linux/arch/x86/mm/dump_pagetables.c
Thomas Gleixner a4b51ef655 x86/mm/dump_pagetables: Allow dumping current pagetables
Add two debugfs files which allow to dump the pagetable of the current
task.

current_kernel dumps the regular page table. This is the page table which
is normally shared between kernel and user space. If kernel page table
isolation is enabled this is the kernel space mapping.

If kernel page table isolation is enabled the second file, current_user,
dumps the user space page table.

These files allow to verify the resulting page tables for page table
isolation, but even in the normal case its useful to be able to inspect
user space page tables of current for debugging purposes.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23 21:13:01 +01:00

586 lines
15 KiB
C

/*
* Debug helper to dump the current kernel pagetables of the system
* so that we can see what the various memory ranges are set to.
*
* (C) Copyright 2008 Intel Corporation
*
* Author: Arjan van de Ven <arjan@linux.intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/debugfs.h>
#include <linux/kasan.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <asm/pgtable.h>
/*
* The dumper groups pagetable entries of the same type into one, and for
* that it needs to keep some state when walking, and flush this state
* when a "break" in the continuity is found.
*/
struct pg_state {
int level;
pgprot_t current_prot;
unsigned long start_address;
unsigned long current_address;
const struct addr_marker *marker;
unsigned long lines;
bool to_dmesg;
bool check_wx;
unsigned long wx_pages;
};
struct addr_marker {
unsigned long start_address;
const char *name;
unsigned long max_lines;
};
/* Address space markers hints */
#ifdef CONFIG_X86_64
enum address_markers_idx {
USER_SPACE_NR = 0,
KERNEL_SPACE_NR,
LOW_KERNEL_NR,
#if defined(CONFIG_MODIFY_LDT_SYSCALL) && defined(CONFIG_X86_5LEVEL)
LDT_NR,
#endif
VMALLOC_START_NR,
VMEMMAP_START_NR,
#ifdef CONFIG_KASAN
KASAN_SHADOW_START_NR,
KASAN_SHADOW_END_NR,
#endif
#if defined(CONFIG_MODIFY_LDT_SYSCALL) && !defined(CONFIG_X86_5LEVEL)
LDT_NR,
#endif
CPU_ENTRY_AREA_NR,
#ifdef CONFIG_X86_ESPFIX64
ESPFIX_START_NR,
#endif
#ifdef CONFIG_EFI
EFI_END_NR,
#endif
HIGH_KERNEL_NR,
MODULES_VADDR_NR,
MODULES_END_NR,
FIXADDR_START_NR,
END_OF_SPACE_NR,
};
static struct addr_marker address_markers[] = {
[USER_SPACE_NR] = { 0, "User Space" },
[KERNEL_SPACE_NR] = { (1UL << 63), "Kernel Space" },
[LOW_KERNEL_NR] = { 0UL, "Low Kernel Mapping" },
[VMALLOC_START_NR] = { 0UL, "vmalloc() Area" },
[VMEMMAP_START_NR] = { 0UL, "Vmemmap" },
#ifdef CONFIG_KASAN
[KASAN_SHADOW_START_NR] = { KASAN_SHADOW_START, "KASAN shadow" },
[KASAN_SHADOW_END_NR] = { KASAN_SHADOW_END, "KASAN shadow end" },
#endif
#ifdef CONFIG_MODIFY_LDT_SYSCALL
[LDT_NR] = { LDT_BASE_ADDR, "LDT remap" },
#endif
[CPU_ENTRY_AREA_NR] = { CPU_ENTRY_AREA_BASE,"CPU entry Area" },
#ifdef CONFIG_X86_ESPFIX64
[ESPFIX_START_NR] = { ESPFIX_BASE_ADDR, "ESPfix Area", 16 },
#endif
#ifdef CONFIG_EFI
[EFI_END_NR] = { EFI_VA_END, "EFI Runtime Services" },
#endif
[HIGH_KERNEL_NR] = { __START_KERNEL_map, "High Kernel Mapping" },
[MODULES_VADDR_NR] = { MODULES_VADDR, "Modules" },
[MODULES_END_NR] = { MODULES_END, "End Modules" },
[FIXADDR_START_NR] = { FIXADDR_START, "Fixmap Area" },
[END_OF_SPACE_NR] = { -1, NULL }
};
#else /* CONFIG_X86_64 */
enum address_markers_idx {
USER_SPACE_NR = 0,
KERNEL_SPACE_NR,
VMALLOC_START_NR,
VMALLOC_END_NR,
#ifdef CONFIG_HIGHMEM
PKMAP_BASE_NR,
#endif
CPU_ENTRY_AREA_NR,
FIXADDR_START_NR,
END_OF_SPACE_NR,
};
static struct addr_marker address_markers[] = {
[USER_SPACE_NR] = { 0, "User Space" },
[KERNEL_SPACE_NR] = { PAGE_OFFSET, "Kernel Mapping" },
[VMALLOC_START_NR] = { 0UL, "vmalloc() Area" },
[VMALLOC_END_NR] = { 0UL, "vmalloc() End" },
#ifdef CONFIG_HIGHMEM
[PKMAP_BASE_NR] = { 0UL, "Persistent kmap() Area" },
#endif
[CPU_ENTRY_AREA_NR] = { 0UL, "CPU entry area" },
[FIXADDR_START_NR] = { 0UL, "Fixmap area" },
[END_OF_SPACE_NR] = { -1, NULL }
};
#endif /* !CONFIG_X86_64 */
/* Multipliers for offsets within the PTEs */
#define PTE_LEVEL_MULT (PAGE_SIZE)
#define PMD_LEVEL_MULT (PTRS_PER_PTE * PTE_LEVEL_MULT)
#define PUD_LEVEL_MULT (PTRS_PER_PMD * PMD_LEVEL_MULT)
#define P4D_LEVEL_MULT (PTRS_PER_PUD * PUD_LEVEL_MULT)
#define PGD_LEVEL_MULT (PTRS_PER_P4D * P4D_LEVEL_MULT)
#define pt_dump_seq_printf(m, to_dmesg, fmt, args...) \
({ \
if (to_dmesg) \
printk(KERN_INFO fmt, ##args); \
else \
if (m) \
seq_printf(m, fmt, ##args); \
})
#define pt_dump_cont_printf(m, to_dmesg, fmt, args...) \
({ \
if (to_dmesg) \
printk(KERN_CONT fmt, ##args); \
else \
if (m) \
seq_printf(m, fmt, ##args); \
})
/*
* Print a readable form of a pgprot_t to the seq_file
*/
static void printk_prot(struct seq_file *m, pgprot_t prot, int level, bool dmsg)
{
pgprotval_t pr = pgprot_val(prot);
static const char * const level_name[] =
{ "cr3", "pgd", "p4d", "pud", "pmd", "pte" };
if (!(pr & _PAGE_PRESENT)) {
/* Not present */
pt_dump_cont_printf(m, dmsg, " ");
} else {
if (pr & _PAGE_USER)
pt_dump_cont_printf(m, dmsg, "USR ");
else
pt_dump_cont_printf(m, dmsg, " ");
if (pr & _PAGE_RW)
pt_dump_cont_printf(m, dmsg, "RW ");
else
pt_dump_cont_printf(m, dmsg, "ro ");
if (pr & _PAGE_PWT)
pt_dump_cont_printf(m, dmsg, "PWT ");
else
pt_dump_cont_printf(m, dmsg, " ");
if (pr & _PAGE_PCD)
pt_dump_cont_printf(m, dmsg, "PCD ");
else
pt_dump_cont_printf(m, dmsg, " ");
/* Bit 7 has a different meaning on level 3 vs 4 */
if (level <= 4 && pr & _PAGE_PSE)
pt_dump_cont_printf(m, dmsg, "PSE ");
else
pt_dump_cont_printf(m, dmsg, " ");
if ((level == 5 && pr & _PAGE_PAT) ||
((level == 4 || level == 3) && pr & _PAGE_PAT_LARGE))
pt_dump_cont_printf(m, dmsg, "PAT ");
else
pt_dump_cont_printf(m, dmsg, " ");
if (pr & _PAGE_GLOBAL)
pt_dump_cont_printf(m, dmsg, "GLB ");
else
pt_dump_cont_printf(m, dmsg, " ");
if (pr & _PAGE_NX)
pt_dump_cont_printf(m, dmsg, "NX ");
else
pt_dump_cont_printf(m, dmsg, "x ");
}
pt_dump_cont_printf(m, dmsg, "%s\n", level_name[level]);
}
/*
* On 64 bits, sign-extend the 48 bit address to 64 bit
*/
static unsigned long normalize_addr(unsigned long u)
{
int shift;
if (!IS_ENABLED(CONFIG_X86_64))
return u;
shift = 64 - (__VIRTUAL_MASK_SHIFT + 1);
return (signed long)(u << shift) >> shift;
}
/*
* This function gets called on a break in a continuous series
* of PTE entries; the next one is different so we need to
* print what we collected so far.
*/
static void note_page(struct seq_file *m, struct pg_state *st,
pgprot_t new_prot, int level)
{
pgprotval_t prot, cur;
static const char units[] = "BKMGTPE";
/*
* If we have a "break" in the series, we need to flush the state that
* we have now. "break" is either changing perms, levels or
* address space marker.
*/
prot = pgprot_val(new_prot);
cur = pgprot_val(st->current_prot);
if (!st->level) {
/* First entry */
st->current_prot = new_prot;
st->level = level;
st->marker = address_markers;
st->lines = 0;
pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
st->marker->name);
} else if (prot != cur || level != st->level ||
st->current_address >= st->marker[1].start_address) {
const char *unit = units;
unsigned long delta;
int width = sizeof(unsigned long) * 2;
pgprotval_t pr = pgprot_val(st->current_prot);
if (st->check_wx && (pr & _PAGE_RW) && !(pr & _PAGE_NX)) {
WARN_ONCE(1,
"x86/mm: Found insecure W+X mapping at address %p/%pS\n",
(void *)st->start_address,
(void *)st->start_address);
st->wx_pages += (st->current_address -
st->start_address) / PAGE_SIZE;
}
/*
* Now print the actual finished series
*/
if (!st->marker->max_lines ||
st->lines < st->marker->max_lines) {
pt_dump_seq_printf(m, st->to_dmesg,
"0x%0*lx-0x%0*lx ",
width, st->start_address,
width, st->current_address);
delta = st->current_address - st->start_address;
while (!(delta & 1023) && unit[1]) {
delta >>= 10;
unit++;
}
pt_dump_cont_printf(m, st->to_dmesg, "%9lu%c ",
delta, *unit);
printk_prot(m, st->current_prot, st->level,
st->to_dmesg);
}
st->lines++;
/*
* We print markers for special areas of address space,
* such as the start of vmalloc space etc.
* This helps in the interpretation.
*/
if (st->current_address >= st->marker[1].start_address) {
if (st->marker->max_lines &&
st->lines > st->marker->max_lines) {
unsigned long nskip =
st->lines - st->marker->max_lines;
pt_dump_seq_printf(m, st->to_dmesg,
"... %lu entr%s skipped ... \n",
nskip,
nskip == 1 ? "y" : "ies");
}
st->marker++;
st->lines = 0;
pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
st->marker->name);
}
st->start_address = st->current_address;
st->current_prot = new_prot;
st->level = level;
}
}
static void walk_pte_level(struct seq_file *m, struct pg_state *st, pmd_t addr, unsigned long P)
{
int i;
pte_t *start;
pgprotval_t prot;
start = (pte_t *)pmd_page_vaddr(addr);
for (i = 0; i < PTRS_PER_PTE; i++) {
prot = pte_flags(*start);
st->current_address = normalize_addr(P + i * PTE_LEVEL_MULT);
note_page(m, st, __pgprot(prot), 5);
start++;
}
}
#ifdef CONFIG_KASAN
/*
* This is an optimization for KASAN=y case. Since all kasan page tables
* eventually point to the kasan_zero_page we could call note_page()
* right away without walking through lower level page tables. This saves
* us dozens of seconds (minutes for 5-level config) while checking for
* W+X mapping or reading kernel_page_tables debugfs file.
*/
static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
void *pt)
{
if (__pa(pt) == __pa(kasan_zero_pmd) ||
#ifdef CONFIG_X86_5LEVEL
__pa(pt) == __pa(kasan_zero_p4d) ||
#endif
__pa(pt) == __pa(kasan_zero_pud)) {
pgprotval_t prot = pte_flags(kasan_zero_pte[0]);
note_page(m, st, __pgprot(prot), 5);
return true;
}
return false;
}
#else
static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
void *pt)
{
return false;
}
#endif
#if PTRS_PER_PMD > 1
static void walk_pmd_level(struct seq_file *m, struct pg_state *st, pud_t addr, unsigned long P)
{
int i;
pmd_t *start, *pmd_start;
pgprotval_t prot;
pmd_start = start = (pmd_t *)pud_page_vaddr(addr);
for (i = 0; i < PTRS_PER_PMD; i++) {
st->current_address = normalize_addr(P + i * PMD_LEVEL_MULT);
if (!pmd_none(*start)) {
if (pmd_large(*start) || !pmd_present(*start)) {
prot = pmd_flags(*start);
note_page(m, st, __pgprot(prot), 4);
} else if (!kasan_page_table(m, st, pmd_start)) {
walk_pte_level(m, st, *start,
P + i * PMD_LEVEL_MULT);
}
} else
note_page(m, st, __pgprot(0), 4);
start++;
}
}
#else
#define walk_pmd_level(m,s,a,p) walk_pte_level(m,s,__pmd(pud_val(a)),p)
#define pud_large(a) pmd_large(__pmd(pud_val(a)))
#define pud_none(a) pmd_none(__pmd(pud_val(a)))
#endif
#if PTRS_PER_PUD > 1
static void walk_pud_level(struct seq_file *m, struct pg_state *st, p4d_t addr, unsigned long P)
{
int i;
pud_t *start, *pud_start;
pgprotval_t prot;
pud_t *prev_pud = NULL;
pud_start = start = (pud_t *)p4d_page_vaddr(addr);
for (i = 0; i < PTRS_PER_PUD; i++) {
st->current_address = normalize_addr(P + i * PUD_LEVEL_MULT);
if (!pud_none(*start)) {
if (pud_large(*start) || !pud_present(*start)) {
prot = pud_flags(*start);
note_page(m, st, __pgprot(prot), 3);
} else if (!kasan_page_table(m, st, pud_start)) {
walk_pmd_level(m, st, *start,
P + i * PUD_LEVEL_MULT);
}
} else
note_page(m, st, __pgprot(0), 3);
prev_pud = start;
start++;
}
}
#else
#define walk_pud_level(m,s,a,p) walk_pmd_level(m,s,__pud(p4d_val(a)),p)
#define p4d_large(a) pud_large(__pud(p4d_val(a)))
#define p4d_none(a) pud_none(__pud(p4d_val(a)))
#endif
#if PTRS_PER_P4D > 1
static void walk_p4d_level(struct seq_file *m, struct pg_state *st, pgd_t addr, unsigned long P)
{
int i;
p4d_t *start, *p4d_start;
pgprotval_t prot;
p4d_start = start = (p4d_t *)pgd_page_vaddr(addr);
for (i = 0; i < PTRS_PER_P4D; i++) {
st->current_address = normalize_addr(P + i * P4D_LEVEL_MULT);
if (!p4d_none(*start)) {
if (p4d_large(*start) || !p4d_present(*start)) {
prot = p4d_flags(*start);
note_page(m, st, __pgprot(prot), 2);
} else if (!kasan_page_table(m, st, p4d_start)) {
walk_pud_level(m, st, *start,
P + i * P4D_LEVEL_MULT);
}
} else
note_page(m, st, __pgprot(0), 2);
start++;
}
}
#else
#define walk_p4d_level(m,s,a,p) walk_pud_level(m,s,__p4d(pgd_val(a)),p)
#define pgd_large(a) p4d_large(__p4d(pgd_val(a)))
#define pgd_none(a) p4d_none(__p4d(pgd_val(a)))
#endif
static inline bool is_hypervisor_range(int idx)
{
#ifdef CONFIG_X86_64
/*
* ffff800000000000 - ffff87ffffffffff is reserved for
* the hypervisor.
*/
return (idx >= pgd_index(__PAGE_OFFSET) - 16) &&
(idx < pgd_index(__PAGE_OFFSET));
#else
return false;
#endif
}
static void ptdump_walk_pgd_level_core(struct seq_file *m, pgd_t *pgd,
bool checkwx, bool dmesg)
{
#ifdef CONFIG_X86_64
pgd_t *start = (pgd_t *) &init_top_pgt;
#else
pgd_t *start = swapper_pg_dir;
#endif
pgprotval_t prot;
int i;
struct pg_state st = {};
if (pgd) {
start = pgd;
st.to_dmesg = dmesg;
}
st.check_wx = checkwx;
if (checkwx)
st.wx_pages = 0;
for (i = 0; i < PTRS_PER_PGD; i++) {
st.current_address = normalize_addr(i * PGD_LEVEL_MULT);
if (!pgd_none(*start) && !is_hypervisor_range(i)) {
if (pgd_large(*start) || !pgd_present(*start)) {
prot = pgd_flags(*start);
note_page(m, &st, __pgprot(prot), 1);
} else {
walk_p4d_level(m, &st, *start,
i * PGD_LEVEL_MULT);
}
} else
note_page(m, &st, __pgprot(0), 1);
cond_resched();
start++;
}
/* Flush out the last page */
st.current_address = normalize_addr(PTRS_PER_PGD*PGD_LEVEL_MULT);
note_page(m, &st, __pgprot(0), 0);
if (!checkwx)
return;
if (st.wx_pages)
pr_info("x86/mm: Checked W+X mappings: FAILED, %lu W+X pages found.\n",
st.wx_pages);
else
pr_info("x86/mm: Checked W+X mappings: passed, no W+X pages found.\n");
}
void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd)
{
ptdump_walk_pgd_level_core(m, pgd, false, true);
}
void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user)
{
#ifdef CONFIG_PAGE_TABLE_ISOLATION
if (user && static_cpu_has(X86_FEATURE_PTI))
pgd = kernel_to_user_pgdp(pgd);
#endif
ptdump_walk_pgd_level_core(m, pgd, false, false);
}
EXPORT_SYMBOL_GPL(ptdump_walk_pgd_level_debugfs);
static void ptdump_walk_user_pgd_level_checkwx(void)
{
#ifdef CONFIG_PAGE_TABLE_ISOLATION
pgd_t *pgd = (pgd_t *) &init_top_pgt;
if (!static_cpu_has(X86_FEATURE_PTI))
return;
pr_info("x86/mm: Checking user space page tables\n");
pgd = kernel_to_user_pgdp(pgd);
ptdump_walk_pgd_level_core(NULL, pgd, true, false);
#endif
}
void ptdump_walk_pgd_level_checkwx(void)
{
ptdump_walk_pgd_level_core(NULL, NULL, true, false);
ptdump_walk_user_pgd_level_checkwx();
}
static int __init pt_dump_init(void)
{
/*
* Various markers are not compile-time constants, so assign them
* here.
*/
#ifdef CONFIG_X86_64
address_markers[LOW_KERNEL_NR].start_address = PAGE_OFFSET;
address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
address_markers[VMEMMAP_START_NR].start_address = VMEMMAP_START;
#endif
#ifdef CONFIG_X86_32
address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
address_markers[VMALLOC_END_NR].start_address = VMALLOC_END;
# ifdef CONFIG_HIGHMEM
address_markers[PKMAP_BASE_NR].start_address = PKMAP_BASE;
# endif
address_markers[FIXADDR_START_NR].start_address = FIXADDR_START;
address_markers[CPU_ENTRY_AREA_NR].start_address = CPU_ENTRY_AREA_BASE;
#endif
return 0;
}
__initcall(pt_dump_init);