7d34a7d7da
Stop accessing the trans configuration via the iwl_cfg structure and always access it via the iwl_trans structure. This completes the requirements to disassociate the trans-specific configuration from the rest of the configuration. Signed-off-by: Luca Coelho <luciano.coelho@intel.com>
1506 lines
46 KiB
C
1506 lines
46 KiB
C
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
|
* Copyright(c) 2018 - 2019 Intel Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called COPYING.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <linuxwifi@intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
|
* Copyright(c) 2018 - 2019 Intel Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/firmware.h>
|
|
|
|
#include "iwl-drv.h"
|
|
#include "iwl-modparams.h"
|
|
#include "iwl-nvm-parse.h"
|
|
#include "iwl-prph.h"
|
|
#include "iwl-io.h"
|
|
#include "iwl-csr.h"
|
|
#include "fw/acpi.h"
|
|
#include "fw/api/nvm-reg.h"
|
|
#include "fw/api/commands.h"
|
|
#include "fw/api/cmdhdr.h"
|
|
#include "fw/img.h"
|
|
|
|
/* NVM offsets (in words) definitions */
|
|
enum nvm_offsets {
|
|
/* NVM HW-Section offset (in words) definitions */
|
|
SUBSYSTEM_ID = 0x0A,
|
|
HW_ADDR = 0x15,
|
|
|
|
/* NVM SW-Section offset (in words) definitions */
|
|
NVM_SW_SECTION = 0x1C0,
|
|
NVM_VERSION = 0,
|
|
RADIO_CFG = 1,
|
|
SKU = 2,
|
|
N_HW_ADDRS = 3,
|
|
NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
|
|
|
|
/* NVM calibration section offset (in words) definitions */
|
|
NVM_CALIB_SECTION = 0x2B8,
|
|
XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
|
|
|
|
/* NVM REGULATORY -Section offset (in words) definitions */
|
|
NVM_CHANNELS_SDP = 0,
|
|
};
|
|
|
|
enum ext_nvm_offsets {
|
|
/* NVM HW-Section offset (in words) definitions */
|
|
MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
|
|
|
|
/* NVM SW-Section offset (in words) definitions */
|
|
NVM_VERSION_EXT_NVM = 0,
|
|
RADIO_CFG_FAMILY_EXT_NVM = 0,
|
|
SKU_FAMILY_8000 = 2,
|
|
N_HW_ADDRS_FAMILY_8000 = 3,
|
|
|
|
/* NVM REGULATORY -Section offset (in words) definitions */
|
|
NVM_CHANNELS_EXTENDED = 0,
|
|
NVM_LAR_OFFSET_OLD = 0x4C7,
|
|
NVM_LAR_OFFSET = 0x507,
|
|
NVM_LAR_ENABLED = 0x7,
|
|
};
|
|
|
|
/* SKU Capabilities (actual values from NVM definition) */
|
|
enum nvm_sku_bits {
|
|
NVM_SKU_CAP_BAND_24GHZ = BIT(0),
|
|
NVM_SKU_CAP_BAND_52GHZ = BIT(1),
|
|
NVM_SKU_CAP_11N_ENABLE = BIT(2),
|
|
NVM_SKU_CAP_11AC_ENABLE = BIT(3),
|
|
NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
|
|
};
|
|
|
|
/*
|
|
* These are the channel numbers in the order that they are stored in the NVM
|
|
*/
|
|
static const u16 iwl_nvm_channels[] = {
|
|
/* 2.4 GHz */
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
/* 5 GHz */
|
|
36, 40, 44 , 48, 52, 56, 60, 64,
|
|
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
|
149, 153, 157, 161, 165
|
|
};
|
|
|
|
static const u16 iwl_ext_nvm_channels[] = {
|
|
/* 2.4 GHz */
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
/* 5 GHz */
|
|
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
|
|
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
|
149, 153, 157, 161, 165, 169, 173, 177, 181
|
|
};
|
|
|
|
static const u16 iwl_uhb_nvm_channels[] = {
|
|
/* 2.4 GHz */
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
/* 5 GHz */
|
|
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
|
|
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
|
149, 153, 157, 161, 165, 169, 173, 177, 181,
|
|
/* 6-7 GHz */
|
|
189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237, 241,
|
|
245, 249, 253, 257, 261, 265, 269, 273, 277, 281, 285, 289, 293, 297,
|
|
301, 305, 309, 313, 317, 321, 325, 329, 333, 337, 341, 345, 349, 353,
|
|
357, 361, 365, 369, 373, 377, 381, 385, 389, 393, 397, 401, 405, 409,
|
|
413, 417, 421
|
|
};
|
|
|
|
#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
|
|
#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
|
|
#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
|
|
#define NUM_2GHZ_CHANNELS 14
|
|
#define FIRST_2GHZ_HT_MINUS 5
|
|
#define LAST_2GHZ_HT_PLUS 9
|
|
#define N_HW_ADDR_MASK 0xF
|
|
|
|
/* rate data (static) */
|
|
static struct ieee80211_rate iwl_cfg80211_rates[] = {
|
|
{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
|
|
{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
|
|
{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
|
|
{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
|
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
|
|
{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
|
|
{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
|
|
{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
|
|
{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
|
|
{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
|
|
{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
|
|
{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
|
|
{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
|
|
};
|
|
#define RATES_24_OFFS 0
|
|
#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
|
|
#define RATES_52_OFFS 4
|
|
#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
|
|
|
|
/**
|
|
* enum iwl_nvm_channel_flags - channel flags in NVM
|
|
* @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
|
|
* @NVM_CHANNEL_IBSS: usable as an IBSS channel
|
|
* @NVM_CHANNEL_ACTIVE: active scanning allowed
|
|
* @NVM_CHANNEL_RADAR: radar detection required
|
|
* @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
|
|
* @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
|
|
* on same channel on 2.4 or same UNII band on 5.2
|
|
* @NVM_CHANNEL_UNIFORM: uniform spreading required
|
|
* @NVM_CHANNEL_20MHZ: 20 MHz channel okay
|
|
* @NVM_CHANNEL_40MHZ: 40 MHz channel okay
|
|
* @NVM_CHANNEL_80MHZ: 80 MHz channel okay
|
|
* @NVM_CHANNEL_160MHZ: 160 MHz channel okay
|
|
* @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
|
|
*/
|
|
enum iwl_nvm_channel_flags {
|
|
NVM_CHANNEL_VALID = BIT(0),
|
|
NVM_CHANNEL_IBSS = BIT(1),
|
|
NVM_CHANNEL_ACTIVE = BIT(3),
|
|
NVM_CHANNEL_RADAR = BIT(4),
|
|
NVM_CHANNEL_INDOOR_ONLY = BIT(5),
|
|
NVM_CHANNEL_GO_CONCURRENT = BIT(6),
|
|
NVM_CHANNEL_UNIFORM = BIT(7),
|
|
NVM_CHANNEL_20MHZ = BIT(8),
|
|
NVM_CHANNEL_40MHZ = BIT(9),
|
|
NVM_CHANNEL_80MHZ = BIT(10),
|
|
NVM_CHANNEL_160MHZ = BIT(11),
|
|
NVM_CHANNEL_DC_HIGH = BIT(12),
|
|
};
|
|
|
|
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
|
|
int chan, u32 flags)
|
|
{
|
|
#define CHECK_AND_PRINT_I(x) \
|
|
((flags & NVM_CHANNEL_##x) ? " " #x : "")
|
|
|
|
if (!(flags & NVM_CHANNEL_VALID)) {
|
|
IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
|
|
chan, flags);
|
|
return;
|
|
}
|
|
|
|
/* Note: already can print up to 101 characters, 110 is the limit! */
|
|
IWL_DEBUG_DEV(dev, level,
|
|
"Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
|
|
chan, flags,
|
|
CHECK_AND_PRINT_I(VALID),
|
|
CHECK_AND_PRINT_I(IBSS),
|
|
CHECK_AND_PRINT_I(ACTIVE),
|
|
CHECK_AND_PRINT_I(RADAR),
|
|
CHECK_AND_PRINT_I(INDOOR_ONLY),
|
|
CHECK_AND_PRINT_I(GO_CONCURRENT),
|
|
CHECK_AND_PRINT_I(UNIFORM),
|
|
CHECK_AND_PRINT_I(20MHZ),
|
|
CHECK_AND_PRINT_I(40MHZ),
|
|
CHECK_AND_PRINT_I(80MHZ),
|
|
CHECK_AND_PRINT_I(160MHZ),
|
|
CHECK_AND_PRINT_I(DC_HIGH));
|
|
#undef CHECK_AND_PRINT_I
|
|
}
|
|
|
|
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
|
|
u32 nvm_flags, const struct iwl_cfg *cfg)
|
|
{
|
|
u32 flags = IEEE80211_CHAN_NO_HT40;
|
|
|
|
if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
|
|
if (ch_num <= LAST_2GHZ_HT_PLUS)
|
|
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
|
|
if (ch_num >= FIRST_2GHZ_HT_MINUS)
|
|
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
|
|
} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
|
|
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
|
|
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
|
|
else
|
|
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
|
|
}
|
|
if (!(nvm_flags & NVM_CHANNEL_80MHZ))
|
|
flags |= IEEE80211_CHAN_NO_80MHZ;
|
|
if (!(nvm_flags & NVM_CHANNEL_160MHZ))
|
|
flags |= IEEE80211_CHAN_NO_160MHZ;
|
|
|
|
if (!(nvm_flags & NVM_CHANNEL_IBSS))
|
|
flags |= IEEE80211_CHAN_NO_IR;
|
|
|
|
if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
|
|
flags |= IEEE80211_CHAN_NO_IR;
|
|
|
|
if (nvm_flags & NVM_CHANNEL_RADAR)
|
|
flags |= IEEE80211_CHAN_RADAR;
|
|
|
|
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
|
|
flags |= IEEE80211_CHAN_INDOOR_ONLY;
|
|
|
|
/* Set the GO concurrent flag only in case that NO_IR is set.
|
|
* Otherwise it is meaningless
|
|
*/
|
|
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
|
|
(flags & IEEE80211_CHAN_NO_IR))
|
|
flags |= IEEE80211_CHAN_IR_CONCURRENT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
|
|
struct iwl_nvm_data *data,
|
|
const void * const nvm_ch_flags,
|
|
u32 sbands_flags, bool v4)
|
|
{
|
|
int ch_idx;
|
|
int n_channels = 0;
|
|
struct ieee80211_channel *channel;
|
|
u32 ch_flags;
|
|
int num_of_ch, num_2ghz_channels = NUM_2GHZ_CHANNELS;
|
|
const u16 *nvm_chan;
|
|
|
|
if (cfg->uhb_supported) {
|
|
num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
|
|
nvm_chan = iwl_uhb_nvm_channels;
|
|
} else if (cfg->nvm_type == IWL_NVM_EXT) {
|
|
num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
|
|
nvm_chan = iwl_ext_nvm_channels;
|
|
} else {
|
|
num_of_ch = IWL_NVM_NUM_CHANNELS;
|
|
nvm_chan = iwl_nvm_channels;
|
|
}
|
|
|
|
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
|
|
bool is_5ghz = (ch_idx >= num_2ghz_channels);
|
|
|
|
if (v4)
|
|
ch_flags =
|
|
__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
|
|
else
|
|
ch_flags =
|
|
__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
|
|
|
|
if (is_5ghz && !data->sku_cap_band_52ghz_enable)
|
|
continue;
|
|
|
|
/* workaround to disable wide channels in 5GHz */
|
|
if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
|
|
is_5ghz) {
|
|
ch_flags &= ~(NVM_CHANNEL_40MHZ |
|
|
NVM_CHANNEL_80MHZ |
|
|
NVM_CHANNEL_160MHZ);
|
|
}
|
|
|
|
if (ch_flags & NVM_CHANNEL_160MHZ)
|
|
data->vht160_supported = true;
|
|
|
|
if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
|
|
!(ch_flags & NVM_CHANNEL_VALID)) {
|
|
/*
|
|
* Channels might become valid later if lar is
|
|
* supported, hence we still want to add them to
|
|
* the list of supported channels to cfg80211.
|
|
*/
|
|
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
|
|
nvm_chan[ch_idx], ch_flags);
|
|
continue;
|
|
}
|
|
|
|
channel = &data->channels[n_channels];
|
|
n_channels++;
|
|
|
|
channel->hw_value = nvm_chan[ch_idx];
|
|
channel->band = is_5ghz ?
|
|
NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
|
|
channel->center_freq =
|
|
ieee80211_channel_to_frequency(
|
|
channel->hw_value, channel->band);
|
|
|
|
/* Initialize regulatory-based run-time data */
|
|
|
|
/*
|
|
* Default value - highest tx power value. max_power
|
|
* is not used in mvm, and is used for backwards compatibility
|
|
*/
|
|
channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
|
|
|
|
/* don't put limitations in case we're using LAR */
|
|
if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
|
|
channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
|
|
ch_idx, is_5ghz,
|
|
ch_flags, cfg);
|
|
else
|
|
channel->flags = 0;
|
|
|
|
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
|
|
channel->hw_value, ch_flags);
|
|
IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
|
|
channel->hw_value, channel->max_power);
|
|
}
|
|
|
|
return n_channels;
|
|
}
|
|
|
|
static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
|
|
struct iwl_nvm_data *data,
|
|
struct ieee80211_sta_vht_cap *vht_cap,
|
|
u8 tx_chains, u8 rx_chains)
|
|
{
|
|
const struct iwl_cfg *cfg = trans->cfg;
|
|
int num_rx_ants = num_of_ant(rx_chains);
|
|
int num_tx_ants = num_of_ant(tx_chains);
|
|
unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
|
|
IEEE80211_VHT_MAX_AMPDU_1024K);
|
|
|
|
vht_cap->vht_supported = true;
|
|
|
|
vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
|
|
IEEE80211_VHT_CAP_RXSTBC_1 |
|
|
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
|
|
3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
|
|
max_ampdu_exponent <<
|
|
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
|
|
|
|
if (data->vht160_supported)
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
|
|
IEEE80211_VHT_CAP_SHORT_GI_160;
|
|
|
|
if (cfg->vht_mu_mimo_supported)
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
|
|
|
|
if (cfg->ht_params->ldpc)
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
|
|
|
|
if (data->sku_cap_mimo_disabled) {
|
|
num_rx_ants = 1;
|
|
num_tx_ants = 1;
|
|
}
|
|
|
|
if (num_tx_ants > 1)
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
|
|
else
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
|
|
|
|
switch (iwlwifi_mod_params.amsdu_size) {
|
|
case IWL_AMSDU_DEF:
|
|
if (trans->trans_cfg->mq_rx_supported)
|
|
vht_cap->cap |=
|
|
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
|
|
else
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
|
|
break;
|
|
case IWL_AMSDU_2K:
|
|
if (trans->trans_cfg->mq_rx_supported)
|
|
vht_cap->cap |=
|
|
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
|
|
else
|
|
WARN(1, "RB size of 2K is not supported by this device\n");
|
|
break;
|
|
case IWL_AMSDU_4K:
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
|
|
break;
|
|
case IWL_AMSDU_8K:
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
|
|
break;
|
|
case IWL_AMSDU_12K:
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
vht_cap->vht_mcs.rx_mcs_map =
|
|
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
|
|
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
|
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
|
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
|
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
|
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
|
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
|
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
|
|
|
|
if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
|
|
vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
|
|
/* this works because NOT_SUPPORTED == 3 */
|
|
vht_cap->vht_mcs.rx_mcs_map |=
|
|
cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
|
|
}
|
|
|
|
vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
|
|
|
|
vht_cap->vht_mcs.tx_highest |=
|
|
cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
|
|
}
|
|
|
|
static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
|
|
{
|
|
.types_mask = BIT(NL80211_IFTYPE_STATION),
|
|
.he_cap = {
|
|
.has_he = true,
|
|
.he_cap_elem = {
|
|
.mac_cap_info[0] =
|
|
IEEE80211_HE_MAC_CAP0_HTC_HE |
|
|
IEEE80211_HE_MAC_CAP0_TWT_REQ,
|
|
.mac_cap_info[1] =
|
|
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
|
|
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
|
|
.mac_cap_info[2] =
|
|
IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
|
|
IEEE80211_HE_MAC_CAP2_ACK_EN,
|
|
.mac_cap_info[3] =
|
|
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
|
|
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
|
|
.mac_cap_info[4] =
|
|
IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
|
|
IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
|
|
.mac_cap_info[5] =
|
|
IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
|
|
IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
|
|
IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
|
|
IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
|
|
IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
|
|
.phy_cap_info[0] =
|
|
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
|
|
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
|
|
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
|
|
.phy_cap_info[1] =
|
|
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
|
|
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
|
|
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
|
|
.phy_cap_info[2] =
|
|
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
|
|
.phy_cap_info[3] =
|
|
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
|
|
IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
|
|
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
|
|
IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
|
|
.phy_cap_info[4] =
|
|
IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
|
|
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
|
|
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
|
|
.phy_cap_info[5] =
|
|
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
|
|
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
|
|
.phy_cap_info[6] =
|
|
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
|
|
.phy_cap_info[7] =
|
|
IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
|
|
IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
|
|
IEEE80211_HE_PHY_CAP7_MAX_NC_1,
|
|
.phy_cap_info[8] =
|
|
IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
|
|
IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
|
|
IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
|
|
IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
|
|
IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
|
|
.phy_cap_info[9] =
|
|
IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
|
|
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
|
|
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
|
|
IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
|
|
},
|
|
/*
|
|
* Set default Tx/Rx HE MCS NSS Support field.
|
|
* Indicate support for up to 2 spatial streams and all
|
|
* MCS, without any special cases
|
|
*/
|
|
.he_mcs_nss_supp = {
|
|
.rx_mcs_80 = cpu_to_le16(0xfffa),
|
|
.tx_mcs_80 = cpu_to_le16(0xfffa),
|
|
.rx_mcs_160 = cpu_to_le16(0xfffa),
|
|
.tx_mcs_160 = cpu_to_le16(0xfffa),
|
|
.rx_mcs_80p80 = cpu_to_le16(0xffff),
|
|
.tx_mcs_80p80 = cpu_to_le16(0xffff),
|
|
},
|
|
/*
|
|
* Set default PPE thresholds, with PPET16 set to 0,
|
|
* PPET8 set to 7
|
|
*/
|
|
.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
|
|
},
|
|
},
|
|
{
|
|
.types_mask = BIT(NL80211_IFTYPE_AP),
|
|
.he_cap = {
|
|
.has_he = true,
|
|
.he_cap_elem = {
|
|
.mac_cap_info[0] =
|
|
IEEE80211_HE_MAC_CAP0_HTC_HE,
|
|
.mac_cap_info[1] =
|
|
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
|
|
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
|
|
.mac_cap_info[2] =
|
|
IEEE80211_HE_MAC_CAP2_BSR |
|
|
IEEE80211_HE_MAC_CAP2_ACK_EN,
|
|
.mac_cap_info[3] =
|
|
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
|
|
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
|
|
.mac_cap_info[4] =
|
|
IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
|
|
.mac_cap_info[5] =
|
|
IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
|
|
.phy_cap_info[0] =
|
|
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
|
|
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
|
|
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
|
|
.phy_cap_info[1] =
|
|
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
|
|
.phy_cap_info[2] =
|
|
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
|
|
.phy_cap_info[3] =
|
|
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
|
|
IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
|
|
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
|
|
IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
|
|
.phy_cap_info[4] =
|
|
IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
|
|
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
|
|
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
|
|
.phy_cap_info[5] =
|
|
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
|
|
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
|
|
.phy_cap_info[6] =
|
|
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
|
|
.phy_cap_info[7] =
|
|
IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
|
|
IEEE80211_HE_PHY_CAP7_MAX_NC_1,
|
|
.phy_cap_info[8] =
|
|
IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
|
|
IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
|
|
IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
|
|
IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
|
|
IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
|
|
.phy_cap_info[9] =
|
|
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
|
|
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
|
|
IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
|
|
},
|
|
/*
|
|
* Set default Tx/Rx HE MCS NSS Support field.
|
|
* Indicate support for up to 2 spatial streams and all
|
|
* MCS, without any special cases
|
|
*/
|
|
.he_mcs_nss_supp = {
|
|
.rx_mcs_80 = cpu_to_le16(0xfffa),
|
|
.tx_mcs_80 = cpu_to_le16(0xfffa),
|
|
.rx_mcs_160 = cpu_to_le16(0xfffa),
|
|
.tx_mcs_160 = cpu_to_le16(0xfffa),
|
|
.rx_mcs_80p80 = cpu_to_le16(0xffff),
|
|
.tx_mcs_80p80 = cpu_to_le16(0xffff),
|
|
},
|
|
/*
|
|
* Set default PPE thresholds, with PPET16 set to 0,
|
|
* PPET8 set to 7
|
|
*/
|
|
.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
|
|
},
|
|
},
|
|
};
|
|
|
|
static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
|
|
u8 tx_chains, u8 rx_chains)
|
|
{
|
|
sband->iftype_data = iwl_he_capa;
|
|
sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
|
|
|
|
/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
|
|
if ((tx_chains & rx_chains) != ANT_AB) {
|
|
int i;
|
|
|
|
for (i = 0; i < sband->n_iftype_data; i++) {
|
|
iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
|
|
~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
|
|
iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
|
|
~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
|
|
iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
|
|
~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void iwl_init_sbands(struct iwl_trans *trans,
|
|
struct iwl_nvm_data *data,
|
|
const void *nvm_ch_flags, u8 tx_chains,
|
|
u8 rx_chains, u32 sbands_flags, bool v4)
|
|
{
|
|
struct device *dev = trans->dev;
|
|
const struct iwl_cfg *cfg = trans->cfg;
|
|
int n_channels;
|
|
int n_used = 0;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
|
|
sbands_flags, v4);
|
|
sband = &data->bands[NL80211_BAND_2GHZ];
|
|
sband->band = NL80211_BAND_2GHZ;
|
|
sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
|
|
sband->n_bitrates = N_RATES_24;
|
|
n_used += iwl_init_sband_channels(data, sband, n_channels,
|
|
NL80211_BAND_2GHZ);
|
|
iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
|
|
tx_chains, rx_chains);
|
|
|
|
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
|
|
iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
|
|
|
|
sband = &data->bands[NL80211_BAND_5GHZ];
|
|
sband->band = NL80211_BAND_5GHZ;
|
|
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
|
|
sband->n_bitrates = N_RATES_52;
|
|
n_used += iwl_init_sband_channels(data, sband, n_channels,
|
|
NL80211_BAND_5GHZ);
|
|
iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
|
|
tx_chains, rx_chains);
|
|
if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
|
|
iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
|
|
tx_chains, rx_chains);
|
|
|
|
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
|
|
iwl_init_he_hw_capab(sband, tx_chains, rx_chains);
|
|
|
|
if (n_channels != n_used)
|
|
IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
|
|
n_used, n_channels);
|
|
}
|
|
|
|
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
|
|
const __le16 *phy_sku)
|
|
{
|
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
|
return le16_to_cpup(nvm_sw + SKU);
|
|
|
|
return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
|
|
}
|
|
|
|
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
|
|
{
|
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
|
return le16_to_cpup(nvm_sw + NVM_VERSION);
|
|
else
|
|
return le32_to_cpup((__le32 *)(nvm_sw +
|
|
NVM_VERSION_EXT_NVM));
|
|
}
|
|
|
|
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
|
|
const __le16 *phy_sku)
|
|
{
|
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
|
return le16_to_cpup(nvm_sw + RADIO_CFG);
|
|
|
|
return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
|
|
|
|
}
|
|
|
|
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
|
|
{
|
|
int n_hw_addr;
|
|
|
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
|
return le16_to_cpup(nvm_sw + N_HW_ADDRS);
|
|
|
|
n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
|
|
|
|
return n_hw_addr & N_HW_ADDR_MASK;
|
|
}
|
|
|
|
static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
|
|
struct iwl_nvm_data *data,
|
|
u32 radio_cfg)
|
|
{
|
|
if (cfg->nvm_type != IWL_NVM_EXT) {
|
|
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
|
|
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
|
|
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
|
|
data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
|
|
return;
|
|
}
|
|
|
|
/* set the radio configuration for family 8000 */
|
|
data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
|
|
data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
|
|
data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
|
|
data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
|
|
data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
|
|
data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
|
|
}
|
|
|
|
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
|
|
{
|
|
const u8 *hw_addr;
|
|
|
|
hw_addr = (const u8 *)&mac_addr0;
|
|
dest[0] = hw_addr[3];
|
|
dest[1] = hw_addr[2];
|
|
dest[2] = hw_addr[1];
|
|
dest[3] = hw_addr[0];
|
|
|
|
hw_addr = (const u8 *)&mac_addr1;
|
|
dest[4] = hw_addr[1];
|
|
dest[5] = hw_addr[0];
|
|
}
|
|
|
|
static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
|
|
struct iwl_nvm_data *data)
|
|
{
|
|
__le32 mac_addr0 =
|
|
cpu_to_le32(iwl_read32(trans,
|
|
trans->trans_cfg->csr->mac_addr0_strap));
|
|
__le32 mac_addr1 =
|
|
cpu_to_le32(iwl_read32(trans,
|
|
trans->trans_cfg->csr->mac_addr1_strap));
|
|
|
|
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
|
|
/*
|
|
* If the OEM fused a valid address, use it instead of the one in the
|
|
* OTP
|
|
*/
|
|
if (is_valid_ether_addr(data->hw_addr))
|
|
return;
|
|
|
|
mac_addr0 = cpu_to_le32(iwl_read32(trans,
|
|
trans->trans_cfg->csr->mac_addr0_otp));
|
|
mac_addr1 = cpu_to_le32(iwl_read32(trans,
|
|
trans->trans_cfg->csr->mac_addr1_otp));
|
|
|
|
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
|
|
}
|
|
|
|
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
|
|
const struct iwl_cfg *cfg,
|
|
struct iwl_nvm_data *data,
|
|
const __le16 *mac_override,
|
|
const __be16 *nvm_hw)
|
|
{
|
|
const u8 *hw_addr;
|
|
|
|
if (mac_override) {
|
|
static const u8 reserved_mac[] = {
|
|
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
|
|
};
|
|
|
|
hw_addr = (const u8 *)(mac_override +
|
|
MAC_ADDRESS_OVERRIDE_EXT_NVM);
|
|
|
|
/*
|
|
* Store the MAC address from MAO section.
|
|
* No byte swapping is required in MAO section
|
|
*/
|
|
memcpy(data->hw_addr, hw_addr, ETH_ALEN);
|
|
|
|
/*
|
|
* Force the use of the OTP MAC address in case of reserved MAC
|
|
* address in the NVM, or if address is given but invalid.
|
|
*/
|
|
if (is_valid_ether_addr(data->hw_addr) &&
|
|
memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
|
|
return;
|
|
|
|
IWL_ERR(trans,
|
|
"mac address from nvm override section is not valid\n");
|
|
}
|
|
|
|
if (nvm_hw) {
|
|
/* read the mac address from WFMP registers */
|
|
__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
|
|
WFMP_MAC_ADDR_0));
|
|
__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
|
|
WFMP_MAC_ADDR_1));
|
|
|
|
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
|
|
|
|
return;
|
|
}
|
|
|
|
IWL_ERR(trans, "mac address is not found\n");
|
|
}
|
|
|
|
static int iwl_set_hw_address(struct iwl_trans *trans,
|
|
const struct iwl_cfg *cfg,
|
|
struct iwl_nvm_data *data, const __be16 *nvm_hw,
|
|
const __le16 *mac_override)
|
|
{
|
|
if (cfg->mac_addr_from_csr) {
|
|
iwl_set_hw_address_from_csr(trans, data);
|
|
} else if (cfg->nvm_type != IWL_NVM_EXT) {
|
|
const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
|
|
|
|
/* The byte order is little endian 16 bit, meaning 214365 */
|
|
data->hw_addr[0] = hw_addr[1];
|
|
data->hw_addr[1] = hw_addr[0];
|
|
data->hw_addr[2] = hw_addr[3];
|
|
data->hw_addr[3] = hw_addr[2];
|
|
data->hw_addr[4] = hw_addr[5];
|
|
data->hw_addr[5] = hw_addr[4];
|
|
} else {
|
|
iwl_set_hw_address_family_8000(trans, cfg, data,
|
|
mac_override, nvm_hw);
|
|
}
|
|
|
|
if (!is_valid_ether_addr(data->hw_addr)) {
|
|
IWL_ERR(trans, "no valid mac address was found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
|
|
const __be16 *nvm_hw)
|
|
{
|
|
/*
|
|
* Workaround a bug in Indonesia SKUs where the regulatory in
|
|
* some 7000-family OTPs erroneously allow wide channels in
|
|
* 5GHz. To check for Indonesia, we take the SKU value from
|
|
* bits 1-4 in the subsystem ID and check if it is either 5 or
|
|
* 9. In those cases, we need to force-disable wide channels
|
|
* in 5GHz otherwise the FW will throw a sysassert when we try
|
|
* to use them.
|
|
*/
|
|
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
|
|
/*
|
|
* Unlike the other sections in the NVM, the hw
|
|
* section uses big-endian.
|
|
*/
|
|
u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
|
|
u8 sku = (subsystem_id & 0x1e) >> 1;
|
|
|
|
if (sku == 5 || sku == 9) {
|
|
IWL_DEBUG_EEPROM(trans->dev,
|
|
"disabling wide channels in 5GHz (0x%0x %d)\n",
|
|
subsystem_id, sku);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
struct iwl_nvm_data *
|
|
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
|
|
const __be16 *nvm_hw, const __le16 *nvm_sw,
|
|
const __le16 *nvm_calib, const __le16 *regulatory,
|
|
const __le16 *mac_override, const __le16 *phy_sku,
|
|
u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
|
|
{
|
|
struct iwl_nvm_data *data;
|
|
bool lar_enabled;
|
|
u32 sku, radio_cfg;
|
|
u32 sbands_flags = 0;
|
|
u16 lar_config;
|
|
const __le16 *ch_section;
|
|
|
|
if (cfg->uhb_supported)
|
|
data = kzalloc(struct_size(data, channels,
|
|
IWL_NVM_NUM_CHANNELS_UHB),
|
|
GFP_KERNEL);
|
|
else if (cfg->nvm_type != IWL_NVM_EXT)
|
|
data = kzalloc(struct_size(data, channels,
|
|
IWL_NVM_NUM_CHANNELS),
|
|
GFP_KERNEL);
|
|
else
|
|
data = kzalloc(struct_size(data, channels,
|
|
IWL_NVM_NUM_CHANNELS_EXT),
|
|
GFP_KERNEL);
|
|
if (!data)
|
|
return NULL;
|
|
|
|
data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
|
|
|
|
radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
|
|
iwl_set_radio_cfg(cfg, data, radio_cfg);
|
|
if (data->valid_tx_ant)
|
|
tx_chains &= data->valid_tx_ant;
|
|
if (data->valid_rx_ant)
|
|
rx_chains &= data->valid_rx_ant;
|
|
|
|
sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
|
|
data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
|
|
data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
|
|
data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
|
|
if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
|
|
data->sku_cap_11n_enable = false;
|
|
data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
|
|
(sku & NVM_SKU_CAP_11AC_ENABLE);
|
|
data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
|
|
|
|
data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
|
|
|
|
if (cfg->nvm_type != IWL_NVM_EXT) {
|
|
/* Checking for required sections */
|
|
if (!nvm_calib) {
|
|
IWL_ERR(trans,
|
|
"Can't parse empty Calib NVM sections\n");
|
|
kfree(data);
|
|
return NULL;
|
|
}
|
|
|
|
ch_section = cfg->nvm_type == IWL_NVM_SDP ?
|
|
®ulatory[NVM_CHANNELS_SDP] :
|
|
&nvm_sw[NVM_CHANNELS];
|
|
|
|
/* in family 8000 Xtal calibration values moved to OTP */
|
|
data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
|
|
data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
|
|
lar_enabled = true;
|
|
} else {
|
|
u16 lar_offset = data->nvm_version < 0xE39 ?
|
|
NVM_LAR_OFFSET_OLD :
|
|
NVM_LAR_OFFSET;
|
|
|
|
lar_config = le16_to_cpup(regulatory + lar_offset);
|
|
data->lar_enabled = !!(lar_config &
|
|
NVM_LAR_ENABLED);
|
|
lar_enabled = data->lar_enabled;
|
|
ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
|
|
}
|
|
|
|
/* If no valid mac address was found - bail out */
|
|
if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
|
|
kfree(data);
|
|
return NULL;
|
|
}
|
|
|
|
if (lar_fw_supported && lar_enabled)
|
|
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
|
|
|
|
if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
|
|
sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
|
|
|
|
iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
|
|
sbands_flags, false);
|
|
data->calib_version = 255;
|
|
|
|
return data;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
|
|
|
|
static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
|
|
int ch_idx, u16 nvm_flags,
|
|
const struct iwl_cfg *cfg)
|
|
{
|
|
u32 flags = NL80211_RRF_NO_HT40;
|
|
|
|
if (ch_idx < NUM_2GHZ_CHANNELS &&
|
|
(nvm_flags & NVM_CHANNEL_40MHZ)) {
|
|
if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
|
|
flags &= ~NL80211_RRF_NO_HT40PLUS;
|
|
if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
|
|
flags &= ~NL80211_RRF_NO_HT40MINUS;
|
|
} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
|
|
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
|
|
flags &= ~NL80211_RRF_NO_HT40PLUS;
|
|
else
|
|
flags &= ~NL80211_RRF_NO_HT40MINUS;
|
|
}
|
|
|
|
if (!(nvm_flags & NVM_CHANNEL_80MHZ))
|
|
flags |= NL80211_RRF_NO_80MHZ;
|
|
if (!(nvm_flags & NVM_CHANNEL_160MHZ))
|
|
flags |= NL80211_RRF_NO_160MHZ;
|
|
|
|
if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
|
|
flags |= NL80211_RRF_NO_IR;
|
|
|
|
if (nvm_flags & NVM_CHANNEL_RADAR)
|
|
flags |= NL80211_RRF_DFS;
|
|
|
|
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
|
|
flags |= NL80211_RRF_NO_OUTDOOR;
|
|
|
|
/* Set the GO concurrent flag only in case that NO_IR is set.
|
|
* Otherwise it is meaningless
|
|
*/
|
|
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
|
|
(flags & NL80211_RRF_NO_IR))
|
|
flags |= NL80211_RRF_GO_CONCURRENT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
struct ieee80211_regdomain *
|
|
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
|
|
int num_of_ch, __le32 *channels, u16 fw_mcc,
|
|
u16 geo_info)
|
|
{
|
|
int ch_idx;
|
|
u16 ch_flags;
|
|
u32 reg_rule_flags, prev_reg_rule_flags = 0;
|
|
const u16 *nvm_chan;
|
|
struct ieee80211_regdomain *regd, *copy_rd;
|
|
struct ieee80211_reg_rule *rule;
|
|
enum nl80211_band band;
|
|
int center_freq, prev_center_freq = 0;
|
|
int valid_rules = 0;
|
|
bool new_rule;
|
|
int max_num_ch;
|
|
|
|
if (cfg->uhb_supported) {
|
|
max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
|
|
nvm_chan = iwl_uhb_nvm_channels;
|
|
} else if (cfg->nvm_type == IWL_NVM_EXT) {
|
|
max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
|
|
nvm_chan = iwl_ext_nvm_channels;
|
|
} else {
|
|
max_num_ch = IWL_NVM_NUM_CHANNELS;
|
|
nvm_chan = iwl_nvm_channels;
|
|
}
|
|
|
|
if (WARN_ON(num_of_ch > max_num_ch))
|
|
num_of_ch = max_num_ch;
|
|
|
|
if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
|
|
num_of_ch);
|
|
|
|
/* build a regdomain rule for every valid channel */
|
|
regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
|
|
if (!regd)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* set alpha2 from FW. */
|
|
regd->alpha2[0] = fw_mcc >> 8;
|
|
regd->alpha2[1] = fw_mcc & 0xff;
|
|
|
|
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
|
|
ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
|
|
band = (ch_idx < NUM_2GHZ_CHANNELS) ?
|
|
NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
|
|
center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
|
|
band);
|
|
new_rule = false;
|
|
|
|
if (!(ch_flags & NVM_CHANNEL_VALID)) {
|
|
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
|
|
nvm_chan[ch_idx], ch_flags);
|
|
continue;
|
|
}
|
|
|
|
reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
|
|
ch_flags, cfg);
|
|
|
|
/* we can't continue the same rule */
|
|
if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
|
|
center_freq - prev_center_freq > 20) {
|
|
valid_rules++;
|
|
new_rule = true;
|
|
}
|
|
|
|
rule = ®d->reg_rules[valid_rules - 1];
|
|
|
|
if (new_rule)
|
|
rule->freq_range.start_freq_khz =
|
|
MHZ_TO_KHZ(center_freq - 10);
|
|
|
|
rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
|
|
|
|
/* this doesn't matter - not used by FW */
|
|
rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
|
|
rule->power_rule.max_eirp =
|
|
DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
|
|
|
|
rule->flags = reg_rule_flags;
|
|
|
|
/* rely on auto-calculation to merge BW of contiguous chans */
|
|
rule->flags |= NL80211_RRF_AUTO_BW;
|
|
rule->freq_range.max_bandwidth_khz = 0;
|
|
|
|
prev_center_freq = center_freq;
|
|
prev_reg_rule_flags = reg_rule_flags;
|
|
|
|
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
|
|
nvm_chan[ch_idx], ch_flags);
|
|
|
|
if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
|
|
band == NL80211_BAND_2GHZ)
|
|
continue;
|
|
|
|
reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
|
|
}
|
|
|
|
regd->n_reg_rules = valid_rules;
|
|
|
|
/*
|
|
* Narrow down regdom for unused regulatory rules to prevent hole
|
|
* between reg rules to wmm rules.
|
|
*/
|
|
copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
|
|
GFP_KERNEL);
|
|
if (!copy_rd)
|
|
copy_rd = ERR_PTR(-ENOMEM);
|
|
|
|
kfree(regd);
|
|
return copy_rd;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
|
|
|
|
#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
|
|
#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
|
|
#define MAX_NVM_FILE_LEN 16384
|
|
|
|
void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
|
|
unsigned int len)
|
|
{
|
|
#define IWL_4165_DEVICE_ID 0x5501
|
|
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
|
|
|
|
if (section == NVM_SECTION_TYPE_PHY_SKU &&
|
|
hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
|
|
(data[4] & NVM_SKU_CAP_MIMO_DISABLE))
|
|
/* OTP 0x52 bug work around: it's a 1x1 device */
|
|
data[3] = ANT_B | (ANT_B << 4);
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
|
|
|
|
/*
|
|
* Reads external NVM from a file into mvm->nvm_sections
|
|
*
|
|
* HOW TO CREATE THE NVM FILE FORMAT:
|
|
* ------------------------------
|
|
* 1. create hex file, format:
|
|
* 3800 -> header
|
|
* 0000 -> header
|
|
* 5a40 -> data
|
|
*
|
|
* rev - 6 bit (word1)
|
|
* len - 10 bit (word1)
|
|
* id - 4 bit (word2)
|
|
* rsv - 12 bit (word2)
|
|
*
|
|
* 2. flip 8bits with 8 bits per line to get the right NVM file format
|
|
*
|
|
* 3. create binary file from the hex file
|
|
*
|
|
* 4. save as "iNVM_xxx.bin" under /lib/firmware
|
|
*/
|
|
int iwl_read_external_nvm(struct iwl_trans *trans,
|
|
const char *nvm_file_name,
|
|
struct iwl_nvm_section *nvm_sections)
|
|
{
|
|
int ret, section_size;
|
|
u16 section_id;
|
|
const struct firmware *fw_entry;
|
|
const struct {
|
|
__le16 word1;
|
|
__le16 word2;
|
|
u8 data[];
|
|
} *file_sec;
|
|
const u8 *eof;
|
|
u8 *temp;
|
|
int max_section_size;
|
|
const __le32 *dword_buff;
|
|
|
|
#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
|
|
#define NVM_WORD2_ID(x) (x >> 12)
|
|
#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
|
|
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
|
|
#define NVM_HEADER_0 (0x2A504C54)
|
|
#define NVM_HEADER_1 (0x4E564D2A)
|
|
#define NVM_HEADER_SIZE (4 * sizeof(u32))
|
|
|
|
IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
|
|
|
|
/* Maximal size depends on NVM version */
|
|
if (trans->cfg->nvm_type != IWL_NVM_EXT)
|
|
max_section_size = IWL_MAX_NVM_SECTION_SIZE;
|
|
else
|
|
max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
|
|
|
|
/*
|
|
* Obtain NVM image via request_firmware. Since we already used
|
|
* request_firmware_nowait() for the firmware binary load and only
|
|
* get here after that we assume the NVM request can be satisfied
|
|
* synchronously.
|
|
*/
|
|
ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
|
|
if (ret) {
|
|
IWL_ERR(trans, "ERROR: %s isn't available %d\n",
|
|
nvm_file_name, ret);
|
|
return ret;
|
|
}
|
|
|
|
IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
|
|
nvm_file_name, fw_entry->size);
|
|
|
|
if (fw_entry->size > MAX_NVM_FILE_LEN) {
|
|
IWL_ERR(trans, "NVM file too large\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
eof = fw_entry->data + fw_entry->size;
|
|
dword_buff = (__le32 *)fw_entry->data;
|
|
|
|
/* some NVM file will contain a header.
|
|
* The header is identified by 2 dwords header as follow:
|
|
* dword[0] = 0x2A504C54
|
|
* dword[1] = 0x4E564D2A
|
|
*
|
|
* This header must be skipped when providing the NVM data to the FW.
|
|
*/
|
|
if (fw_entry->size > NVM_HEADER_SIZE &&
|
|
dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
|
|
dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
|
|
file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
|
|
IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
|
|
IWL_INFO(trans, "NVM Manufacturing date %08X\n",
|
|
le32_to_cpu(dword_buff[3]));
|
|
|
|
/* nvm file validation, dword_buff[2] holds the file version */
|
|
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
|
|
CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
|
|
le32_to_cpu(dword_buff[2]) < 0xE4A) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
} else {
|
|
file_sec = (void *)fw_entry->data;
|
|
}
|
|
|
|
while (true) {
|
|
if (file_sec->data > eof) {
|
|
IWL_ERR(trans,
|
|
"ERROR - NVM file too short for section header\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* check for EOF marker */
|
|
if (!file_sec->word1 && !file_sec->word2) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
if (trans->cfg->nvm_type != IWL_NVM_EXT) {
|
|
section_size =
|
|
2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
|
|
section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
|
|
} else {
|
|
section_size = 2 * EXT_NVM_WORD2_LEN(
|
|
le16_to_cpu(file_sec->word2));
|
|
section_id = EXT_NVM_WORD1_ID(
|
|
le16_to_cpu(file_sec->word1));
|
|
}
|
|
|
|
if (section_size > max_section_size) {
|
|
IWL_ERR(trans, "ERROR - section too large (%d)\n",
|
|
section_size);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (!section_size) {
|
|
IWL_ERR(trans, "ERROR - section empty\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (file_sec->data + section_size > eof) {
|
|
IWL_ERR(trans,
|
|
"ERROR - NVM file too short for section (%d bytes)\n",
|
|
section_size);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
|
|
"Invalid NVM section ID %d\n", section_id)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
|
|
if (!temp) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
|
|
|
|
kfree(nvm_sections[section_id].data);
|
|
nvm_sections[section_id].data = temp;
|
|
nvm_sections[section_id].length = section_size;
|
|
|
|
/* advance to the next section */
|
|
file_sec = (void *)(file_sec->data + section_size);
|
|
}
|
|
out:
|
|
release_firmware(fw_entry);
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
|
|
|
|
struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
|
|
const struct iwl_fw *fw)
|
|
{
|
|
struct iwl_nvm_get_info cmd = {};
|
|
struct iwl_nvm_data *nvm;
|
|
struct iwl_host_cmd hcmd = {
|
|
.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
|
|
.data = { &cmd, },
|
|
.len = { sizeof(cmd) },
|
|
.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
|
|
};
|
|
int ret;
|
|
bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
|
|
fw_has_capa(&fw->ucode_capa,
|
|
IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
|
|
bool empty_otp;
|
|
u32 mac_flags;
|
|
u32 sbands_flags = 0;
|
|
/*
|
|
* All the values in iwl_nvm_get_info_rsp v4 are the same as
|
|
* in v3, except for the channel profile part of the
|
|
* regulatory. So we can just access the new struct, with the
|
|
* exception of the latter.
|
|
*/
|
|
struct iwl_nvm_get_info_rsp *rsp;
|
|
struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
|
|
bool v4 = fw_has_api(&fw->ucode_capa,
|
|
IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
|
|
size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
|
|
void *channel_profile;
|
|
|
|
ret = iwl_trans_send_cmd(trans, &hcmd);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
|
|
"Invalid payload len in NVM response from FW %d",
|
|
iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
rsp = (void *)hcmd.resp_pkt->data;
|
|
empty_otp = !!(le32_to_cpu(rsp->general.flags) &
|
|
NVM_GENERAL_FLAGS_EMPTY_OTP);
|
|
if (empty_otp)
|
|
IWL_INFO(trans, "OTP is empty\n");
|
|
|
|
nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
|
|
if (!nvm) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
iwl_set_hw_address_from_csr(trans, nvm);
|
|
/* TODO: if platform NVM has MAC address - override it here */
|
|
|
|
if (!is_valid_ether_addr(nvm->hw_addr)) {
|
|
IWL_ERR(trans, "no valid mac address was found\n");
|
|
ret = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
|
|
IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
|
|
|
|
/* Initialize general data */
|
|
nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
|
|
nvm->n_hw_addrs = rsp->general.n_hw_addrs;
|
|
if (nvm->n_hw_addrs == 0)
|
|
IWL_WARN(trans,
|
|
"Firmware declares no reserved mac addresses. OTP is empty: %d\n",
|
|
empty_otp);
|
|
|
|
/* Initialize MAC sku data */
|
|
mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
|
|
nvm->sku_cap_11ac_enable =
|
|
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
|
|
nvm->sku_cap_11n_enable =
|
|
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
|
|
nvm->sku_cap_11ax_enable =
|
|
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
|
|
nvm->sku_cap_band_24ghz_enable =
|
|
!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
|
|
nvm->sku_cap_band_52ghz_enable =
|
|
!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
|
|
nvm->sku_cap_mimo_disabled =
|
|
!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
|
|
|
|
/* Initialize PHY sku data */
|
|
nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
|
|
nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
|
|
|
|
if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
|
|
nvm->lar_enabled = true;
|
|
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
|
|
}
|
|
|
|
rsp_v3 = (void *)rsp;
|
|
channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
|
|
(void *)rsp_v3->regulatory.channel_profile;
|
|
|
|
iwl_init_sbands(trans, nvm,
|
|
channel_profile,
|
|
nvm->valid_tx_ant & fw->valid_tx_ant,
|
|
nvm->valid_rx_ant & fw->valid_rx_ant,
|
|
sbands_flags, v4);
|
|
|
|
iwl_free_resp(&hcmd);
|
|
return nvm;
|
|
|
|
err_free:
|
|
kfree(nvm);
|
|
out:
|
|
iwl_free_resp(&hcmd);
|
|
return ERR_PTR(ret);
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_get_nvm);
|