linux/arch/arm/vfp/vfpmodule.c
Russell King 4175160b06 Merge branch 'misc' into for-linus
Conflicts:
	arch/arm/kernel/ptrace.c
2012-05-21 15:15:24 +01:00

724 lines
18 KiB
C

/*
* linux/arch/arm/vfp/vfpmodule.c
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/hardirq.h>
#include <linux/kernel.h>
#include <linux/notifier.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/uaccess.h>
#include <linux/user.h>
#include <asm/cp15.h>
#include <asm/cputype.h>
#include <asm/system_info.h>
#include <asm/thread_notify.h>
#include <asm/vfp.h>
#include "vfpinstr.h"
#include "vfp.h"
/*
* Our undef handlers (in entry.S)
*/
void vfp_testing_entry(void);
void vfp_support_entry(void);
void vfp_null_entry(void);
void (*vfp_vector)(void) = vfp_null_entry;
/*
* Dual-use variable.
* Used in startup: set to non-zero if VFP checks fail
* After startup, holds VFP architecture
*/
unsigned int VFP_arch;
/*
* The pointer to the vfpstate structure of the thread which currently
* owns the context held in the VFP hardware, or NULL if the hardware
* context is invalid.
*
* For UP, this is sufficient to tell which thread owns the VFP context.
* However, for SMP, we also need to check the CPU number stored in the
* saved state too to catch migrations.
*/
union vfp_state *vfp_current_hw_state[NR_CPUS];
/*
* Is 'thread's most up to date state stored in this CPUs hardware?
* Must be called from non-preemptible context.
*/
static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
{
#ifdef CONFIG_SMP
if (thread->vfpstate.hard.cpu != cpu)
return false;
#endif
return vfp_current_hw_state[cpu] == &thread->vfpstate;
}
/*
* Force a reload of the VFP context from the thread structure. We do
* this by ensuring that access to the VFP hardware is disabled, and
* clear vfp_current_hw_state. Must be called from non-preemptible context.
*/
static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
{
if (vfp_state_in_hw(cpu, thread)) {
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
vfp_current_hw_state[cpu] = NULL;
}
#ifdef CONFIG_SMP
thread->vfpstate.hard.cpu = NR_CPUS;
#endif
}
/*
* Per-thread VFP initialization.
*/
static void vfp_thread_flush(struct thread_info *thread)
{
union vfp_state *vfp = &thread->vfpstate;
unsigned int cpu;
/*
* Disable VFP to ensure we initialize it first. We must ensure
* that the modification of vfp_current_hw_state[] and hardware
* disable are done for the same CPU and without preemption.
*
* Do this first to ensure that preemption won't overwrite our
* state saving should access to the VFP be enabled at this point.
*/
cpu = get_cpu();
if (vfp_current_hw_state[cpu] == vfp)
vfp_current_hw_state[cpu] = NULL;
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
put_cpu();
memset(vfp, 0, sizeof(union vfp_state));
vfp->hard.fpexc = FPEXC_EN;
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
#ifdef CONFIG_SMP
vfp->hard.cpu = NR_CPUS;
#endif
}
static void vfp_thread_exit(struct thread_info *thread)
{
/* release case: Per-thread VFP cleanup. */
union vfp_state *vfp = &thread->vfpstate;
unsigned int cpu = get_cpu();
if (vfp_current_hw_state[cpu] == vfp)
vfp_current_hw_state[cpu] = NULL;
put_cpu();
}
static void vfp_thread_copy(struct thread_info *thread)
{
struct thread_info *parent = current_thread_info();
vfp_sync_hwstate(parent);
thread->vfpstate = parent->vfpstate;
#ifdef CONFIG_SMP
thread->vfpstate.hard.cpu = NR_CPUS;
#endif
}
/*
* When this function is called with the following 'cmd's, the following
* is true while this function is being run:
* THREAD_NOFTIFY_SWTICH:
* - the previously running thread will not be scheduled onto another CPU.
* - the next thread to be run (v) will not be running on another CPU.
* - thread->cpu is the local CPU number
* - not preemptible as we're called in the middle of a thread switch
* THREAD_NOTIFY_FLUSH:
* - the thread (v) will be running on the local CPU, so
* v === current_thread_info()
* - thread->cpu is the local CPU number at the time it is accessed,
* but may change at any time.
* - we could be preempted if tree preempt rcu is enabled, so
* it is unsafe to use thread->cpu.
* THREAD_NOTIFY_EXIT
* - the thread (v) will be running on the local CPU, so
* v === current_thread_info()
* - thread->cpu is the local CPU number at the time it is accessed,
* but may change at any time.
* - we could be preempted if tree preempt rcu is enabled, so
* it is unsafe to use thread->cpu.
*/
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
struct thread_info *thread = v;
u32 fpexc;
#ifdef CONFIG_SMP
unsigned int cpu;
#endif
switch (cmd) {
case THREAD_NOTIFY_SWITCH:
fpexc = fmrx(FPEXC);
#ifdef CONFIG_SMP
cpu = thread->cpu;
/*
* On SMP, if VFP is enabled, save the old state in
* case the thread migrates to a different CPU. The
* restoring is done lazily.
*/
if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
vfp_save_state(vfp_current_hw_state[cpu], fpexc);
#endif
/*
* Always disable VFP so we can lazily save/restore the
* old state.
*/
fmxr(FPEXC, fpexc & ~FPEXC_EN);
break;
case THREAD_NOTIFY_FLUSH:
vfp_thread_flush(thread);
break;
case THREAD_NOTIFY_EXIT:
vfp_thread_exit(thread);
break;
case THREAD_NOTIFY_COPY:
vfp_thread_copy(thread);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block vfp_notifier_block = {
.notifier_call = vfp_notifier,
};
/*
* Raise a SIGFPE for the current process.
* sicode describes the signal being raised.
*/
static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
{
siginfo_t info;
memset(&info, 0, sizeof(info));
info.si_signo = SIGFPE;
info.si_code = sicode;
info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
/*
* This is the same as NWFPE, because it's not clear what
* this is used for
*/
current->thread.error_code = 0;
current->thread.trap_no = 6;
send_sig_info(SIGFPE, &info, current);
}
static void vfp_panic(char *reason, u32 inst)
{
int i;
pr_err("VFP: Error: %s\n", reason);
pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
fmrx(FPEXC), fmrx(FPSCR), inst);
for (i = 0; i < 32; i += 2)
pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
i, vfp_get_float(i), i+1, vfp_get_float(i+1));
}
/*
* Process bitmask of exception conditions.
*/
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
{
int si_code = 0;
pr_debug("VFP: raising exceptions %08x\n", exceptions);
if (exceptions == VFP_EXCEPTION_ERROR) {
vfp_panic("unhandled bounce", inst);
vfp_raise_sigfpe(0, regs);
return;
}
/*
* If any of the status flags are set, update the FPSCR.
* Comparison instructions always return at least one of
* these flags set.
*/
if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
fpscr |= exceptions;
fmxr(FPSCR, fpscr);
#define RAISE(stat,en,sig) \
if (exceptions & stat && fpscr & en) \
si_code = sig;
/*
* These are arranged in priority order, least to highest.
*/
RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
if (si_code)
vfp_raise_sigfpe(si_code, regs);
}
/*
* Emulate a VFP instruction.
*/
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
{
u32 exceptions = VFP_EXCEPTION_ERROR;
pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
if (INST_CPRTDO(inst)) {
if (!INST_CPRT(inst)) {
/*
* CPDO
*/
if (vfp_single(inst)) {
exceptions = vfp_single_cpdo(inst, fpscr);
} else {
exceptions = vfp_double_cpdo(inst, fpscr);
}
} else {
/*
* A CPRT instruction can not appear in FPINST2, nor
* can it cause an exception. Therefore, we do not
* have to emulate it.
*/
}
} else {
/*
* A CPDT instruction can not appear in FPINST2, nor can
* it cause an exception. Therefore, we do not have to
* emulate it.
*/
}
return exceptions & ~VFP_NAN_FLAG;
}
/*
* Package up a bounce condition.
*/
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
{
u32 fpscr, orig_fpscr, fpsid, exceptions;
pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
/*
* At this point, FPEXC can have the following configuration:
*
* EX DEX IXE
* 0 1 x - synchronous exception
* 1 x 0 - asynchronous exception
* 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
* 0 0 1 - synchronous on VFP9 (non-standard subarch 1
* implementation), undefined otherwise
*
* Clear various bits and enable access to the VFP so we can
* handle the bounce.
*/
fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
fpsid = fmrx(FPSID);
orig_fpscr = fpscr = fmrx(FPSCR);
/*
* Check for the special VFP subarch 1 and FPSCR.IXE bit case
*/
if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
&& (fpscr & FPSCR_IXE)) {
/*
* Synchronous exception, emulate the trigger instruction
*/
goto emulate;
}
if (fpexc & FPEXC_EX) {
#ifndef CONFIG_CPU_FEROCEON
/*
* Asynchronous exception. The instruction is read from FPINST
* and the interrupted instruction has to be restarted.
*/
trigger = fmrx(FPINST);
regs->ARM_pc -= 4;
#endif
} else if (!(fpexc & FPEXC_DEX)) {
/*
* Illegal combination of bits. It can be caused by an
* unallocated VFP instruction but with FPSCR.IXE set and not
* on VFP subarch 1.
*/
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
goto exit;
}
/*
* Modify fpscr to indicate the number of iterations remaining.
* If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
* whether FPEXC.VECITR or FPSCR.LEN is used.
*/
if (fpexc & (FPEXC_EX | FPEXC_VV)) {
u32 len;
len = fpexc + (1 << FPEXC_LENGTH_BIT);
fpscr &= ~FPSCR_LENGTH_MASK;
fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
}
/*
* Handle the first FP instruction. We used to take note of the
* FPEXC bounce reason, but this appears to be unreliable.
* Emulate the bounced instruction instead.
*/
exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
/*
* If there isn't a second FP instruction, exit now. Note that
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
*/
if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
goto exit;
/*
* The barrier() here prevents fpinst2 being read
* before the condition above.
*/
barrier();
trigger = fmrx(FPINST2);
emulate:
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
exit:
preempt_enable();
}
static void vfp_enable(void *unused)
{
u32 access;
BUG_ON(preemptible());
access = get_copro_access();
/*
* Enable full access to VFP (cp10 and cp11)
*/
set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
}
#ifdef CONFIG_CPU_PM
static int vfp_pm_suspend(void)
{
struct thread_info *ti = current_thread_info();
u32 fpexc = fmrx(FPEXC);
/* if vfp is on, then save state for resumption */
if (fpexc & FPEXC_EN) {
pr_debug("%s: saving vfp state\n", __func__);
vfp_save_state(&ti->vfpstate, fpexc);
/* disable, just in case */
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
}
/* clear any information we had about last context state */
memset(vfp_current_hw_state, 0, sizeof(vfp_current_hw_state));
return 0;
}
static void vfp_pm_resume(void)
{
/* ensure we have access to the vfp */
vfp_enable(NULL);
/* and disable it to ensure the next usage restores the state */
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
}
static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
void *v)
{
switch (cmd) {
case CPU_PM_ENTER:
vfp_pm_suspend();
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
vfp_pm_resume();
break;
}
return NOTIFY_OK;
}
static struct notifier_block vfp_cpu_pm_notifier_block = {
.notifier_call = vfp_cpu_pm_notifier,
};
static void vfp_pm_init(void)
{
cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
}
#else
static inline void vfp_pm_init(void) { }
#endif /* CONFIG_CPU_PM */
/*
* Ensure that the VFP state stored in 'thread->vfpstate' is up to date
* with the hardware state.
*/
void vfp_sync_hwstate(struct thread_info *thread)
{
unsigned int cpu = get_cpu();
if (vfp_state_in_hw(cpu, thread)) {
u32 fpexc = fmrx(FPEXC);
/*
* Save the last VFP state on this CPU.
*/
fmxr(FPEXC, fpexc | FPEXC_EN);
vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
fmxr(FPEXC, fpexc);
}
put_cpu();
}
/* Ensure that the thread reloads the hardware VFP state on the next use. */
void vfp_flush_hwstate(struct thread_info *thread)
{
unsigned int cpu = get_cpu();
vfp_force_reload(cpu, thread);
put_cpu();
}
/*
* Save the current VFP state into the provided structures and prepare
* for entry into a new function (signal handler).
*/
int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
struct user_vfp_exc __user *ufp_exc)
{
struct thread_info *thread = current_thread_info();
struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
int err = 0;
/* Ensure that the saved hwstate is up-to-date. */
vfp_sync_hwstate(thread);
/*
* Copy the floating point registers. There can be unused
* registers see asm/hwcap.h for details.
*/
err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
sizeof(hwstate->fpregs));
/*
* Copy the status and control register.
*/
__put_user_error(hwstate->fpscr, &ufp->fpscr, err);
/*
* Copy the exception registers.
*/
__put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
__put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
__put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
if (err)
return -EFAULT;
/* Ensure that VFP is disabled. */
vfp_flush_hwstate(thread);
/*
* As per the PCS, clear the length and stride bits for function
* entry.
*/
hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
return 0;
}
/* Sanitise and restore the current VFP state from the provided structures. */
int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
struct user_vfp_exc __user *ufp_exc)
{
struct thread_info *thread = current_thread_info();
struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
unsigned long fpexc;
int err = 0;
/* Disable VFP to avoid corrupting the new thread state. */
vfp_flush_hwstate(thread);
/*
* Copy the floating point registers. There can be unused
* registers see asm/hwcap.h for details.
*/
err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
sizeof(hwstate->fpregs));
/*
* Copy the status and control register.
*/
__get_user_error(hwstate->fpscr, &ufp->fpscr, err);
/*
* Sanitise and restore the exception registers.
*/
__get_user_error(fpexc, &ufp_exc->fpexc, err);
/* Ensure the VFP is enabled. */
fpexc |= FPEXC_EN;
/* Ensure FPINST2 is invalid and the exception flag is cleared. */
fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
hwstate->fpexc = fpexc;
__get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
__get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
return err ? -EFAULT : 0;
}
/*
* VFP hardware can lose all context when a CPU goes offline.
* As we will be running in SMP mode with CPU hotplug, we will save the
* hardware state at every thread switch. We clear our held state when
* a CPU has been killed, indicating that the VFP hardware doesn't contain
* a threads VFP state. When a CPU starts up, we re-enable access to the
* VFP hardware.
*
* Both CPU_DYING and CPU_STARTING are called on the CPU which
* is being offlined/onlined.
*/
static int vfp_hotplug(struct notifier_block *b, unsigned long action,
void *hcpu)
{
if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
vfp_force_reload((long)hcpu, current_thread_info());
} else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
vfp_enable(NULL);
return NOTIFY_OK;
}
/*
* VFP support code initialisation.
*/
static int __init vfp_init(void)
{
unsigned int vfpsid;
unsigned int cpu_arch = cpu_architecture();
if (cpu_arch >= CPU_ARCH_ARMv6)
on_each_cpu(vfp_enable, NULL, 1);
/*
* First check that there is a VFP that we can use.
* The handler is already setup to just log calls, so
* we just need to read the VFPSID register.
*/
vfp_vector = vfp_testing_entry;
barrier();
vfpsid = fmrx(FPSID);
barrier();
vfp_vector = vfp_null_entry;
pr_info("VFP support v0.3: ");
if (VFP_arch)
pr_cont("not present\n");
else if (vfpsid & FPSID_NODOUBLE) {
pr_cont("no double precision support\n");
} else {
hotcpu_notifier(vfp_hotplug, 0);
VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
vfp_vector = vfp_support_entry;
thread_register_notifier(&vfp_notifier_block);
vfp_pm_init();
/*
* We detected VFP, and the support code is
* in place; report VFP support to userspace.
*/
elf_hwcap |= HWCAP_VFP;
#ifdef CONFIG_VFPv3
if (VFP_arch >= 2) {
elf_hwcap |= HWCAP_VFPv3;
/*
* Check for VFPv3 D16. CPUs in this configuration
* only have 16 x 64bit registers.
*/
if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
elf_hwcap |= HWCAP_VFPv3D16;
}
#endif
/*
* Check for the presence of the Advanced SIMD
* load/store instructions, integer and single
* precision floating point operations. Only check
* for NEON if the hardware has the MVFR registers.
*/
if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
#ifdef CONFIG_NEON
if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
elf_hwcap |= HWCAP_NEON;
#endif
if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
elf_hwcap |= HWCAP_VFPv4;
}
}
return 0;
}
late_initcall(vfp_init);