linux/drivers/crypto/ux500/hash/hash_core.c
Vladimir Zapolskiy b62917a262 crypto: ux500 - fix checks of error code returned by devm_ioremap_resource()
The change fixes potential oops while accessing iomem on invalid
address, if devm_ioremap_resource() fails due to some reason.

The devm_ioremap_resource() function returns ERR_PTR() and never
returns NULL, which makes useless a following check for NULL.

Signed-off-by: Vladimir Zapolskiy <vz@mleia.com>
Fixes: 5a4eea2658 ("crypto: ux500 - Use devm_xxx() managed function")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-03-11 21:19:20 +08:00

1953 lines
50 KiB
C

/*
* Cryptographic API.
* Support for Nomadik hardware crypto engine.
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#define pr_fmt(fmt) "hashX hashX: " fmt
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/klist.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/crypto.h>
#include <linux/regulator/consumer.h>
#include <linux/dmaengine.h>
#include <linux/bitops.h>
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <linux/platform_data/crypto-ux500.h>
#include "hash_alg.h"
static int hash_mode;
module_param(hash_mode, int, 0);
MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
/* HMAC-SHA1, no key */
static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
0x70, 0x69, 0x0e, 0x1d
};
/* HMAC-SHA256, no key */
static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
};
/**
* struct hash_driver_data - data specific to the driver.
*
* @device_list: A list of registered devices to choose from.
* @device_allocation: A semaphore initialized with number of devices.
*/
struct hash_driver_data {
struct klist device_list;
struct semaphore device_allocation;
};
static struct hash_driver_data driver_data;
/* Declaration of functions */
/**
* hash_messagepad - Pads a message and write the nblw bits.
* @device_data: Structure for the hash device.
* @message: Last word of a message
* @index_bytes: The number of bytes in the last message
*
* This function manages the final part of the digest calculation, when less
* than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
*
*/
static void hash_messagepad(struct hash_device_data *device_data,
const u32 *message, u8 index_bytes);
/**
* release_hash_device - Releases a previously allocated hash device.
* @device_data: Structure for the hash device.
*
*/
static void release_hash_device(struct hash_device_data *device_data)
{
spin_lock(&device_data->ctx_lock);
device_data->current_ctx->device = NULL;
device_data->current_ctx = NULL;
spin_unlock(&device_data->ctx_lock);
/*
* The down_interruptible part for this semaphore is called in
* cryp_get_device_data.
*/
up(&driver_data.device_allocation);
}
static void hash_dma_setup_channel(struct hash_device_data *device_data,
struct device *dev)
{
struct hash_platform_data *platform_data = dev->platform_data;
struct dma_slave_config conf = {
.direction = DMA_MEM_TO_DEV,
.dst_addr = device_data->phybase + HASH_DMA_FIFO,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
.dst_maxburst = 16,
};
dma_cap_zero(device_data->dma.mask);
dma_cap_set(DMA_SLAVE, device_data->dma.mask);
device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
device_data->dma.chan_mem2hash =
dma_request_channel(device_data->dma.mask,
platform_data->dma_filter,
device_data->dma.cfg_mem2hash);
dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
init_completion(&device_data->dma.complete);
}
static void hash_dma_callback(void *data)
{
struct hash_ctx *ctx = data;
complete(&ctx->device->dma.complete);
}
static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
int len, enum dma_data_direction direction)
{
struct dma_async_tx_descriptor *desc = NULL;
struct dma_chan *channel = NULL;
dma_cookie_t cookie;
if (direction != DMA_TO_DEVICE) {
dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
__func__);
return -EFAULT;
}
sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
channel = ctx->device->dma.chan_mem2hash;
ctx->device->dma.sg = sg;
ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
ctx->device->dma.sg, ctx->device->dma.nents,
direction);
if (!ctx->device->dma.sg_len) {
dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
__func__);
return -EFAULT;
}
dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
__func__);
desc = dmaengine_prep_slave_sg(channel,
ctx->device->dma.sg, ctx->device->dma.sg_len,
direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(ctx->device->dev,
"%s: dmaengine_prep_slave_sg() failed!\n", __func__);
return -EFAULT;
}
desc->callback = hash_dma_callback;
desc->callback_param = ctx;
cookie = dmaengine_submit(desc);
dma_async_issue_pending(channel);
return 0;
}
static void hash_dma_done(struct hash_ctx *ctx)
{
struct dma_chan *chan;
chan = ctx->device->dma.chan_mem2hash;
dmaengine_terminate_all(chan);
dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
ctx->device->dma.sg_len, DMA_TO_DEVICE);
}
static int hash_dma_write(struct hash_ctx *ctx,
struct scatterlist *sg, int len)
{
int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
if (error) {
dev_dbg(ctx->device->dev,
"%s: hash_set_dma_transfer() failed\n", __func__);
return error;
}
return len;
}
/**
* get_empty_message_digest - Returns a pre-calculated digest for
* the empty message.
* @device_data: Structure for the hash device.
* @zero_hash: Buffer to return the empty message digest.
* @zero_hash_size: Hash size of the empty message digest.
* @zero_digest: True if zero_digest returned.
*/
static int get_empty_message_digest(
struct hash_device_data *device_data,
u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
{
int ret = 0;
struct hash_ctx *ctx = device_data->current_ctx;
*zero_digest = false;
/**
* Caller responsible for ctx != NULL.
*/
if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
memcpy(zero_hash, &sha1_zero_message_hash[0],
SHA1_DIGEST_SIZE);
*zero_hash_size = SHA1_DIGEST_SIZE;
*zero_digest = true;
} else if (HASH_ALGO_SHA256 ==
ctx->config.algorithm) {
memcpy(zero_hash, &sha256_zero_message_hash[0],
SHA256_DIGEST_SIZE);
*zero_hash_size = SHA256_DIGEST_SIZE;
*zero_digest = true;
} else {
dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
__func__);
ret = -EINVAL;
goto out;
}
} else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
if (!ctx->keylen) {
if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
memcpy(zero_hash, &zero_message_hmac_sha1[0],
SHA1_DIGEST_SIZE);
*zero_hash_size = SHA1_DIGEST_SIZE;
*zero_digest = true;
} else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
memcpy(zero_hash, &zero_message_hmac_sha256[0],
SHA256_DIGEST_SIZE);
*zero_hash_size = SHA256_DIGEST_SIZE;
*zero_digest = true;
} else {
dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
__func__);
ret = -EINVAL;
goto out;
}
} else {
dev_dbg(device_data->dev,
"%s: Continue hash calculation, since hmac key available\n",
__func__);
}
}
out:
return ret;
}
/**
* hash_disable_power - Request to disable power and clock.
* @device_data: Structure for the hash device.
* @save_device_state: If true, saves the current hw state.
*
* This function request for disabling power (regulator) and clock,
* and could also save current hw state.
*/
static int hash_disable_power(struct hash_device_data *device_data,
bool save_device_state)
{
int ret = 0;
struct device *dev = device_data->dev;
spin_lock(&device_data->power_state_lock);
if (!device_data->power_state)
goto out;
if (save_device_state) {
hash_save_state(device_data,
&device_data->state);
device_data->restore_dev_state = true;
}
clk_disable(device_data->clk);
ret = regulator_disable(device_data->regulator);
if (ret)
dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
device_data->power_state = false;
out:
spin_unlock(&device_data->power_state_lock);
return ret;
}
/**
* hash_enable_power - Request to enable power and clock.
* @device_data: Structure for the hash device.
* @restore_device_state: If true, restores a previous saved hw state.
*
* This function request for enabling power (regulator) and clock,
* and could also restore a previously saved hw state.
*/
static int hash_enable_power(struct hash_device_data *device_data,
bool restore_device_state)
{
int ret = 0;
struct device *dev = device_data->dev;
spin_lock(&device_data->power_state_lock);
if (!device_data->power_state) {
ret = regulator_enable(device_data->regulator);
if (ret) {
dev_err(dev, "%s: regulator_enable() failed!\n",
__func__);
goto out;
}
ret = clk_enable(device_data->clk);
if (ret) {
dev_err(dev, "%s: clk_enable() failed!\n", __func__);
ret = regulator_disable(
device_data->regulator);
goto out;
}
device_data->power_state = true;
}
if (device_data->restore_dev_state) {
if (restore_device_state) {
device_data->restore_dev_state = false;
hash_resume_state(device_data, &device_data->state);
}
}
out:
spin_unlock(&device_data->power_state_lock);
return ret;
}
/**
* hash_get_device_data - Checks for an available hash device and return it.
* @hash_ctx: Structure for the hash context.
* @device_data: Structure for the hash device.
*
* This function check for an available hash device and return it to
* the caller.
* Note! Caller need to release the device, calling up().
*/
static int hash_get_device_data(struct hash_ctx *ctx,
struct hash_device_data **device_data)
{
int ret;
struct klist_iter device_iterator;
struct klist_node *device_node;
struct hash_device_data *local_device_data = NULL;
/* Wait until a device is available */
ret = down_interruptible(&driver_data.device_allocation);
if (ret)
return ret; /* Interrupted */
/* Select a device */
klist_iter_init(&driver_data.device_list, &device_iterator);
device_node = klist_next(&device_iterator);
while (device_node) {
local_device_data = container_of(device_node,
struct hash_device_data, list_node);
spin_lock(&local_device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (local_device_data->current_ctx) {
device_node = klist_next(&device_iterator);
} else {
local_device_data->current_ctx = ctx;
ctx->device = local_device_data;
spin_unlock(&local_device_data->ctx_lock);
break;
}
spin_unlock(&local_device_data->ctx_lock);
}
klist_iter_exit(&device_iterator);
if (!device_node) {
/**
* No free device found.
* Since we allocated a device with down_interruptible, this
* should not be able to happen.
* Number of available devices, which are contained in
* device_allocation, is therefore decremented by not doing
* an up(device_allocation).
*/
return -EBUSY;
}
*device_data = local_device_data;
return 0;
}
/**
* hash_hw_write_key - Writes the key to the hardware registries.
*
* @device_data: Structure for the hash device.
* @key: Key to be written.
* @keylen: The lengt of the key.
*
* Note! This function DOES NOT write to the NBLW registry, even though
* specified in the the hw design spec. Either due to incorrect info in the
* spec or due to a bug in the hw.
*/
static void hash_hw_write_key(struct hash_device_data *device_data,
const u8 *key, unsigned int keylen)
{
u32 word = 0;
int nwords = 1;
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
while (keylen >= 4) {
u32 *key_word = (u32 *)key;
HASH_SET_DIN(key_word, nwords);
keylen -= 4;
key += 4;
}
/* Take care of the remaining bytes in the last word */
if (keylen) {
word = 0;
while (keylen) {
word |= (key[keylen - 1] << (8 * (keylen - 1)));
keylen--;
}
HASH_SET_DIN(&word, nwords);
}
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
HASH_SET_DCAL;
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
}
/**
* init_hash_hw - Initialise the hash hardware for a new calculation.
* @device_data: Structure for the hash device.
* @ctx: The hash context.
*
* This function will enable the bits needed to clear and start a new
* calculation.
*/
static int init_hash_hw(struct hash_device_data *device_data,
struct hash_ctx *ctx)
{
int ret = 0;
ret = hash_setconfiguration(device_data, &ctx->config);
if (ret) {
dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
__func__);
return ret;
}
hash_begin(device_data, ctx);
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
hash_hw_write_key(device_data, ctx->key, ctx->keylen);
return ret;
}
/**
* hash_get_nents - Return number of entries (nents) in scatterlist (sg).
*
* @sg: Scatterlist.
* @size: Size in bytes.
* @aligned: True if sg data aligned to work in DMA mode.
*
*/
static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
{
int nents = 0;
bool aligned_data = true;
while (size > 0 && sg) {
nents++;
size -= sg->length;
/* hash_set_dma_transfer will align last nent */
if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
(!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
aligned_data = false;
sg = sg_next(sg);
}
if (aligned)
*aligned = aligned_data;
if (size != 0)
return -EFAULT;
return nents;
}
/**
* hash_dma_valid_data - checks for dma valid sg data.
* @sg: Scatterlist.
* @datasize: Datasize in bytes.
*
* NOTE! This function checks for dma valid sg data, since dma
* only accept datasizes of even wordsize.
*/
static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
{
bool aligned;
/* Need to include at least one nent, else error */
if (hash_get_nents(sg, datasize, &aligned) < 1)
return false;
return aligned;
}
/**
* hash_init - Common hash init function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*
* Initialize structures.
*/
static int hash_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
if (!ctx->key)
ctx->keylen = 0;
memset(&req_ctx->state, 0, sizeof(struct hash_state));
req_ctx->updated = 0;
if (hash_mode == HASH_MODE_DMA) {
if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
req_ctx->dma_mode = false; /* Don't use DMA */
pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
__func__, HASH_DMA_ALIGN_SIZE);
} else {
if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
hash_dma_valid_data(req->src, req->nbytes)) {
req_ctx->dma_mode = true;
} else {
req_ctx->dma_mode = false;
pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
__func__,
HASH_DMA_PERFORMANCE_MIN_SIZE);
}
}
}
return 0;
}
/**
* hash_processblock - This function processes a single block of 512 bits (64
* bytes), word aligned, starting at message.
* @device_data: Structure for the hash device.
* @message: Block (512 bits) of message to be written to
* the HASH hardware.
*
*/
static void hash_processblock(struct hash_device_data *device_data,
const u32 *message, int length)
{
int len = length / HASH_BYTES_PER_WORD;
/*
* NBLW bits. Reset the number of bits in last word (NBLW).
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
/*
* Write message data to the HASH_DIN register.
*/
HASH_SET_DIN(message, len);
}
/**
* hash_messagepad - Pads a message and write the nblw bits.
* @device_data: Structure for the hash device.
* @message: Last word of a message.
* @index_bytes: The number of bytes in the last message.
*
* This function manages the final part of the digest calculation, when less
* than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
*
*/
static void hash_messagepad(struct hash_device_data *device_data,
const u32 *message, u8 index_bytes)
{
int nwords = 1;
/*
* Clear hash str register, only clear NBLW
* since DCAL will be reset by hardware.
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
/* Main loop */
while (index_bytes >= 4) {
HASH_SET_DIN(message, nwords);
index_bytes -= 4;
message++;
}
if (index_bytes)
HASH_SET_DIN(message, nwords);
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
/* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
HASH_SET_NBLW(index_bytes * 8);
dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
__func__, readl_relaxed(&device_data->base->din),
readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
HASH_SET_DCAL;
dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
__func__, readl_relaxed(&device_data->base->din),
readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
}
/**
* hash_incrementlength - Increments the length of the current message.
* @ctx: Hash context
* @incr: Length of message processed already
*
* Overflow cannot occur, because conditions for overflow are checked in
* hash_hw_update.
*/
static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
{
ctx->state.length.low_word += incr;
/* Check for wrap-around */
if (ctx->state.length.low_word < incr)
ctx->state.length.high_word++;
}
/**
* hash_setconfiguration - Sets the required configuration for the hash
* hardware.
* @device_data: Structure for the hash device.
* @config: Pointer to a configuration structure.
*/
int hash_setconfiguration(struct hash_device_data *device_data,
struct hash_config *config)
{
int ret = 0;
if (config->algorithm != HASH_ALGO_SHA1 &&
config->algorithm != HASH_ALGO_SHA256)
return -EPERM;
/*
* DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
* to be written to HASH_DIN is considered as 32 bits.
*/
HASH_SET_DATA_FORMAT(config->data_format);
/*
* ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
*/
switch (config->algorithm) {
case HASH_ALGO_SHA1:
HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
break;
case HASH_ALGO_SHA256:
HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
break;
default:
dev_err(device_data->dev, "%s: Incorrect algorithm\n",
__func__);
return -EPERM;
}
/*
* MODE bit. This bit selects between HASH or HMAC mode for the
* selected algorithm. 0b0 = HASH and 0b1 = HMAC.
*/
if (HASH_OPER_MODE_HASH == config->oper_mode)
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_MODE_MASK);
else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
/* Truncate key to blocksize */
dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_LKEY_MASK);
} else {
dev_dbg(device_data->dev, "%s: LKEY cleared\n",
__func__);
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_LKEY_MASK);
}
} else { /* Wrong hash mode */
ret = -EPERM;
dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
__func__);
}
return ret;
}
/**
* hash_begin - This routine resets some globals and initializes the hash
* hardware.
* @device_data: Structure for the hash device.
* @ctx: Hash context.
*/
void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
{
/* HW and SW initializations */
/* Note: there is no need to initialize buffer and digest members */
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
/*
* INIT bit. Set this bit to 0b1 to reset the HASH processor core and
* prepare the initialize the HASH accelerator to compute the message
* digest of a new message.
*/
HASH_INITIALIZE;
/*
* NBLW bits. Reset the number of bits in last word (NBLW).
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
}
static int hash_process_data(struct hash_device_data *device_data,
struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
int msg_length, u8 *data_buffer, u8 *buffer,
u8 *index)
{
int ret = 0;
u32 count;
do {
if ((*index + msg_length) < HASH_BLOCK_SIZE) {
for (count = 0; count < msg_length; count++) {
buffer[*index + count] =
*(data_buffer + count);
}
*index += msg_length;
msg_length = 0;
} else {
if (req_ctx->updated) {
ret = hash_resume_state(device_data,
&device_data->state);
memmove(req_ctx->state.buffer,
device_data->state.buffer,
HASH_BLOCK_SIZE / sizeof(u32));
if (ret) {
dev_err(device_data->dev,
"%s: hash_resume_state() failed!\n",
__func__);
goto out;
}
} else {
ret = init_hash_hw(device_data, ctx);
if (ret) {
dev_err(device_data->dev,
"%s: init_hash_hw() failed!\n",
__func__);
goto out;
}
req_ctx->updated = 1;
}
/*
* If 'data_buffer' is four byte aligned and
* local buffer does not have any data, we can
* write data directly from 'data_buffer' to
* HW peripheral, otherwise we first copy data
* to a local buffer
*/
if ((0 == (((u32)data_buffer) % 4)) &&
(0 == *index))
hash_processblock(device_data,
(const u32 *)data_buffer,
HASH_BLOCK_SIZE);
else {
for (count = 0;
count < (u32)(HASH_BLOCK_SIZE - *index);
count++) {
buffer[*index + count] =
*(data_buffer + count);
}
hash_processblock(device_data,
(const u32 *)buffer,
HASH_BLOCK_SIZE);
}
hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
data_buffer += (HASH_BLOCK_SIZE - *index);
msg_length -= (HASH_BLOCK_SIZE - *index);
*index = 0;
ret = hash_save_state(device_data,
&device_data->state);
memmove(device_data->state.buffer,
req_ctx->state.buffer,
HASH_BLOCK_SIZE / sizeof(u32));
if (ret) {
dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
__func__);
goto out;
}
}
} while (msg_length != 0);
out:
return ret;
}
/**
* hash_dma_final - The hash dma final function for SHA1/SHA256.
* @req: The hash request for the job.
*/
static int hash_dma_final(struct ahash_request *req)
{
int ret = 0;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct hash_device_data *device_data;
u8 digest[SHA256_DIGEST_SIZE];
int bytes_written = 0;
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
if (req_ctx->updated) {
ret = hash_resume_state(device_data, &device_data->state);
if (ret) {
dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
__func__);
goto out;
}
}
if (!req_ctx->updated) {
ret = hash_setconfiguration(device_data, &ctx->config);
if (ret) {
dev_err(device_data->dev,
"%s: hash_setconfiguration() failed!\n",
__func__);
goto out;
}
/* Enable DMA input */
if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_DMAE_MASK);
} else {
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_DMAE_MASK);
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_PRIVN_MASK);
}
HASH_INITIALIZE;
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
hash_hw_write_key(device_data, ctx->key, ctx->keylen);
/* Number of bits in last word = (nbytes * 8) % 32 */
HASH_SET_NBLW((req->nbytes * 8) % 32);
req_ctx->updated = 1;
}
/* Store the nents in the dma struct. */
ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
if (!ctx->device->dma.nents) {
dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
__func__);
ret = ctx->device->dma.nents;
goto out;
}
bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
if (bytes_written != req->nbytes) {
dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
__func__);
ret = bytes_written;
goto out;
}
wait_for_completion(&ctx->device->dma.complete);
hash_dma_done(ctx);
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
unsigned int keylen = ctx->keylen;
u8 *key = ctx->key;
dev_dbg(device_data->dev, "%s: keylen: %d\n",
__func__, ctx->keylen);
hash_hw_write_key(device_data, key, keylen);
}
hash_get_digest(device_data, digest, ctx->config.algorithm);
memcpy(req->result, digest, ctx->digestsize);
out:
release_hash_device(device_data);
/**
* Allocated in setkey, and only used in HMAC.
*/
kfree(ctx->key);
return ret;
}
/**
* hash_hw_final - The final hash calculation function
* @req: The hash request for the job.
*/
static int hash_hw_final(struct ahash_request *req)
{
int ret = 0;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct hash_device_data *device_data;
u8 digest[SHA256_DIGEST_SIZE];
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
if (req_ctx->updated) {
ret = hash_resume_state(device_data, &device_data->state);
if (ret) {
dev_err(device_data->dev,
"%s: hash_resume_state() failed!\n", __func__);
goto out;
}
} else if (req->nbytes == 0 && ctx->keylen == 0) {
u8 zero_hash[SHA256_DIGEST_SIZE];
u32 zero_hash_size = 0;
bool zero_digest = false;
/**
* Use a pre-calculated empty message digest
* (workaround since hw return zeroes, hw bug!?)
*/
ret = get_empty_message_digest(device_data, &zero_hash[0],
&zero_hash_size, &zero_digest);
if (!ret && likely(zero_hash_size == ctx->digestsize) &&
zero_digest) {
memcpy(req->result, &zero_hash[0], ctx->digestsize);
goto out;
} else if (!ret && !zero_digest) {
dev_dbg(device_data->dev,
"%s: HMAC zero msg with key, continue...\n",
__func__);
} else {
dev_err(device_data->dev,
"%s: ret=%d, or wrong digest size? %s\n",
__func__, ret,
zero_hash_size == ctx->digestsize ?
"true" : "false");
/* Return error */
goto out;
}
} else if (req->nbytes == 0 && ctx->keylen > 0) {
dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
__func__);
goto out;
}
if (!req_ctx->updated) {
ret = init_hash_hw(device_data, ctx);
if (ret) {
dev_err(device_data->dev,
"%s: init_hash_hw() failed!\n", __func__);
goto out;
}
}
if (req_ctx->state.index) {
hash_messagepad(device_data, req_ctx->state.buffer,
req_ctx->state.index);
} else {
HASH_SET_DCAL;
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
}
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
unsigned int keylen = ctx->keylen;
u8 *key = ctx->key;
dev_dbg(device_data->dev, "%s: keylen: %d\n",
__func__, ctx->keylen);
hash_hw_write_key(device_data, key, keylen);
}
hash_get_digest(device_data, digest, ctx->config.algorithm);
memcpy(req->result, digest, ctx->digestsize);
out:
release_hash_device(device_data);
/**
* Allocated in setkey, and only used in HMAC.
*/
kfree(ctx->key);
return ret;
}
/**
* hash_hw_update - Updates current HASH computation hashing another part of
* the message.
* @req: Byte array containing the message to be hashed (caller
* allocated).
*/
int hash_hw_update(struct ahash_request *req)
{
int ret = 0;
u8 index = 0;
u8 *buffer;
struct hash_device_data *device_data;
u8 *data_buffer;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_hash_walk walk;
int msg_length = crypto_hash_walk_first(req, &walk);
/* Empty message ("") is correct indata */
if (msg_length == 0)
return ret;
index = req_ctx->state.index;
buffer = (u8 *)req_ctx->state.buffer;
/* Check if ctx->state.length + msg_length
overflows */
if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
return -EPERM;
}
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
/* Main loop */
while (0 != msg_length) {
data_buffer = walk.data;
ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
data_buffer, buffer, &index);
if (ret) {
dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
__func__);
goto out;
}
msg_length = crypto_hash_walk_done(&walk, 0);
}
req_ctx->state.index = index;
dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
__func__, req_ctx->state.index, req_ctx->state.bit_index);
out:
release_hash_device(device_data);
return ret;
}
/**
* hash_resume_state - Function that resumes the state of an calculation.
* @device_data: Pointer to the device structure.
* @device_state: The state to be restored in the hash hardware
*/
int hash_resume_state(struct hash_device_data *device_data,
const struct hash_state *device_state)
{
u32 temp_cr;
s32 count;
int hash_mode = HASH_OPER_MODE_HASH;
if (NULL == device_state) {
dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
__func__);
return -EPERM;
}
/* Check correctness of index and length members */
if (device_state->index > HASH_BLOCK_SIZE ||
(device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
__func__);
return -EPERM;
}
/*
* INIT bit. Set this bit to 0b1 to reset the HASH processor core and
* prepare the initialize the HASH accelerator to compute the message
* digest of a new message.
*/
HASH_INITIALIZE;
temp_cr = device_state->temp_cr;
writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
hash_mode = HASH_OPER_MODE_HMAC;
else
hash_mode = HASH_OPER_MODE_HASH;
for (count = 0; count < HASH_CSR_COUNT; count++) {
if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
break;
writel_relaxed(device_state->csr[count],
&device_data->base->csrx[count]);
}
writel_relaxed(device_state->csfull, &device_data->base->csfull);
writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
writel_relaxed(device_state->str_reg, &device_data->base->str);
writel_relaxed(temp_cr, &device_data->base->cr);
return 0;
}
/**
* hash_save_state - Function that saves the state of hardware.
* @device_data: Pointer to the device structure.
* @device_state: The strucure where the hardware state should be saved.
*/
int hash_save_state(struct hash_device_data *device_data,
struct hash_state *device_state)
{
u32 temp_cr;
u32 count;
int hash_mode = HASH_OPER_MODE_HASH;
if (NULL == device_state) {
dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
__func__);
return -ENOTSUPP;
}
/* Write dummy value to force digest intermediate calculation. This
* actually makes sure that there isn't any ongoing calculation in the
* hardware.
*/
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
temp_cr = readl_relaxed(&device_data->base->cr);
device_state->str_reg = readl_relaxed(&device_data->base->str);
device_state->din_reg = readl_relaxed(&device_data->base->din);
if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
hash_mode = HASH_OPER_MODE_HMAC;
else
hash_mode = HASH_OPER_MODE_HASH;
for (count = 0; count < HASH_CSR_COUNT; count++) {
if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
break;
device_state->csr[count] =
readl_relaxed(&device_data->base->csrx[count]);
}
device_state->csfull = readl_relaxed(&device_data->base->csfull);
device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
device_state->temp_cr = temp_cr;
return 0;
}
/**
* hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
* @device_data:
*
*/
int hash_check_hw(struct hash_device_data *device_data)
{
/* Checking Peripheral Ids */
if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
return 0;
}
dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
return -ENOTSUPP;
}
/**
* hash_get_digest - Gets the digest.
* @device_data: Pointer to the device structure.
* @digest: User allocated byte array for the calculated digest.
* @algorithm: The algorithm in use.
*/
void hash_get_digest(struct hash_device_data *device_data,
u8 *digest, int algorithm)
{
u32 temp_hx_val, count;
int loop_ctr;
if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
__func__, algorithm);
return;
}
if (algorithm == HASH_ALGO_SHA1)
loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
else
loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n",
__func__, (u32) digest);
/* Copy result into digest array */
for (count = 0; count < loop_ctr; count++) {
temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
}
}
/**
* hash_update - The hash update function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*/
static int ahash_update(struct ahash_request *req)
{
int ret = 0;
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
ret = hash_hw_update(req);
/* Skip update for DMA, all data will be passed to DMA in final */
if (ret) {
pr_err("%s: hash_hw_update() failed!\n", __func__);
}
return ret;
}
/**
* hash_final - The hash final function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*/
static int ahash_final(struct ahash_request *req)
{
int ret = 0;
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
pr_debug("%s: data size: %d\n", __func__, req->nbytes);
if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
ret = hash_dma_final(req);
else
ret = hash_hw_final(req);
if (ret) {
pr_err("%s: hash_hw/dma_final() failed\n", __func__);
}
return ret;
}
static int hash_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen, int alg)
{
int ret = 0;
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
/**
* Freed in final.
*/
ctx->key = kmemdup(key, keylen, GFP_KERNEL);
if (!ctx->key) {
pr_err("%s: Failed to allocate ctx->key for %d\n",
__func__, alg);
return -ENOMEM;
}
ctx->keylen = keylen;
return ret;
}
static int ahash_sha1_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA1;
ctx->config.oper_mode = HASH_OPER_MODE_HASH;
ctx->digestsize = SHA1_DIGEST_SIZE;
return hash_init(req);
}
static int ahash_sha256_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA256;
ctx->config.oper_mode = HASH_OPER_MODE_HASH;
ctx->digestsize = SHA256_DIGEST_SIZE;
return hash_init(req);
}
static int ahash_sha1_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = ahash_sha1_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int ahash_sha256_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = ahash_sha256_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int hmac_sha1_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA1;
ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
ctx->digestsize = SHA1_DIGEST_SIZE;
return hash_init(req);
}
static int hmac_sha256_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA256;
ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
ctx->digestsize = SHA256_DIGEST_SIZE;
return hash_init(req);
}
static int hmac_sha1_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = hmac_sha1_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int hmac_sha256_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = hmac_sha256_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int hmac_sha1_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen)
{
return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
}
static int hmac_sha256_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen)
{
return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
}
struct hash_algo_template {
struct hash_config conf;
struct ahash_alg hash;
};
static int hash_cra_init(struct crypto_tfm *tfm)
{
struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct hash_algo_template *hash_alg;
hash_alg = container_of(__crypto_ahash_alg(alg),
struct hash_algo_template,
hash);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct hash_req_ctx));
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = hash_alg->conf.algorithm;
ctx->config.oper_mode = hash_alg->conf.oper_mode;
ctx->digestsize = hash_alg->hash.halg.digestsize;
return 0;
}
static struct hash_algo_template hash_algs[] = {
{
.conf.algorithm = HASH_ALGO_SHA1,
.conf.oper_mode = HASH_OPER_MODE_HASH,
.hash = {
.init = hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = ahash_sha1_digest,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ux500",
.cra_flags = (CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC),
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA256,
.conf.oper_mode = HASH_OPER_MODE_HASH,
.hash = {
.init = hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = ahash_sha256_digest,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-ux500",
.cra_flags = (CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC),
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_type = &crypto_ahash_type,
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA1,
.conf.oper_mode = HASH_OPER_MODE_HMAC,
.hash = {
.init = hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = hmac_sha1_digest,
.setkey = hmac_sha1_setkey,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "hmac-sha1-ux500",
.cra_flags = (CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC),
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_type = &crypto_ahash_type,
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA256,
.conf.oper_mode = HASH_OPER_MODE_HMAC,
.hash = {
.init = hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = hmac_sha256_digest,
.setkey = hmac_sha256_setkey,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "hmac-sha256-ux500",
.cra_flags = (CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC),
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_type = &crypto_ahash_type,
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
}
};
/**
* hash_algs_register_all -
*/
static int ahash_algs_register_all(struct hash_device_data *device_data)
{
int ret;
int i;
int count;
for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
ret = crypto_register_ahash(&hash_algs[i].hash);
if (ret) {
count = i;
dev_err(device_data->dev, "%s: alg registration failed\n",
hash_algs[i].hash.halg.base.cra_driver_name);
goto unreg;
}
}
return 0;
unreg:
for (i = 0; i < count; i++)
crypto_unregister_ahash(&hash_algs[i].hash);
return ret;
}
/**
* hash_algs_unregister_all -
*/
static void ahash_algs_unregister_all(struct hash_device_data *device_data)
{
int i;
for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
crypto_unregister_ahash(&hash_algs[i].hash);
}
/**
* ux500_hash_probe - Function that probes the hash hardware.
* @pdev: The platform device.
*/
static int ux500_hash_probe(struct platform_device *pdev)
{
int ret = 0;
struct resource *res = NULL;
struct hash_device_data *device_data;
struct device *dev = &pdev->dev;
device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
if (!device_data) {
ret = -ENOMEM;
goto out;
}
device_data->dev = dev;
device_data->current_ctx = NULL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
ret = -ENODEV;
goto out;
}
device_data->phybase = res->start;
device_data->base = devm_ioremap_resource(dev, res);
if (IS_ERR(device_data->base)) {
dev_err(dev, "%s: ioremap() failed!\n", __func__);
ret = PTR_ERR(device_data->base);
goto out;
}
spin_lock_init(&device_data->ctx_lock);
spin_lock_init(&device_data->power_state_lock);
/* Enable power for HASH1 hardware block */
device_data->regulator = regulator_get(dev, "v-ape");
if (IS_ERR(device_data->regulator)) {
dev_err(dev, "%s: regulator_get() failed!\n", __func__);
ret = PTR_ERR(device_data->regulator);
device_data->regulator = NULL;
goto out;
}
/* Enable the clock for HASH1 hardware block */
device_data->clk = devm_clk_get(dev, NULL);
if (IS_ERR(device_data->clk)) {
dev_err(dev, "%s: clk_get() failed!\n", __func__);
ret = PTR_ERR(device_data->clk);
goto out_regulator;
}
ret = clk_prepare(device_data->clk);
if (ret) {
dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
goto out_regulator;
}
/* Enable device power (and clock) */
ret = hash_enable_power(device_data, false);
if (ret) {
dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
goto out_clk_unprepare;
}
ret = hash_check_hw(device_data);
if (ret) {
dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
goto out_power;
}
if (hash_mode == HASH_MODE_DMA)
hash_dma_setup_channel(device_data, dev);
platform_set_drvdata(pdev, device_data);
/* Put the new device into the device list... */
klist_add_tail(&device_data->list_node, &driver_data.device_list);
/* ... and signal that a new device is available. */
up(&driver_data.device_allocation);
ret = ahash_algs_register_all(device_data);
if (ret) {
dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
__func__);
goto out_power;
}
dev_info(dev, "successfully registered\n");
return 0;
out_power:
hash_disable_power(device_data, false);
out_clk_unprepare:
clk_unprepare(device_data->clk);
out_regulator:
regulator_put(device_data->regulator);
out:
return ret;
}
/**
* ux500_hash_remove - Function that removes the hash device from the platform.
* @pdev: The platform device.
*/
static int ux500_hash_remove(struct platform_device *pdev)
{
struct hash_device_data *device_data;
struct device *dev = &pdev->dev;
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
return -ENOMEM;
}
/* Try to decrease the number of available devices. */
if (down_trylock(&driver_data.device_allocation))
return -EBUSY;
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (device_data->current_ctx) {
/* The device is busy */
spin_unlock(&device_data->ctx_lock);
/* Return the device to the pool. */
up(&driver_data.device_allocation);
return -EBUSY;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
ahash_algs_unregister_all(device_data);
if (hash_disable_power(device_data, false))
dev_err(dev, "%s: hash_disable_power() failed\n",
__func__);
clk_unprepare(device_data->clk);
regulator_put(device_data->regulator);
return 0;
}
/**
* ux500_hash_shutdown - Function that shutdown the hash device.
* @pdev: The platform device
*/
static void ux500_hash_shutdown(struct platform_device *pdev)
{
struct hash_device_data *device_data;
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
__func__);
return;
}
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (!device_data->current_ctx) {
if (down_trylock(&driver_data.device_allocation))
dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
__func__);
/**
* (Allocate the device)
* Need to set this to non-null (dummy) value,
* to avoid usage if context switching.
*/
device_data->current_ctx++;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
ahash_algs_unregister_all(device_data);
if (hash_disable_power(device_data, false))
dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
__func__);
}
#ifdef CONFIG_PM_SLEEP
/**
* ux500_hash_suspend - Function that suspends the hash device.
* @dev: Device to suspend.
*/
static int ux500_hash_suspend(struct device *dev)
{
int ret;
struct hash_device_data *device_data;
struct hash_ctx *temp_ctx = NULL;
device_data = dev_get_drvdata(dev);
if (!device_data) {
dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
return -ENOMEM;
}
spin_lock(&device_data->ctx_lock);
if (!device_data->current_ctx)
device_data->current_ctx++;
spin_unlock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx) {
if (down_interruptible(&driver_data.device_allocation))
dev_dbg(dev, "%s: down_interruptible() failed\n",
__func__);
ret = hash_disable_power(device_data, false);
} else {
ret = hash_disable_power(device_data, true);
}
if (ret)
dev_err(dev, "%s: hash_disable_power()\n", __func__);
return ret;
}
/**
* ux500_hash_resume - Function that resume the hash device.
* @dev: Device to resume.
*/
static int ux500_hash_resume(struct device *dev)
{
int ret = 0;
struct hash_device_data *device_data;
struct hash_ctx *temp_ctx = NULL;
device_data = dev_get_drvdata(dev);
if (!device_data) {
dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
return -ENOMEM;
}
spin_lock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx)
device_data->current_ctx = NULL;
spin_unlock(&device_data->ctx_lock);
if (!device_data->current_ctx)
up(&driver_data.device_allocation);
else
ret = hash_enable_power(device_data, true);
if (ret)
dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
return ret;
}
#endif
static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
static const struct of_device_id ux500_hash_match[] = {
{ .compatible = "stericsson,ux500-hash" },
{ },
};
MODULE_DEVICE_TABLE(of, ux500_hash_match);
static struct platform_driver hash_driver = {
.probe = ux500_hash_probe,
.remove = ux500_hash_remove,
.shutdown = ux500_hash_shutdown,
.driver = {
.name = "hash1",
.of_match_table = ux500_hash_match,
.pm = &ux500_hash_pm,
}
};
/**
* ux500_hash_mod_init - The kernel module init function.
*/
static int __init ux500_hash_mod_init(void)
{
klist_init(&driver_data.device_list, NULL, NULL);
/* Initialize the semaphore to 0 devices (locked state) */
sema_init(&driver_data.device_allocation, 0);
return platform_driver_register(&hash_driver);
}
/**
* ux500_hash_mod_fini - The kernel module exit function.
*/
static void __exit ux500_hash_mod_fini(void)
{
platform_driver_unregister(&hash_driver);
}
module_init(ux500_hash_mod_init);
module_exit(ux500_hash_mod_fini);
MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("sha1-all");
MODULE_ALIAS_CRYPTO("sha256-all");
MODULE_ALIAS_CRYPTO("hmac-sha1-all");
MODULE_ALIAS_CRYPTO("hmac-sha256-all");