);
if (IS_ERR(dquot))
return PTR_ERR(dquot);
spin_lock(&dquot->dq_dqb_lock);
limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
dquot->dq_dqb.dqb_bhardlimit);
limit >>= sb->s_blocksize_bits;
if (limit && buf->f_blocks > limit) {
curblock = (dquot->dq_dqb.dqb_curspace +
dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
buf->f_blocks = limit;
buf->f_bfree = buf->f_bavail =
(buf->f_blocks > curblock) ?
(buf->f_blocks - curblock) : 0;
}
limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
dquot->dq_dqb.dqb_ihardlimit);
if (limit && buf->f_files > limit) {
buf->f_files = limit;
buf->f_ffree =
(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
(buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
}
spin_unlock(&dquot->dq_dqb_lock);
dqput(dquot);
return 0;
}
#endif
static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
ext4_fsblk_t overhead = 0, resv_blocks;
s64 bfree;
resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
if (!test_opt(sb, MINIX_DF))
overhead = sbi->s_overhead;
buf->f_type = EXT4_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
/* prevent underflow in case that few free space is available */
buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
buf->f_bavail = buf->f_bfree -
(ext4_r_blocks_count(es) + resv_blocks);
if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
buf->f_bavail = 0;
buf->f_files = le32_to_cpu(es->s_inodes_count);
buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
buf->f_namelen = EXT4_NAME_LEN;
buf->f_fsid = uuid_to_fsid(es->s_uuid);
#ifdef CONFIG_QUOTA
if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
sb_has_quota_limits_enabled(sb, PRJQUOTA))
ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
#endif
return 0;
}
#ifdef CONFIG_QUOTA
/*
* Helper functions so that transaction is started before we acquire dqio_sem
* to keep correct lock ordering of transaction > dqio_sem
*/
static inline struct inode *dquot_to_inode(struct dquot *dquot)
{
return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
}
static int ext4_write_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
struct inode *inode;
inode = dquot_to_inode(dquot);
handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_commit(dquot);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_acquire_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_acquire(dquot);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_release_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle)) {
/* Release dquot anyway to avoid endless cycle in dqput() */
dquot_release(dquot);
return PTR_ERR(handle);
}
ret = dquot_release(dquot);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_mark_dquot_dirty(struct dquot *dquot)
{
struct super_block *sb = dquot->dq_sb;
if (ext4_is_quota_journalled(sb)) {
dquot_mark_dquot_dirty(dquot);
return ext4_write_dquot(dquot);
} else {
return dquot_mark_dquot_dirty(dquot);
}
}
static int ext4_write_info(struct super_block *sb, int type)
{
int ret, err;
handle_t *handle;
/* Data block + inode block */
handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_commit_info(sb, type);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static void lockdep_set_quota_inode(struct inode *inode, int subclass)
{
struct ext4_inode_info *ei = EXT4_I(inode);
/* The first argument of lockdep_set_subclass has to be
* *exactly* the same as the argument to init_rwsem() --- in
* this case, in init_once() --- or lockdep gets unhappy
* because the name of the lock is set using the
* stringification of the argument to init_rwsem().
*/
(void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
lockdep_set_subclass(&ei->i_data_sem, subclass);
}
/*
* Standard function to be called on quota_on
*/
static int ext4_quota_on(struct super_block *sb, int type, int format_id,
const struct path *path)
{
int err;
if (!test_opt(sb, QUOTA))
return -EINVAL;
/* Quotafile not on the same filesystem? */
if (path->dentry->d_sb != sb)
return -EXDEV;
/* Quota already enabled for this file? */
if (IS_NOQUOTA(d_inode(path->dentry)))
return -EBUSY;
/* Journaling quota? */
if (EXT4_SB(sb)->s_qf_names[type]) {
/* Quotafile not in fs root? */
if (path->dentry->d_parent != sb->s_root)
ext4_msg(sb, KERN_WARNING,
"Quota file not on filesystem root. "
"Journaled quota will not work");
sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
} else {
/*
* Clear the flag just in case mount options changed since
* last time.
*/
sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
}
/*
* When we journal data on quota file, we have to flush journal to see
* all updates to the file when we bypass pagecache...
*/
if (EXT4_SB(sb)->s_journal &&
ext4_should_journal_data(d_inode(path->dentry))) {
/*
* We don't need to lock updates but journal_flush() could
* otherwise be livelocked...
*/
jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
if (err)
return err;
}
lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
err = dquot_quota_on(sb, type, format_id, path);
if (!err) {
struct inode *inode = d_inode(path->dentry);
handle_t *handle;
/*
* Set inode flags to prevent userspace from messing with quota
* files. If this fails, we return success anyway since quotas
* are already enabled and this is not a hard failure.
*/
inode_lock(inode);
handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
if (IS_ERR(handle))
goto unlock_inode;
EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
S_NOATIME | S_IMMUTABLE);
err = ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
unlock_inode:
inode_unlock(inode);
if (err)
dquot_quota_off(sb, type);
}
if (err)
lockdep_set_quota_inode(path->dentry->d_inode,
I_DATA_SEM_NORMAL);
return err;
}
static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
unsigned int flags)
{
int err;
struct inode *qf_inode;
unsigned long qf_inums[EXT4_MAXQUOTAS] = {
le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
};
BUG_ON(!ext4_has_feature_quota(sb));
if (!qf_inums[type])
return -EPERM;
qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
if (IS_ERR(qf_inode)) {
ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
return PTR_ERR(qf_inode);
}
/* Don't account quota for quota files to avoid recursion */
qf_inode->i_flags |= S_NOQUOTA;
lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
if (err)
lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
iput(qf_inode);
return err;
}
/* Enable usage tracking for all quota types. */
int ext4_enable_quotas(struct super_block *sb)
{
int type, err = 0;
unsigned long qf_inums[EXT4_MAXQUOTAS] = {
le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
};
bool quota_mopt[EXT4_MAXQUOTAS] = {
test_opt(sb, USRQUOTA),
test_opt(sb, GRPQUOTA),
test_opt(sb, PRJQUOTA),
};
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
for (type = 0; type < EXT4_MAXQUOTAS; type++) {
if (qf_inums[type]) {
err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
DQUOT_USAGE_ENABLED |
(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
if (err) {
ext4_warning(sb,
"Failed to enable quota tracking "
"(type=%d, err=%d). Please run "
"e2fsck to fix.", type, err);
for (type--; type >= 0; type--) {
struct inode *inode;
inode = sb_dqopt(sb)->files[type];
if (inode)
inode = igrab(inode);
dquot_quota_off(sb, type);
if (inode) {
lockdep_set_quota_inode(inode,
I_DATA_SEM_NORMAL);
iput(inode);
}
}
return err;
}
}
}
return 0;
}
static int ext4_quota_off(struct super_block *sb, int type)
{
struct inode *inode = sb_dqopt(sb)->files[type];
handle_t *handle;
int err;
/* Force all delayed allocation blocks to be allocated.
* Caller already holds s_umount sem */
if (test_opt(sb, DELALLOC))
sync_filesystem(sb);
if (!inode || !igrab(inode))
goto out;
err = dquot_quota_off(sb, type);
if (err || ext4_has_feature_quota(sb))
goto out_put;
inode_lock(inode);
/*
* Update modification times of quota files when userspace can
* start looking at them. If we fail, we return success anyway since
* this is not a hard failure and quotas are already disabled.
*/
handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
if (IS_ERR(handle)) {
err = PTR_ERR(handle);
goto out_unlock;
}
EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
inode->i_mtime = inode->i_ctime = current_time(inode);
err = ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
out_unlock:
inode_unlock(inode);
out_put:
lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
iput(inode);
return err;
out:
return dquot_quota_off(sb, type);
}
/* Read data from quotafile - avoid pagecache and such because we cannot afford
* acquiring the locks... As quota files are never truncated and quota code
* itself serializes the operations (and no one else should touch the files)
* we don't have to be afraid of races */
static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
int offset = off & (sb->s_blocksize - 1);
int tocopy;
size_t toread;
struct buffer_head *bh;
loff_t i_size = i_size_read(inode);
if (off > i_size)
return 0;
if (off+len > i_size)
len = i_size-off;
toread = len;
while (toread > 0) {
tocopy = sb->s_blocksize - offset < toread ?
sb->s_blocksize - offset : toread;
bh = ext4_bread(NULL, inode, blk, 0);
if (IS_ERR(bh))
return PTR_ERR(bh);
if (!bh) /* A hole? */
memset(data, 0, tocopy);
else
memcpy(data, bh->b_data+offset, tocopy);
brelse(bh);
offset = 0;
toread -= tocopy;
data += tocopy;
blk++;
}
return len;
}
/* Write to quotafile (we know the transaction is already started and has
* enough credits) */
static ssize_t ext4_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
int retries = 0;
struct buffer_head *bh;
handle_t *handle = journal_current_handle();
if (!handle) {
ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
" cancelled because transaction is not started",
(unsigned long long)off, (unsigned long long)len);
return -EIO;
}
/*
* Since we account only one data block in transaction credits,
* then it is impossible to cross a block boundary.
*/
if (sb->s_blocksize - offset < len) {
ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
" cancelled because not block aligned",
(unsigned long long)off, (unsigned long long)len);
return -EIO;
}
do {
bh = ext4_bread(handle, inode, blk,
EXT4_GET_BLOCKS_CREATE |
EXT4_GET_BLOCKS_METADATA_NOFAIL);
} while (PTR_ERR(bh) == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries));
if (IS_ERR(bh))
return PTR_ERR(bh);
if (!bh)
goto out;
BUFFER_TRACE(bh, "get write access");
err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
if (err) {
brelse(bh);
return err;
}
lock_buffer(bh);
memcpy(bh->b_data+offset, data, len);
flush_dcache_page(bh->b_page);
unlock_buffer(bh);
err = ext4_handle_dirty_metadata(handle, NULL, bh);
brelse(bh);
out:
if (inode->i_size < off + len) {
i_size_write(inode, off + len);
EXT4_I(inode)->i_disksize = inode->i_size;
err2 = ext4_mark_inode_dirty(handle, inode);
if (unlikely(err2 && !err))
err = err2;
}
return err ? err : len;
}
#endif
#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
static inline void register_as_ext2(void)
{
int err = register_filesystem(&ext2_fs_type);
if (err)
printk(KERN_WARNING
"EXT4-fs: Unable to register as ext2 (%d)\n", err);
}
static inline void unregister_as_ext2(void)
{
unregister_filesystem(&ext2_fs_type);
}
static inline int ext2_feature_set_ok(struct super_block *sb)
{
if (ext4_has_unknown_ext2_incompat_features(sb))
return 0;
if (sb_rdonly(sb))
return 1;
if (ext4_has_unknown_ext2_ro_compat_features(sb))
return 0;
return 1;
}
#else
static inline void register_as_ext2(void) { }
static inline void unregister_as_ext2(void) { }
static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
#endif
static inline void register_as_ext3(void)
{
int err = register_filesystem(&ext3_fs_type);
if (err)
printk(KERN_WARNING
"EXT4-fs: Unable to register as ext3 (%d)\n", err);
}
static inline void unregister_as_ext3(void)
{
unregister_filesystem(&ext3_fs_type);
}
static inline int ext3_feature_set_ok(struct super_block *sb)
{
if (ext4_has_unknown_ext3_incompat_features(sb))
return 0;
if (!ext4_has_feature_journal(sb))
return 0;
if (sb_rdonly(sb))
return 1;
if (ext4_has_unknown_ext3_ro_compat_features(sb))
return 0;
return 1;
}
static struct file_system_type ext4_fs_type = {
.owner = THIS_MODULE,
.name = "ext4",
.init_fs_context = ext4_init_fs_context,
.parameters = ext4_param_specs,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
};
MODULE_ALIAS_FS("ext4");
/* Shared across all ext4 file systems */
wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
static int __init ext4_init_fs(void)
{
int i, err;
ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
ext4_li_info = NULL;
/* Build-time check for flags consistency */
ext4_check_flag_values();
for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
init_waitqueue_head(&ext4__ioend_wq[i]);
err = ext4_init_es();
if (err)
return err;
err = ext4_init_pending();
if (err)
goto out7;
err = ext4_init_post_read_processing();
if (err)
goto out6;
err = ext4_init_pageio();
if (err)
goto out5;
err = ext4_init_system_zone();
if (err)
goto out4;
err = ext4_init_sysfs();
if (err)
goto out3;
err = ext4_init_mballoc();
if (err)
goto out2;
err = init_inodecache();
if (err)
goto out1;
err = ext4_fc_init_dentry_cache();
if (err)
goto out05;
register_as_ext3();
register_as_ext2();
err = register_filesystem(&ext4_fs_type);
if (err)
goto out;
return 0;
out:
unregister_as_ext2();
unregister_as_ext3();
ext4_fc_destroy_dentry_cache();
out05:
destroy_inodecache();
out1:
ext4_exit_mballoc();
out2:
ext4_exit_sysfs();
out3:
ext4_exit_system_zone();
out4:
ext4_exit_pageio();
out5:
ext4_exit_post_read_processing();
out6:
ext4_exit_pending();
out7:
ext4_exit_es();
return err;
}
static void __exit ext4_exit_fs(void)
{
ext4_destroy_lazyinit_thread();
unregister_as_ext2();
unregister_as_ext3();
unregister_filesystem(&ext4_fs_type);
ext4_fc_destroy_dentry_cache();
destroy_inodecache();
ext4_exit_mballoc();
ext4_exit_sysfs();
ext4_exit_system_zone();
ext4_exit_pageio();
ext4_exit_post_read_processing();
ext4_exit_es();
ext4_exit_pending();
}
MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
MODULE_DESCRIPTION("Fourth Extended Filesystem");
MODULE_LICENSE("GPL");
MODULE_SOFTDEP("pre: crc32c");
module_init(ext4_init_fs)
module_exit(ext4_exit_fs)