Patch series "mm: consolidate definitions of page table accessors", v2.
The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once.  For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.
Most of these definitions are actually identical and typically it boils
down to, e.g.
static inline unsigned long pmd_index(unsigned long address)
{
        return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
        return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.
For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.
These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.
This patch (of 12):
The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g.  pte_alloc() and
pmd_alloc().  So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.
The include statements in such cases are remove with a simple loop:
	for f in $(git grep -l "include <linux/mm.h>") ; do
		sed -i -e '/include <asm\/pgtable.h>/ d' $f
	done
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			3395 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3395 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
 | |
|  *           auto carrier detecting ethernet driver.  Also known as the
 | |
|  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
 | |
|  *
 | |
|  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
 | |
|  *		2006, 2008 David S. Miller (davem@davemloft.net)
 | |
|  *
 | |
|  * Changes :
 | |
|  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
 | |
|  *   - port to non-sparc architectures. Tested only on x86 and
 | |
|  *     only currently works with QFE PCI cards.
 | |
|  *   - ability to specify the MAC address at module load time by passing this
 | |
|  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| #ifdef CONFIG_SPARC
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <asm/idprom.h>
 | |
| #include <asm/openprom.h>
 | |
| #include <asm/oplib.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/auxio.h>
 | |
| #endif
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <asm/irq.h>
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| #include <linux/pci.h>
 | |
| #endif
 | |
| 
 | |
| #include "sunhme.h"
 | |
| 
 | |
| #define DRV_NAME	"sunhme"
 | |
| #define DRV_VERSION	"3.10"
 | |
| #define DRV_RELDATE	"August 26, 2008"
 | |
| #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
 | |
| 
 | |
| static char version[] =
 | |
| 	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
 | |
| 
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| MODULE_AUTHOR(DRV_AUTHOR);
 | |
| MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static int macaddr[6];
 | |
| 
 | |
| /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
 | |
| module_param_array(macaddr, int, NULL, 0);
 | |
| MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
 | |
| 
 | |
| #ifdef CONFIG_SBUS
 | |
| static struct quattro *qfe_sbus_list;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| static struct quattro *qfe_pci_list;
 | |
| #endif
 | |
| 
 | |
| #undef HMEDEBUG
 | |
| #undef SXDEBUG
 | |
| #undef RXDEBUG
 | |
| #undef TXDEBUG
 | |
| #undef TXLOGGING
 | |
| 
 | |
| #ifdef TXLOGGING
 | |
| struct hme_tx_logent {
 | |
| 	unsigned int tstamp;
 | |
| 	int tx_new, tx_old;
 | |
| 	unsigned int action;
 | |
| #define TXLOG_ACTION_IRQ	0x01
 | |
| #define TXLOG_ACTION_TXMIT	0x02
 | |
| #define TXLOG_ACTION_TBUSY	0x04
 | |
| #define TXLOG_ACTION_NBUFS	0x08
 | |
| 	unsigned int status;
 | |
| };
 | |
| #define TX_LOG_LEN	128
 | |
| static struct hme_tx_logent tx_log[TX_LOG_LEN];
 | |
| static int txlog_cur_entry;
 | |
| static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
 | |
| {
 | |
| 	struct hme_tx_logent *tlp;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	tlp = &tx_log[txlog_cur_entry];
 | |
| 	tlp->tstamp = (unsigned int)jiffies;
 | |
| 	tlp->tx_new = hp->tx_new;
 | |
| 	tlp->tx_old = hp->tx_old;
 | |
| 	tlp->action = a;
 | |
| 	tlp->status = s;
 | |
| 	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| static __inline__ void tx_dump_log(void)
 | |
| {
 | |
| 	int i, this;
 | |
| 
 | |
| 	this = txlog_cur_entry;
 | |
| 	for (i = 0; i < TX_LOG_LEN; i++) {
 | |
| 		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
 | |
| 		       tx_log[this].tstamp,
 | |
| 		       tx_log[this].tx_new, tx_log[this].tx_old,
 | |
| 		       tx_log[this].action, tx_log[this].status);
 | |
| 		this = (this + 1) & (TX_LOG_LEN - 1);
 | |
| 	}
 | |
| }
 | |
| static __inline__ void tx_dump_ring(struct happy_meal *hp)
 | |
| {
 | |
| 	struct hmeal_init_block *hb = hp->happy_block;
 | |
| 	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < TX_RING_SIZE; i+=4) {
 | |
| 		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
 | |
| 		       i, i + 4,
 | |
| 		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
 | |
| 		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
 | |
| 		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
 | |
| 		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define tx_add_log(hp, a, s)		do { } while(0)
 | |
| #define tx_dump_log()			do { } while(0)
 | |
| #define tx_dump_ring(hp)		do { } while(0)
 | |
| #endif
 | |
| 
 | |
| #ifdef HMEDEBUG
 | |
| #define HMD(x)  printk x
 | |
| #else
 | |
| #define HMD(x)
 | |
| #endif
 | |
| 
 | |
| /* #define AUTO_SWITCH_DEBUG */
 | |
| 
 | |
| #ifdef AUTO_SWITCH_DEBUG
 | |
| #define ASD(x)  printk x
 | |
| #else
 | |
| #define ASD(x)
 | |
| #endif
 | |
| 
 | |
| #define DEFAULT_IPG0      16 /* For lance-mode only */
 | |
| #define DEFAULT_IPG1       8 /* For all modes */
 | |
| #define DEFAULT_IPG2       4 /* For all modes */
 | |
| #define DEFAULT_JAMSIZE    4 /* Toe jam */
 | |
| 
 | |
| /* NOTE: In the descriptor writes one _must_ write the address
 | |
|  *	 member _first_.  The card must not be allowed to see
 | |
|  *	 the updated descriptor flags until the address is
 | |
|  *	 correct.  I've added a write memory barrier between
 | |
|  *	 the two stores so that I can sleep well at night... -DaveM
 | |
|  */
 | |
| 
 | |
| #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 | |
| static void sbus_hme_write32(void __iomem *reg, u32 val)
 | |
| {
 | |
| 	sbus_writel(val, reg);
 | |
| }
 | |
| 
 | |
| static u32 sbus_hme_read32(void __iomem *reg)
 | |
| {
 | |
| 	return sbus_readl(reg);
 | |
| }
 | |
| 
 | |
| static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 | |
| {
 | |
| 	rxd->rx_addr = (__force hme32)addr;
 | |
| 	dma_wmb();
 | |
| 	rxd->rx_flags = (__force hme32)flags;
 | |
| }
 | |
| 
 | |
| static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 | |
| {
 | |
| 	txd->tx_addr = (__force hme32)addr;
 | |
| 	dma_wmb();
 | |
| 	txd->tx_flags = (__force hme32)flags;
 | |
| }
 | |
| 
 | |
| static u32 sbus_hme_read_desc32(hme32 *p)
 | |
| {
 | |
| 	return (__force u32)*p;
 | |
| }
 | |
| 
 | |
| static void pci_hme_write32(void __iomem *reg, u32 val)
 | |
| {
 | |
| 	writel(val, reg);
 | |
| }
 | |
| 
 | |
| static u32 pci_hme_read32(void __iomem *reg)
 | |
| {
 | |
| 	return readl(reg);
 | |
| }
 | |
| 
 | |
| static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 | |
| {
 | |
| 	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
 | |
| 	dma_wmb();
 | |
| 	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
 | |
| }
 | |
| 
 | |
| static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 | |
| {
 | |
| 	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
 | |
| 	dma_wmb();
 | |
| 	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
 | |
| }
 | |
| 
 | |
| static u32 pci_hme_read_desc32(hme32 *p)
 | |
| {
 | |
| 	return le32_to_cpup((__le32 *)p);
 | |
| }
 | |
| 
 | |
| #define hme_write32(__hp, __reg, __val) \
 | |
| 	((__hp)->write32((__reg), (__val)))
 | |
| #define hme_read32(__hp, __reg) \
 | |
| 	((__hp)->read32(__reg))
 | |
| #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 | |
| 	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
 | |
| #define hme_write_txd(__hp, __txd, __flags, __addr) \
 | |
| 	((__hp)->write_txd((__txd), (__flags), (__addr)))
 | |
| #define hme_read_desc32(__hp, __p) \
 | |
| 	((__hp)->read_desc32(__p))
 | |
| #define hme_dma_map(__hp, __ptr, __size, __dir) \
 | |
| 	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
 | |
| #define hme_dma_unmap(__hp, __addr, __size, __dir) \
 | |
| 	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
 | |
| #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 | |
| 	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
 | |
| #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 | |
| 	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
 | |
| #else
 | |
| #ifdef CONFIG_SBUS
 | |
| /* SBUS only compilation */
 | |
| #define hme_write32(__hp, __reg, __val) \
 | |
| 	sbus_writel((__val), (__reg))
 | |
| #define hme_read32(__hp, __reg) \
 | |
| 	sbus_readl(__reg)
 | |
| #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 | |
| do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
 | |
| 	dma_wmb(); \
 | |
| 	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
 | |
| } while(0)
 | |
| #define hme_write_txd(__hp, __txd, __flags, __addr) \
 | |
| do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
 | |
| 	dma_wmb(); \
 | |
| 	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
 | |
| } while(0)
 | |
| #define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
 | |
| #define hme_dma_map(__hp, __ptr, __size, __dir) \
 | |
| 	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 | |
| #define hme_dma_unmap(__hp, __addr, __size, __dir) \
 | |
| 	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 | |
| #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 | |
| 	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 | |
| #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 | |
| 	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 | |
| #else
 | |
| /* PCI only compilation */
 | |
| #define hme_write32(__hp, __reg, __val) \
 | |
| 	writel((__val), (__reg))
 | |
| #define hme_read32(__hp, __reg) \
 | |
| 	readl(__reg)
 | |
| #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 | |
| do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
 | |
| 	dma_wmb(); \
 | |
| 	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
 | |
| } while(0)
 | |
| #define hme_write_txd(__hp, __txd, __flags, __addr) \
 | |
| do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
 | |
| 	dma_wmb(); \
 | |
| 	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
 | |
| } while(0)
 | |
| static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
 | |
| {
 | |
| 	return le32_to_cpup((__le32 *)p);
 | |
| }
 | |
| #define hme_dma_map(__hp, __ptr, __size, __dir) \
 | |
| 	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 | |
| #define hme_dma_unmap(__hp, __addr, __size, __dir) \
 | |
| 	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 | |
| #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 | |
| 	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 | |
| #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 | |
| 	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
 | |
| static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
 | |
| {
 | |
| 	hme_write32(hp, tregs + TCVR_BBDATA, bit);
 | |
| 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 | |
| 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
 | |
| {
 | |
| 	u32 ret;
 | |
| 
 | |
| 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 | |
| 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 | |
| 	ret = hme_read32(hp, tregs + TCVR_CFG);
 | |
| 	if (internal)
 | |
| 		ret &= TCV_CFG_MDIO0;
 | |
| 	else
 | |
| 		ret &= TCV_CFG_MDIO1;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
 | |
| {
 | |
| 	u32 retval;
 | |
| 
 | |
| 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 | |
| 	udelay(1);
 | |
| 	retval = hme_read32(hp, tregs + TCVR_CFG);
 | |
| 	if (internal)
 | |
| 		retval &= TCV_CFG_MDIO0;
 | |
| 	else
 | |
| 		retval &= TCV_CFG_MDIO1;
 | |
| 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
 | |
| 
 | |
| static int happy_meal_bb_read(struct happy_meal *hp,
 | |
| 			      void __iomem *tregs, int reg)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 	int retval = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	ASD(("happy_meal_bb_read: reg=%d ", reg));
 | |
| 
 | |
| 	/* Enable the MIF BitBang outputs. */
 | |
| 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 | |
| 
 | |
| 	/* Force BitBang into the idle state. */
 | |
| 	for (i = 0; i < 32; i++)
 | |
| 		BB_PUT_BIT(hp, tregs, 1);
 | |
| 
 | |
| 	/* Give it the read sequence. */
 | |
| 	BB_PUT_BIT(hp, tregs, 0);
 | |
| 	BB_PUT_BIT(hp, tregs, 1);
 | |
| 	BB_PUT_BIT(hp, tregs, 1);
 | |
| 	BB_PUT_BIT(hp, tregs, 0);
 | |
| 
 | |
| 	/* Give it the PHY address. */
 | |
| 	tmp = hp->paddr & 0xff;
 | |
| 	for (i = 4; i >= 0; i--)
 | |
| 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 | |
| 
 | |
| 	/* Tell it what register we want to read. */
 | |
| 	tmp = (reg & 0xff);
 | |
| 	for (i = 4; i >= 0; i--)
 | |
| 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 | |
| 
 | |
| 	/* Close down the MIF BitBang outputs. */
 | |
| 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 | |
| 
 | |
| 	/* Now read in the value. */
 | |
| 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 | |
| 	for (i = 15; i >= 0; i--)
 | |
| 		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 | |
| 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 | |
| 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 | |
| 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 | |
| 	ASD(("value=%x\n", retval));
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void happy_meal_bb_write(struct happy_meal *hp,
 | |
| 				void __iomem *tregs, int reg,
 | |
| 				unsigned short value)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
 | |
| 
 | |
| 	/* Enable the MIF BitBang outputs. */
 | |
| 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 | |
| 
 | |
| 	/* Force BitBang into the idle state. */
 | |
| 	for (i = 0; i < 32; i++)
 | |
| 		BB_PUT_BIT(hp, tregs, 1);
 | |
| 
 | |
| 	/* Give it write sequence. */
 | |
| 	BB_PUT_BIT(hp, tregs, 0);
 | |
| 	BB_PUT_BIT(hp, tregs, 1);
 | |
| 	BB_PUT_BIT(hp, tregs, 0);
 | |
| 	BB_PUT_BIT(hp, tregs, 1);
 | |
| 
 | |
| 	/* Give it the PHY address. */
 | |
| 	tmp = (hp->paddr & 0xff);
 | |
| 	for (i = 4; i >= 0; i--)
 | |
| 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 | |
| 
 | |
| 	/* Tell it what register we will be writing. */
 | |
| 	tmp = (reg & 0xff);
 | |
| 	for (i = 4; i >= 0; i--)
 | |
| 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 | |
| 
 | |
| 	/* Tell it to become ready for the bits. */
 | |
| 	BB_PUT_BIT(hp, tregs, 1);
 | |
| 	BB_PUT_BIT(hp, tregs, 0);
 | |
| 
 | |
| 	for (i = 15; i >= 0; i--)
 | |
| 		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
 | |
| 
 | |
| 	/* Close down the MIF BitBang outputs. */
 | |
| 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 | |
| }
 | |
| 
 | |
| #define TCVR_READ_TRIES   16
 | |
| 
 | |
| static int happy_meal_tcvr_read(struct happy_meal *hp,
 | |
| 				void __iomem *tregs, int reg)
 | |
| {
 | |
| 	int tries = TCVR_READ_TRIES;
 | |
| 	int retval;
 | |
| 
 | |
| 	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
 | |
| 	if (hp->tcvr_type == none) {
 | |
| 		ASD(("no transceiver, value=TCVR_FAILURE\n"));
 | |
| 		return TCVR_FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 | |
| 		ASD(("doing bit bang\n"));
 | |
| 		return happy_meal_bb_read(hp, tregs, reg);
 | |
| 	}
 | |
| 
 | |
| 	hme_write32(hp, tregs + TCVR_FRAME,
 | |
| 		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
 | |
| 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 | |
| 		udelay(20);
 | |
| 	if (!tries) {
 | |
| 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
 | |
| 		return TCVR_FAILURE;
 | |
| 	}
 | |
| 	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
 | |
| 	ASD(("value=%04x\n", retval));
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| #define TCVR_WRITE_TRIES  16
 | |
| 
 | |
| static void happy_meal_tcvr_write(struct happy_meal *hp,
 | |
| 				  void __iomem *tregs, int reg,
 | |
| 				  unsigned short value)
 | |
| {
 | |
| 	int tries = TCVR_WRITE_TRIES;
 | |
| 
 | |
| 	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
 | |
| 
 | |
| 	/* Welcome to Sun Microsystems, can I take your order please? */
 | |
| 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 | |
| 		happy_meal_bb_write(hp, tregs, reg, value);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Would you like fries with that? */
 | |
| 	hme_write32(hp, tregs + TCVR_FRAME,
 | |
| 		    (FRAME_WRITE | (hp->paddr << 23) |
 | |
| 		     ((reg & 0xff) << 18) | (value & 0xffff)));
 | |
| 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 | |
| 		udelay(20);
 | |
| 
 | |
| 	/* Anything else? */
 | |
| 	if (!tries)
 | |
| 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
 | |
| 
 | |
| 	/* Fifty-two cents is your change, have a nice day. */
 | |
| }
 | |
| 
 | |
| /* Auto negotiation.  The scheme is very simple.  We have a timer routine
 | |
|  * that keeps watching the auto negotiation process as it progresses.
 | |
|  * The DP83840 is first told to start doing it's thing, we set up the time
 | |
|  * and place the timer state machine in it's initial state.
 | |
|  *
 | |
|  * Here the timer peeks at the DP83840 status registers at each click to see
 | |
|  * if the auto negotiation has completed, we assume here that the DP83840 PHY
 | |
|  * will time out at some point and just tell us what (didn't) happen.  For
 | |
|  * complete coverage we only allow so many of the ticks at this level to run,
 | |
|  * when this has expired we print a warning message and try another strategy.
 | |
|  * This "other" strategy is to force the interface into various speed/duplex
 | |
|  * configurations and we stop when we see a link-up condition before the
 | |
|  * maximum number of "peek" ticks have occurred.
 | |
|  *
 | |
|  * Once a valid link status has been detected we configure the BigMAC and
 | |
|  * the rest of the Happy Meal to speak the most efficient protocol we could
 | |
|  * get a clean link for.  The priority for link configurations, highest first
 | |
|  * is:
 | |
|  *                 100 Base-T Full Duplex
 | |
|  *                 100 Base-T Half Duplex
 | |
|  *                 10 Base-T Full Duplex
 | |
|  *                 10 Base-T Half Duplex
 | |
|  *
 | |
|  * We start a new timer now, after a successful auto negotiation status has
 | |
|  * been detected.  This timer just waits for the link-up bit to get set in
 | |
|  * the BMCR of the DP83840.  When this occurs we print a kernel log message
 | |
|  * describing the link type in use and the fact that it is up.
 | |
|  *
 | |
|  * If a fatal error of some sort is signalled and detected in the interrupt
 | |
|  * service routine, and the chip is reset, or the link is ifconfig'd down
 | |
|  * and then back up, this entire process repeats itself all over again.
 | |
|  */
 | |
| static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
 | |
| {
 | |
| 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 
 | |
| 	/* Downgrade from full to half duplex.  Only possible
 | |
| 	 * via ethtool.
 | |
| 	 */
 | |
| 	if (hp->sw_bmcr & BMCR_FULLDPLX) {
 | |
| 		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
 | |
| 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Downgrade from 100 to 10. */
 | |
| 	if (hp->sw_bmcr & BMCR_SPEED100) {
 | |
| 		hp->sw_bmcr &= ~(BMCR_SPEED100);
 | |
| 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* We've tried everything. */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
 | |
| {
 | |
| 	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
 | |
| 	if (hp->tcvr_type == external)
 | |
| 		printk("external ");
 | |
| 	else
 | |
| 		printk("internal ");
 | |
| 	printk("transceiver at ");
 | |
| 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 | |
| 	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
 | |
| 		if (hp->sw_lpa & LPA_100FULL)
 | |
| 			printk("100Mb/s, Full Duplex.\n");
 | |
| 		else
 | |
| 			printk("100Mb/s, Half Duplex.\n");
 | |
| 	} else {
 | |
| 		if (hp->sw_lpa & LPA_10FULL)
 | |
| 			printk("10Mb/s, Full Duplex.\n");
 | |
| 		else
 | |
| 			printk("10Mb/s, Half Duplex.\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
 | |
| {
 | |
| 	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
 | |
| 	if (hp->tcvr_type == external)
 | |
| 		printk("external ");
 | |
| 	else
 | |
| 		printk("internal ");
 | |
| 	printk("transceiver at ");
 | |
| 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 	if (hp->sw_bmcr & BMCR_SPEED100)
 | |
| 		printk("100Mb/s, ");
 | |
| 	else
 | |
| 		printk("10Mb/s, ");
 | |
| 	if (hp->sw_bmcr & BMCR_FULLDPLX)
 | |
| 		printk("Full Duplex.\n");
 | |
| 	else
 | |
| 		printk("Half Duplex.\n");
 | |
| }
 | |
| 
 | |
| static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
 | |
| {
 | |
| 	int full;
 | |
| 
 | |
| 	/* All we care about is making sure the bigmac tx_cfg has a
 | |
| 	 * proper duplex setting.
 | |
| 	 */
 | |
| 	if (hp->timer_state == arbwait) {
 | |
| 		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 | |
| 		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
 | |
| 			goto no_response;
 | |
| 		if (hp->sw_lpa & LPA_100FULL)
 | |
| 			full = 1;
 | |
| 		else if (hp->sw_lpa & LPA_100HALF)
 | |
| 			full = 0;
 | |
| 		else if (hp->sw_lpa & LPA_10FULL)
 | |
| 			full = 1;
 | |
| 		else
 | |
| 			full = 0;
 | |
| 	} else {
 | |
| 		/* Forcing a link mode. */
 | |
| 		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 		if (hp->sw_bmcr & BMCR_FULLDPLX)
 | |
| 			full = 1;
 | |
| 		else
 | |
| 			full = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Before changing other bits in the tx_cfg register, and in
 | |
| 	 * general any of other the TX config registers too, you
 | |
| 	 * must:
 | |
| 	 * 1) Clear Enable
 | |
| 	 * 2) Poll with reads until that bit reads back as zero
 | |
| 	 * 3) Make TX configuration changes
 | |
| 	 * 4) Set Enable once more
 | |
| 	 */
 | |
| 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 | |
| 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 | |
| 		    ~(BIGMAC_TXCFG_ENABLE));
 | |
| 	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
 | |
| 		barrier();
 | |
| 	if (full) {
 | |
| 		hp->happy_flags |= HFLAG_FULL;
 | |
| 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 | |
| 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 | |
| 			    BIGMAC_TXCFG_FULLDPLX);
 | |
| 	} else {
 | |
| 		hp->happy_flags &= ~(HFLAG_FULL);
 | |
| 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 | |
| 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 | |
| 			    ~(BIGMAC_TXCFG_FULLDPLX));
 | |
| 	}
 | |
| 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 | |
| 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 | |
| 		    BIGMAC_TXCFG_ENABLE);
 | |
| 	return 0;
 | |
| no_response:
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int happy_meal_init(struct happy_meal *hp);
 | |
| 
 | |
| static int is_lucent_phy(struct happy_meal *hp)
 | |
| {
 | |
| 	void __iomem *tregs = hp->tcvregs;
 | |
| 	unsigned short mr2, mr3;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
 | |
| 	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
 | |
| 	if ((mr2 & 0xffff) == 0x0180 &&
 | |
| 	    ((mr3 & 0xffff) >> 10) == 0x1d)
 | |
| 		ret = 1;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void happy_meal_timer(struct timer_list *t)
 | |
| {
 | |
| 	struct happy_meal *hp = from_timer(hp, t, happy_timer);
 | |
| 	void __iomem *tregs = hp->tcvregs;
 | |
| 	int restart_timer = 0;
 | |
| 
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	hp->timer_ticks++;
 | |
| 	switch(hp->timer_state) {
 | |
| 	case arbwait:
 | |
| 		/* Only allow for 5 ticks, thats 10 seconds and much too
 | |
| 		 * long to wait for arbitration to complete.
 | |
| 		 */
 | |
| 		if (hp->timer_ticks >= 10) {
 | |
| 			/* Enter force mode. */
 | |
| 	do_force_mode:
 | |
| 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
 | |
| 			       hp->dev->name);
 | |
| 			hp->sw_bmcr = BMCR_SPEED100;
 | |
| 			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 | |
| 
 | |
| 			if (!is_lucent_phy(hp)) {
 | |
| 				/* OK, seems we need do disable the transceiver for the first
 | |
| 				 * tick to make sure we get an accurate link state at the
 | |
| 				 * second tick.
 | |
| 				 */
 | |
| 				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 | |
| 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 | |
| 				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
 | |
| 			}
 | |
| 			hp->timer_state = ltrywait;
 | |
| 			hp->timer_ticks = 0;
 | |
| 			restart_timer = 1;
 | |
| 		} else {
 | |
| 			/* Anything interesting happen? */
 | |
| 			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 | |
| 			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
 | |
| 				int ret;
 | |
| 
 | |
| 				/* Just what we've been waiting for... */
 | |
| 				ret = set_happy_link_modes(hp, tregs);
 | |
| 				if (ret) {
 | |
| 					/* Ooops, something bad happened, go to force
 | |
| 					 * mode.
 | |
| 					 *
 | |
| 					 * XXX Broken hubs which don't support 802.3u
 | |
| 					 * XXX auto-negotiation make this happen as well.
 | |
| 					 */
 | |
| 					goto do_force_mode;
 | |
| 				}
 | |
| 
 | |
| 				/* Success, at least so far, advance our state engine. */
 | |
| 				hp->timer_state = lupwait;
 | |
| 				restart_timer = 1;
 | |
| 			} else {
 | |
| 				restart_timer = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case lupwait:
 | |
| 		/* Auto negotiation was successful and we are awaiting a
 | |
| 		 * link up status.  I have decided to let this timer run
 | |
| 		 * forever until some sort of error is signalled, reporting
 | |
| 		 * a message to the user at 10 second intervals.
 | |
| 		 */
 | |
| 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 | |
| 		if (hp->sw_bmsr & BMSR_LSTATUS) {
 | |
| 			/* Wheee, it's up, display the link mode in use and put
 | |
| 			 * the timer to sleep.
 | |
| 			 */
 | |
| 			display_link_mode(hp, tregs);
 | |
| 			hp->timer_state = asleep;
 | |
| 			restart_timer = 0;
 | |
| 		} else {
 | |
| 			if (hp->timer_ticks >= 10) {
 | |
| 				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
 | |
| 				       "not completely up.\n", hp->dev->name);
 | |
| 				hp->timer_ticks = 0;
 | |
| 				restart_timer = 1;
 | |
| 			} else {
 | |
| 				restart_timer = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case ltrywait:
 | |
| 		/* Making the timeout here too long can make it take
 | |
| 		 * annoyingly long to attempt all of the link mode
 | |
| 		 * permutations, but then again this is essentially
 | |
| 		 * error recovery code for the most part.
 | |
| 		 */
 | |
| 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 | |
| 		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 | |
| 		if (hp->timer_ticks == 1) {
 | |
| 			if (!is_lucent_phy(hp)) {
 | |
| 				/* Re-enable transceiver, we'll re-enable the transceiver next
 | |
| 				 * tick, then check link state on the following tick.
 | |
| 				 */
 | |
| 				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 | |
| 				happy_meal_tcvr_write(hp, tregs,
 | |
| 						      DP83840_CSCONFIG, hp->sw_csconfig);
 | |
| 			}
 | |
| 			restart_timer = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (hp->timer_ticks == 2) {
 | |
| 			if (!is_lucent_phy(hp)) {
 | |
| 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 | |
| 				happy_meal_tcvr_write(hp, tregs,
 | |
| 						      DP83840_CSCONFIG, hp->sw_csconfig);
 | |
| 			}
 | |
| 			restart_timer = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (hp->sw_bmsr & BMSR_LSTATUS) {
 | |
| 			/* Force mode selection success. */
 | |
| 			display_forced_link_mode(hp, tregs);
 | |
| 			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
 | |
| 			hp->timer_state = asleep;
 | |
| 			restart_timer = 0;
 | |
| 		} else {
 | |
| 			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
 | |
| 				int ret;
 | |
| 
 | |
| 				ret = try_next_permutation(hp, tregs);
 | |
| 				if (ret == -1) {
 | |
| 					/* Aieee, tried them all, reset the
 | |
| 					 * chip and try all over again.
 | |
| 					 */
 | |
| 
 | |
| 					/* Let the user know... */
 | |
| 					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
 | |
| 					       hp->dev->name);
 | |
| 
 | |
| 					ret = happy_meal_init(hp);
 | |
| 					if (ret) {
 | |
| 						/* ho hum... */
 | |
| 						printk(KERN_ERR "%s: Error, cannot re-init the "
 | |
| 						       "Happy Meal.\n", hp->dev->name);
 | |
| 					}
 | |
| 					goto out;
 | |
| 				}
 | |
| 				if (!is_lucent_phy(hp)) {
 | |
| 					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
 | |
| 									       DP83840_CSCONFIG);
 | |
| 					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 | |
| 					happy_meal_tcvr_write(hp, tregs,
 | |
| 							      DP83840_CSCONFIG, hp->sw_csconfig);
 | |
| 				}
 | |
| 				hp->timer_ticks = 0;
 | |
| 				restart_timer = 1;
 | |
| 			} else {
 | |
| 				restart_timer = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case asleep:
 | |
| 	default:
 | |
| 		/* Can't happens.... */
 | |
| 		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
 | |
| 		       hp->dev->name);
 | |
| 		restart_timer = 0;
 | |
| 		hp->timer_ticks = 0;
 | |
| 		hp->timer_state = asleep; /* foo on you */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (restart_timer) {
 | |
| 		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
 | |
| 		add_timer(&hp->happy_timer);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| }
 | |
| 
 | |
| #define TX_RESET_TRIES     32
 | |
| #define RX_RESET_TRIES     32
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
 | |
| {
 | |
| 	int tries = TX_RESET_TRIES;
 | |
| 
 | |
| 	HMD(("happy_meal_tx_reset: reset, "));
 | |
| 
 | |
| 	/* Would you like to try our SMCC Delux? */
 | |
| 	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
 | |
| 	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
 | |
| 		udelay(20);
 | |
| 
 | |
| 	/* Lettuce, tomato, buggy hardware (no extra charge)? */
 | |
| 	if (!tries)
 | |
| 		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
 | |
| 
 | |
| 	/* Take care. */
 | |
| 	HMD(("done\n"));
 | |
| }
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
 | |
| {
 | |
| 	int tries = RX_RESET_TRIES;
 | |
| 
 | |
| 	HMD(("happy_meal_rx_reset: reset, "));
 | |
| 
 | |
| 	/* We have a special on GNU/Viking hardware bugs today. */
 | |
| 	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
 | |
| 	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
 | |
| 		udelay(20);
 | |
| 
 | |
| 	/* Will that be all? */
 | |
| 	if (!tries)
 | |
| 		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
 | |
| 
 | |
| 	/* Don't forget your vik_1137125_wa.  Have a nice day. */
 | |
| 	HMD(("done\n"));
 | |
| }
 | |
| 
 | |
| #define STOP_TRIES         16
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
 | |
| {
 | |
| 	int tries = STOP_TRIES;
 | |
| 
 | |
| 	HMD(("happy_meal_stop: reset, "));
 | |
| 
 | |
| 	/* We're consolidating our STB products, it's your lucky day. */
 | |
| 	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
 | |
| 	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
 | |
| 		udelay(20);
 | |
| 
 | |
| 	/* Come back next week when we are "Sun Microelectronics". */
 | |
| 	if (!tries)
 | |
| 		printk(KERN_ERR "happy meal: Fry guys.");
 | |
| 
 | |
| 	/* Remember: "Different name, same old buggy as shit hardware." */
 | |
| 	HMD(("done\n"));
 | |
| }
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
 | |
| {
 | |
| 	struct net_device_stats *stats = &hp->dev->stats;
 | |
| 
 | |
| 	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
 | |
| 	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
 | |
| 
 | |
| 	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
 | |
| 	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
 | |
| 
 | |
| 	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
 | |
| 	hme_write32(hp, bregs + BMAC_GLECTR, 0);
 | |
| 
 | |
| 	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
 | |
| 
 | |
| 	stats->collisions +=
 | |
| 		(hme_read32(hp, bregs + BMAC_EXCTR) +
 | |
| 		 hme_read32(hp, bregs + BMAC_LTCTR));
 | |
| 	hme_write32(hp, bregs + BMAC_EXCTR, 0);
 | |
| 	hme_write32(hp, bregs + BMAC_LTCTR, 0);
 | |
| }
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
 | |
| {
 | |
| 	ASD(("happy_meal_poll_stop: "));
 | |
| 
 | |
| 	/* If polling disabled or not polling already, nothing to do. */
 | |
| 	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
 | |
| 	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
 | |
| 		HMD(("not polling, return\n"));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Shut up the MIF. */
 | |
| 	ASD(("were polling, mif ints off, "));
 | |
| 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 | |
| 
 | |
| 	/* Turn off polling. */
 | |
| 	ASD(("polling off, "));
 | |
| 	hme_write32(hp, tregs + TCVR_CFG,
 | |
| 		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
 | |
| 
 | |
| 	/* We are no longer polling. */
 | |
| 	hp->happy_flags &= ~(HFLAG_POLL);
 | |
| 
 | |
| 	/* Let the bits set. */
 | |
| 	udelay(200);
 | |
| 	ASD(("done\n"));
 | |
| }
 | |
| 
 | |
| /* Only Sun can take such nice parts and fuck up the programming interface
 | |
|  * like this.  Good job guys...
 | |
|  */
 | |
| #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
 | |
| #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
 | |
| {
 | |
| 	u32 tconfig;
 | |
| 	int result, tries = TCVR_RESET_TRIES;
 | |
| 
 | |
| 	tconfig = hme_read32(hp, tregs + TCVR_CFG);
 | |
| 	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
 | |
| 	if (hp->tcvr_type == external) {
 | |
| 		ASD(("external<"));
 | |
| 		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
 | |
| 		hp->tcvr_type = internal;
 | |
| 		hp->paddr = TCV_PADDR_ITX;
 | |
| 		ASD(("ISOLATE,"));
 | |
| 		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
 | |
| 				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
 | |
| 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 		if (result == TCVR_FAILURE) {
 | |
| 			ASD(("phyread_fail>\n"));
 | |
| 			return -1;
 | |
| 		}
 | |
| 		ASD(("phyread_ok,PSELECT>"));
 | |
| 		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
 | |
| 		hp->tcvr_type = external;
 | |
| 		hp->paddr = TCV_PADDR_ETX;
 | |
| 	} else {
 | |
| 		if (tconfig & TCV_CFG_MDIO1) {
 | |
| 			ASD(("internal<PSELECT,"));
 | |
| 			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
 | |
| 			ASD(("ISOLATE,"));
 | |
| 			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
 | |
| 					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
 | |
| 			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 			if (result == TCVR_FAILURE) {
 | |
| 				ASD(("phyread_fail>\n"));
 | |
| 				return -1;
 | |
| 			}
 | |
| 			ASD(("phyread_ok,~PSELECT>"));
 | |
| 			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
 | |
| 			hp->tcvr_type = internal;
 | |
| 			hp->paddr = TCV_PADDR_ITX;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ASD(("BMCR_RESET "));
 | |
| 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
 | |
| 
 | |
| 	while (--tries) {
 | |
| 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 		if (result == TCVR_FAILURE)
 | |
| 			return -1;
 | |
| 		hp->sw_bmcr = result;
 | |
| 		if (!(result & BMCR_RESET))
 | |
| 			break;
 | |
| 		udelay(20);
 | |
| 	}
 | |
| 	if (!tries) {
 | |
| 		ASD(("BMCR RESET FAILED!\n"));
 | |
| 		return -1;
 | |
| 	}
 | |
| 	ASD(("RESET_OK\n"));
 | |
| 
 | |
| 	/* Get fresh copies of the PHY registers. */
 | |
| 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 | |
| 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
 | |
| 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
 | |
| 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
 | |
| 
 | |
| 	ASD(("UNISOLATE"));
 | |
| 	hp->sw_bmcr &= ~(BMCR_ISOLATE);
 | |
| 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 | |
| 
 | |
| 	tries = TCVR_UNISOLATE_TRIES;
 | |
| 	while (--tries) {
 | |
| 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 		if (result == TCVR_FAILURE)
 | |
| 			return -1;
 | |
| 		if (!(result & BMCR_ISOLATE))
 | |
| 			break;
 | |
| 		udelay(20);
 | |
| 	}
 | |
| 	if (!tries) {
 | |
| 		ASD((" FAILED!\n"));
 | |
| 		return -1;
 | |
| 	}
 | |
| 	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
 | |
| 	if (!is_lucent_phy(hp)) {
 | |
| 		result = happy_meal_tcvr_read(hp, tregs,
 | |
| 					      DP83840_CSCONFIG);
 | |
| 		happy_meal_tcvr_write(hp, tregs,
 | |
| 				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Figure out whether we have an internal or external transceiver.
 | |
|  *
 | |
|  * hp->happy_lock must be held
 | |
|  */
 | |
| static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
 | |
| {
 | |
| 	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
 | |
| 
 | |
| 	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
 | |
| 	if (hp->happy_flags & HFLAG_POLL) {
 | |
| 		/* If we are polling, we must stop to get the transceiver type. */
 | |
| 		ASD(("<polling> "));
 | |
| 		if (hp->tcvr_type == internal) {
 | |
| 			if (tconfig & TCV_CFG_MDIO1) {
 | |
| 				ASD(("<internal> <poll stop> "));
 | |
| 				happy_meal_poll_stop(hp, tregs);
 | |
| 				hp->paddr = TCV_PADDR_ETX;
 | |
| 				hp->tcvr_type = external;
 | |
| 				ASD(("<external>\n"));
 | |
| 				tconfig &= ~(TCV_CFG_PENABLE);
 | |
| 				tconfig |= TCV_CFG_PSELECT;
 | |
| 				hme_write32(hp, tregs + TCVR_CFG, tconfig);
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (hp->tcvr_type == external) {
 | |
| 				ASD(("<external> "));
 | |
| 				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
 | |
| 					ASD(("<poll stop> "));
 | |
| 					happy_meal_poll_stop(hp, tregs);
 | |
| 					hp->paddr = TCV_PADDR_ITX;
 | |
| 					hp->tcvr_type = internal;
 | |
| 					ASD(("<internal>\n"));
 | |
| 					hme_write32(hp, tregs + TCVR_CFG,
 | |
| 						    hme_read32(hp, tregs + TCVR_CFG) &
 | |
| 						    ~(TCV_CFG_PSELECT));
 | |
| 				}
 | |
| 				ASD(("\n"));
 | |
| 			} else {
 | |
| 				ASD(("<none>\n"));
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
 | |
| 
 | |
| 		/* Else we can just work off of the MDIO bits. */
 | |
| 		ASD(("<not polling> "));
 | |
| 		if (reread & TCV_CFG_MDIO1) {
 | |
| 			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
 | |
| 			hp->paddr = TCV_PADDR_ETX;
 | |
| 			hp->tcvr_type = external;
 | |
| 			ASD(("<external>\n"));
 | |
| 		} else {
 | |
| 			if (reread & TCV_CFG_MDIO0) {
 | |
| 				hme_write32(hp, tregs + TCVR_CFG,
 | |
| 					    tconfig & ~(TCV_CFG_PSELECT));
 | |
| 				hp->paddr = TCV_PADDR_ITX;
 | |
| 				hp->tcvr_type = internal;
 | |
| 				ASD(("<internal>\n"));
 | |
| 			} else {
 | |
| 				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
 | |
| 				hp->tcvr_type = none; /* Grrr... */
 | |
| 				ASD(("<none>\n"));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* The receive ring buffers are a bit tricky to get right.  Here goes...
 | |
|  *
 | |
|  * The buffers we dma into must be 64 byte aligned.  So we use a special
 | |
|  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
 | |
|  * we really need.
 | |
|  *
 | |
|  * We use skb_reserve() to align the data block we get in the skb.  We
 | |
|  * also program the etxregs->cfg register to use an offset of 2.  This
 | |
|  * imperical constant plus the ethernet header size will always leave
 | |
|  * us with a nicely aligned ip header once we pass things up to the
 | |
|  * protocol layers.
 | |
|  *
 | |
|  * The numbers work out to:
 | |
|  *
 | |
|  *         Max ethernet frame size         1518
 | |
|  *         Ethernet header size              14
 | |
|  *         Happy Meal base offset             2
 | |
|  *
 | |
|  * Say a skb data area is at 0xf001b010, and its size alloced is
 | |
|  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
 | |
|  *
 | |
|  * First our alloc_skb() routine aligns the data base to a 64 byte
 | |
|  * boundary.  We now have 0xf001b040 as our skb data address.  We
 | |
|  * plug this into the receive descriptor address.
 | |
|  *
 | |
|  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
 | |
|  * So now the data we will end up looking at starts at 0xf001b042.  When
 | |
|  * the packet arrives, we will check out the size received and subtract
 | |
|  * this from the skb->length.  Then we just pass the packet up to the
 | |
|  * protocols as is, and allocate a new skb to replace this slot we have
 | |
|  * just received from.
 | |
|  *
 | |
|  * The ethernet layer will strip the ether header from the front of the
 | |
|  * skb we just sent to it, this leaves us with the ip header sitting
 | |
|  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
 | |
|  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
 | |
|  * bit checksum is obtained from the low bits of the receive descriptor
 | |
|  * flags, thus:
 | |
|  *
 | |
|  * 	skb->csum = rxd->rx_flags & 0xffff;
 | |
|  * 	skb->ip_summed = CHECKSUM_COMPLETE;
 | |
|  *
 | |
|  * before sending off the skb to the protocols, and we are good as gold.
 | |
|  */
 | |
| static void happy_meal_clean_rings(struct happy_meal *hp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		if (hp->rx_skbs[i] != NULL) {
 | |
| 			struct sk_buff *skb = hp->rx_skbs[i];
 | |
| 			struct happy_meal_rxd *rxd;
 | |
| 			u32 dma_addr;
 | |
| 
 | |
| 			rxd = &hp->happy_block->happy_meal_rxd[i];
 | |
| 			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
 | |
| 			dma_unmap_single(hp->dma_dev, dma_addr,
 | |
| 					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			hp->rx_skbs[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 		if (hp->tx_skbs[i] != NULL) {
 | |
| 			struct sk_buff *skb = hp->tx_skbs[i];
 | |
| 			struct happy_meal_txd *txd;
 | |
| 			u32 dma_addr;
 | |
| 			int frag;
 | |
| 
 | |
| 			hp->tx_skbs[i] = NULL;
 | |
| 
 | |
| 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 | |
| 				txd = &hp->happy_block->happy_meal_txd[i];
 | |
| 				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
 | |
| 				if (!frag)
 | |
| 					dma_unmap_single(hp->dma_dev, dma_addr,
 | |
| 							 (hme_read_desc32(hp, &txd->tx_flags)
 | |
| 							  & TXFLAG_SIZE),
 | |
| 							 DMA_TO_DEVICE);
 | |
| 				else
 | |
| 					dma_unmap_page(hp->dma_dev, dma_addr,
 | |
| 							 (hme_read_desc32(hp, &txd->tx_flags)
 | |
| 							  & TXFLAG_SIZE),
 | |
| 							 DMA_TO_DEVICE);
 | |
| 
 | |
| 				if (frag != skb_shinfo(skb)->nr_frags)
 | |
| 					i++;
 | |
| 			}
 | |
| 
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_init_rings(struct happy_meal *hp)
 | |
| {
 | |
| 	struct hmeal_init_block *hb = hp->happy_block;
 | |
| 	int i;
 | |
| 
 | |
| 	HMD(("happy_meal_init_rings: counters to zero, "));
 | |
| 	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
 | |
| 
 | |
| 	/* Free any skippy bufs left around in the rings. */
 | |
| 	HMD(("clean, "));
 | |
| 	happy_meal_clean_rings(hp);
 | |
| 
 | |
| 	/* Now get new skippy bufs for the receive ring. */
 | |
| 	HMD(("init rxring, "));
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		u32 mapping;
 | |
| 
 | |
| 		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
 | |
| 		if (!skb) {
 | |
| 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
 | |
| 			continue;
 | |
| 		}
 | |
| 		hp->rx_skbs[i] = skb;
 | |
| 
 | |
| 		/* Because we reserve afterwards. */
 | |
| 		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
 | |
| 		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
 | |
| 					 DMA_FROM_DEVICE);
 | |
| 		if (dma_mapping_error(hp->dma_dev, mapping)) {
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
 | |
| 			continue;
 | |
| 		}
 | |
| 		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
 | |
| 			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
 | |
| 			      mapping);
 | |
| 		skb_reserve(skb, RX_OFFSET);
 | |
| 	}
 | |
| 
 | |
| 	HMD(("init txring, "));
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++)
 | |
| 		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
 | |
| 
 | |
| 	HMD(("done\n"));
 | |
| }
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void
 | |
| happy_meal_begin_auto_negotiation(struct happy_meal *hp,
 | |
| 				  void __iomem *tregs,
 | |
| 				  const struct ethtool_link_ksettings *ep)
 | |
| {
 | |
| 	int timeout;
 | |
| 
 | |
| 	/* Read all of the registers we are interested in now. */
 | |
| 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 | |
| 	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
 | |
| 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
 | |
| 
 | |
| 	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
 | |
| 
 | |
| 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
 | |
| 	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
 | |
| 		/* Advertise everything we can support. */
 | |
| 		if (hp->sw_bmsr & BMSR_10HALF)
 | |
| 			hp->sw_advertise |= (ADVERTISE_10HALF);
 | |
| 		else
 | |
| 			hp->sw_advertise &= ~(ADVERTISE_10HALF);
 | |
| 
 | |
| 		if (hp->sw_bmsr & BMSR_10FULL)
 | |
| 			hp->sw_advertise |= (ADVERTISE_10FULL);
 | |
| 		else
 | |
| 			hp->sw_advertise &= ~(ADVERTISE_10FULL);
 | |
| 		if (hp->sw_bmsr & BMSR_100HALF)
 | |
| 			hp->sw_advertise |= (ADVERTISE_100HALF);
 | |
| 		else
 | |
| 			hp->sw_advertise &= ~(ADVERTISE_100HALF);
 | |
| 		if (hp->sw_bmsr & BMSR_100FULL)
 | |
| 			hp->sw_advertise |= (ADVERTISE_100FULL);
 | |
| 		else
 | |
| 			hp->sw_advertise &= ~(ADVERTISE_100FULL);
 | |
| 		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
 | |
| 
 | |
| 		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
 | |
| 		 * XXX and this is because the DP83840 does not support it, changes
 | |
| 		 * XXX would need to be made to the tx/rx logic in the driver as well
 | |
| 		 * XXX so I completely skip checking for it in the BMSR for now.
 | |
| 		 */
 | |
| 
 | |
| #ifdef AUTO_SWITCH_DEBUG
 | |
| 		ASD(("%s: Advertising [ ", hp->dev->name));
 | |
| 		if (hp->sw_advertise & ADVERTISE_10HALF)
 | |
| 			ASD(("10H "));
 | |
| 		if (hp->sw_advertise & ADVERTISE_10FULL)
 | |
| 			ASD(("10F "));
 | |
| 		if (hp->sw_advertise & ADVERTISE_100HALF)
 | |
| 			ASD(("100H "));
 | |
| 		if (hp->sw_advertise & ADVERTISE_100FULL)
 | |
| 			ASD(("100F "));
 | |
| #endif
 | |
| 
 | |
| 		/* Enable Auto-Negotiation, this is usually on already... */
 | |
| 		hp->sw_bmcr |= BMCR_ANENABLE;
 | |
| 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 | |
| 
 | |
| 		/* Restart it to make sure it is going. */
 | |
| 		hp->sw_bmcr |= BMCR_ANRESTART;
 | |
| 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 | |
| 
 | |
| 		/* BMCR_ANRESTART self clears when the process has begun. */
 | |
| 
 | |
| 		timeout = 64;  /* More than enough. */
 | |
| 		while (--timeout) {
 | |
| 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 			if (!(hp->sw_bmcr & BMCR_ANRESTART))
 | |
| 				break; /* got it. */
 | |
| 			udelay(10);
 | |
| 		}
 | |
| 		if (!timeout) {
 | |
| 			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
 | |
| 			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
 | |
| 			printk(KERN_NOTICE "%s: Performing force link detection.\n",
 | |
| 			       hp->dev->name);
 | |
| 			goto force_link;
 | |
| 		} else {
 | |
| 			hp->timer_state = arbwait;
 | |
| 		}
 | |
| 	} else {
 | |
| force_link:
 | |
| 		/* Force the link up, trying first a particular mode.
 | |
| 		 * Either we are here at the request of ethtool or
 | |
| 		 * because the Happy Meal would not start to autoneg.
 | |
| 		 */
 | |
| 
 | |
| 		/* Disable auto-negotiation in BMCR, enable the duplex and
 | |
| 		 * speed setting, init the timer state machine, and fire it off.
 | |
| 		 */
 | |
| 		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
 | |
| 			hp->sw_bmcr = BMCR_SPEED100;
 | |
| 		} else {
 | |
| 			if (ep->base.speed == SPEED_100)
 | |
| 				hp->sw_bmcr = BMCR_SPEED100;
 | |
| 			else
 | |
| 				hp->sw_bmcr = 0;
 | |
| 			if (ep->base.duplex == DUPLEX_FULL)
 | |
| 				hp->sw_bmcr |= BMCR_FULLDPLX;
 | |
| 		}
 | |
| 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 | |
| 
 | |
| 		if (!is_lucent_phy(hp)) {
 | |
| 			/* OK, seems we need do disable the transceiver for the first
 | |
| 			 * tick to make sure we get an accurate link state at the
 | |
| 			 * second tick.
 | |
| 			 */
 | |
| 			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
 | |
| 							       DP83840_CSCONFIG);
 | |
| 			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 | |
| 			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
 | |
| 					      hp->sw_csconfig);
 | |
| 		}
 | |
| 		hp->timer_state = ltrywait;
 | |
| 	}
 | |
| 
 | |
| 	hp->timer_ticks = 0;
 | |
| 	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
 | |
| 	add_timer(&hp->happy_timer);
 | |
| }
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static int happy_meal_init(struct happy_meal *hp)
 | |
| {
 | |
| 	void __iomem *gregs        = hp->gregs;
 | |
| 	void __iomem *etxregs      = hp->etxregs;
 | |
| 	void __iomem *erxregs      = hp->erxregs;
 | |
| 	void __iomem *bregs        = hp->bigmacregs;
 | |
| 	void __iomem *tregs        = hp->tcvregs;
 | |
| 	u32 regtmp, rxcfg;
 | |
| 	unsigned char *e = &hp->dev->dev_addr[0];
 | |
| 
 | |
| 	/* If auto-negotiation timer is running, kill it. */
 | |
| 	del_timer(&hp->happy_timer);
 | |
| 
 | |
| 	HMD(("happy_meal_init: happy_flags[%08x] ",
 | |
| 	     hp->happy_flags));
 | |
| 	if (!(hp->happy_flags & HFLAG_INIT)) {
 | |
| 		HMD(("set HFLAG_INIT, "));
 | |
| 		hp->happy_flags |= HFLAG_INIT;
 | |
| 		happy_meal_get_counters(hp, bregs);
 | |
| 	}
 | |
| 
 | |
| 	/* Stop polling. */
 | |
| 	HMD(("to happy_meal_poll_stop\n"));
 | |
| 	happy_meal_poll_stop(hp, tregs);
 | |
| 
 | |
| 	/* Stop transmitter and receiver. */
 | |
| 	HMD(("happy_meal_init: to happy_meal_stop\n"));
 | |
| 	happy_meal_stop(hp, gregs);
 | |
| 
 | |
| 	/* Alloc and reset the tx/rx descriptor chains. */
 | |
| 	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
 | |
| 	happy_meal_init_rings(hp);
 | |
| 
 | |
| 	/* Shut up the MIF. */
 | |
| 	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
 | |
| 	     hme_read32(hp, tregs + TCVR_IMASK)));
 | |
| 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 | |
| 
 | |
| 	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
 | |
| 	if (hp->happy_flags & HFLAG_FENABLE) {
 | |
| 		HMD(("use frame old[%08x], ",
 | |
| 		     hme_read32(hp, tregs + TCVR_CFG)));
 | |
| 		hme_write32(hp, tregs + TCVR_CFG,
 | |
| 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
 | |
| 	} else {
 | |
| 		HMD(("use bitbang old[%08x], ",
 | |
| 		     hme_read32(hp, tregs + TCVR_CFG)));
 | |
| 		hme_write32(hp, tregs + TCVR_CFG,
 | |
| 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
 | |
| 	}
 | |
| 
 | |
| 	/* Check the state of the transceiver. */
 | |
| 	HMD(("to happy_meal_transceiver_check\n"));
 | |
| 	happy_meal_transceiver_check(hp, tregs);
 | |
| 
 | |
| 	/* Put the Big Mac into a sane state. */
 | |
| 	HMD(("happy_meal_init: "));
 | |
| 	switch(hp->tcvr_type) {
 | |
| 	case none:
 | |
| 		/* Cannot operate if we don't know the transceiver type! */
 | |
| 		HMD(("AAIEEE no transceiver type, EAGAIN"));
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	case internal:
 | |
| 		/* Using the MII buffers. */
 | |
| 		HMD(("internal, using MII, "));
 | |
| 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
 | |
| 		break;
 | |
| 
 | |
| 	case external:
 | |
| 		/* Not using the MII, disable it. */
 | |
| 		HMD(("external, disable MII, "));
 | |
| 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (happy_meal_tcvr_reset(hp, tregs))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
 | |
| 	HMD(("tx/rx reset, "));
 | |
| 	happy_meal_tx_reset(hp, bregs);
 | |
| 	happy_meal_rx_reset(hp, bregs);
 | |
| 
 | |
| 	/* Set jam size and inter-packet gaps to reasonable defaults. */
 | |
| 	HMD(("jsize/ipg1/ipg2, "));
 | |
| 	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
 | |
| 	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
 | |
| 	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
 | |
| 
 | |
| 	/* Load up the MAC address and random seed. */
 | |
| 	HMD(("rseed/macaddr, "));
 | |
| 
 | |
| 	/* The docs recommend to use the 10LSB of our MAC here. */
 | |
| 	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
 | |
| 
 | |
| 	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
 | |
| 	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
 | |
| 	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
 | |
| 
 | |
| 	HMD(("htable, "));
 | |
| 	if ((hp->dev->flags & IFF_ALLMULTI) ||
 | |
| 	    (netdev_mc_count(hp->dev) > 64)) {
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
 | |
| 	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
 | |
| 		u16 hash_table[4];
 | |
| 		struct netdev_hw_addr *ha;
 | |
| 		u32 crc;
 | |
| 
 | |
| 		memset(hash_table, 0, sizeof(hash_table));
 | |
| 		netdev_for_each_mc_addr(ha, hp->dev) {
 | |
| 			crc = ether_crc_le(6, ha->addr);
 | |
| 			crc >>= 26;
 | |
| 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
 | |
| 		}
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
 | |
| 	} else {
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Set the RX and TX ring ptrs. */
 | |
| 	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
 | |
| 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
 | |
| 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
 | |
| 	hme_write32(hp, erxregs + ERX_RING,
 | |
| 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
 | |
| 	hme_write32(hp, etxregs + ETX_RING,
 | |
| 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
 | |
| 
 | |
| 	/* Parity issues in the ERX unit of some HME revisions can cause some
 | |
| 	 * registers to not be written unless their parity is even.  Detect such
 | |
| 	 * lost writes and simply rewrite with a low bit set (which will be ignored
 | |
| 	 * since the rxring needs to be 2K aligned).
 | |
| 	 */
 | |
| 	if (hme_read32(hp, erxregs + ERX_RING) !=
 | |
| 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
 | |
| 		hme_write32(hp, erxregs + ERX_RING,
 | |
| 			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
 | |
| 			    | 0x4);
 | |
| 
 | |
| 	/* Set the supported burst sizes. */
 | |
| 	HMD(("happy_meal_init: old[%08x] bursts<",
 | |
| 	     hme_read32(hp, gregs + GREG_CFG)));
 | |
| 
 | |
| #ifndef CONFIG_SPARC
 | |
| 	/* It is always PCI and can handle 64byte bursts. */
 | |
| 	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
 | |
| #else
 | |
| 	if ((hp->happy_bursts & DMA_BURST64) &&
 | |
| 	    ((hp->happy_flags & HFLAG_PCI) != 0
 | |
| #ifdef CONFIG_SBUS
 | |
| 	     || sbus_can_burst64()
 | |
| #endif
 | |
| 	     || 0)) {
 | |
| 		u32 gcfg = GREG_CFG_BURST64;
 | |
| 
 | |
| 		/* I have no idea if I should set the extended
 | |
| 		 * transfer mode bit for Cheerio, so for now I
 | |
| 		 * do not.  -DaveM
 | |
| 		 */
 | |
| #ifdef CONFIG_SBUS
 | |
| 		if ((hp->happy_flags & HFLAG_PCI) == 0) {
 | |
| 			struct platform_device *op = hp->happy_dev;
 | |
| 			if (sbus_can_dma_64bit()) {
 | |
| 				sbus_set_sbus64(&op->dev,
 | |
| 						hp->happy_bursts);
 | |
| 				gcfg |= GREG_CFG_64BIT;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		HMD(("64>"));
 | |
| 		hme_write32(hp, gregs + GREG_CFG, gcfg);
 | |
| 	} else if (hp->happy_bursts & DMA_BURST32) {
 | |
| 		HMD(("32>"));
 | |
| 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
 | |
| 	} else if (hp->happy_bursts & DMA_BURST16) {
 | |
| 		HMD(("16>"));
 | |
| 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
 | |
| 	} else {
 | |
| 		HMD(("XXX>"));
 | |
| 		hme_write32(hp, gregs + GREG_CFG, 0);
 | |
| 	}
 | |
| #endif /* CONFIG_SPARC */
 | |
| 
 | |
| 	/* Turn off interrupts we do not want to hear. */
 | |
| 	HMD((", enable global interrupts, "));
 | |
| 	hme_write32(hp, gregs + GREG_IMASK,
 | |
| 		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
 | |
| 		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
 | |
| 
 | |
| 	/* Set the transmit ring buffer size. */
 | |
| 	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
 | |
| 	     hme_read32(hp, etxregs + ETX_RSIZE)));
 | |
| 	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
 | |
| 
 | |
| 	/* Enable transmitter DVMA. */
 | |
| 	HMD(("tx dma enable old[%08x], ",
 | |
| 	     hme_read32(hp, etxregs + ETX_CFG)));
 | |
| 	hme_write32(hp, etxregs + ETX_CFG,
 | |
| 		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
 | |
| 
 | |
| 	/* This chip really rots, for the receiver sometimes when you
 | |
| 	 * write to its control registers not all the bits get there
 | |
| 	 * properly.  I cannot think of a sane way to provide complete
 | |
| 	 * coverage for this hardware bug yet.
 | |
| 	 */
 | |
| 	HMD(("erx regs bug old[%08x]\n",
 | |
| 	     hme_read32(hp, erxregs + ERX_CFG)));
 | |
| 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
 | |
| 	regtmp = hme_read32(hp, erxregs + ERX_CFG);
 | |
| 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
 | |
| 	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
 | |
| 		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
 | |
| 		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
 | |
| 		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
 | |
| 		/* XXX Should return failure here... */
 | |
| 	}
 | |
| 
 | |
| 	/* Enable Big Mac hash table filter. */
 | |
| 	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
 | |
| 	     hme_read32(hp, bregs + BMAC_RXCFG)));
 | |
| 	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
 | |
| 	if (hp->dev->flags & IFF_PROMISC)
 | |
| 		rxcfg |= BIGMAC_RXCFG_PMISC;
 | |
| 	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
 | |
| 
 | |
| 	/* Let the bits settle in the chip. */
 | |
| 	udelay(10);
 | |
| 
 | |
| 	/* Ok, configure the Big Mac transmitter. */
 | |
| 	HMD(("BIGMAC init, "));
 | |
| 	regtmp = 0;
 | |
| 	if (hp->happy_flags & HFLAG_FULL)
 | |
| 		regtmp |= BIGMAC_TXCFG_FULLDPLX;
 | |
| 
 | |
| 	/* Don't turn on the "don't give up" bit for now.  It could cause hme
 | |
| 	 * to deadlock with the PHY if a Jabber occurs.
 | |
| 	 */
 | |
| 	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
 | |
| 
 | |
| 	/* Give up after 16 TX attempts. */
 | |
| 	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
 | |
| 
 | |
| 	/* Enable the output drivers no matter what. */
 | |
| 	regtmp = BIGMAC_XCFG_ODENABLE;
 | |
| 
 | |
| 	/* If card can do lance mode, enable it. */
 | |
| 	if (hp->happy_flags & HFLAG_LANCE)
 | |
| 		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
 | |
| 
 | |
| 	/* Disable the MII buffers if using external transceiver. */
 | |
| 	if (hp->tcvr_type == external)
 | |
| 		regtmp |= BIGMAC_XCFG_MIIDISAB;
 | |
| 
 | |
| 	HMD(("XIF config old[%08x], ",
 | |
| 	     hme_read32(hp, bregs + BMAC_XIFCFG)));
 | |
| 	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
 | |
| 
 | |
| 	/* Start things up. */
 | |
| 	HMD(("tx old[%08x] and rx [%08x] ON!\n",
 | |
| 	     hme_read32(hp, bregs + BMAC_TXCFG),
 | |
| 	     hme_read32(hp, bregs + BMAC_RXCFG)));
 | |
| 
 | |
| 	/* Set larger TX/RX size to allow for 802.1q */
 | |
| 	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
 | |
| 	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
 | |
| 
 | |
| 	hme_write32(hp, bregs + BMAC_TXCFG,
 | |
| 		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
 | |
| 	hme_write32(hp, bregs + BMAC_RXCFG,
 | |
| 		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
 | |
| 
 | |
| 	/* Get the autonegotiation started, and the watch timer ticking. */
 | |
| 	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
 | |
| 
 | |
| 	/* Success. */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
 | |
| {
 | |
| 	void __iomem *tregs	= hp->tcvregs;
 | |
| 	void __iomem *bregs	= hp->bigmacregs;
 | |
| 	void __iomem *gregs	= hp->gregs;
 | |
| 
 | |
| 	happy_meal_stop(hp, gregs);
 | |
| 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 | |
| 	if (hp->happy_flags & HFLAG_FENABLE)
 | |
| 		hme_write32(hp, tregs + TCVR_CFG,
 | |
| 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
 | |
| 	else
 | |
| 		hme_write32(hp, tregs + TCVR_CFG,
 | |
| 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
 | |
| 	happy_meal_transceiver_check(hp, tregs);
 | |
| 	switch(hp->tcvr_type) {
 | |
| 	case none:
 | |
| 		return;
 | |
| 	case internal:
 | |
| 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
 | |
| 		break;
 | |
| 	case external:
 | |
| 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (happy_meal_tcvr_reset(hp, tregs))
 | |
| 		return;
 | |
| 
 | |
| 	/* Latch PHY registers as of now. */
 | |
| 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 | |
| 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
 | |
| 
 | |
| 	/* Advertise everything we can support. */
 | |
| 	if (hp->sw_bmsr & BMSR_10HALF)
 | |
| 		hp->sw_advertise |= (ADVERTISE_10HALF);
 | |
| 	else
 | |
| 		hp->sw_advertise &= ~(ADVERTISE_10HALF);
 | |
| 
 | |
| 	if (hp->sw_bmsr & BMSR_10FULL)
 | |
| 		hp->sw_advertise |= (ADVERTISE_10FULL);
 | |
| 	else
 | |
| 		hp->sw_advertise &= ~(ADVERTISE_10FULL);
 | |
| 	if (hp->sw_bmsr & BMSR_100HALF)
 | |
| 		hp->sw_advertise |= (ADVERTISE_100HALF);
 | |
| 	else
 | |
| 		hp->sw_advertise &= ~(ADVERTISE_100HALF);
 | |
| 	if (hp->sw_bmsr & BMSR_100FULL)
 | |
| 		hp->sw_advertise |= (ADVERTISE_100FULL);
 | |
| 	else
 | |
| 		hp->sw_advertise &= ~(ADVERTISE_100FULL);
 | |
| 
 | |
| 	/* Update the PHY advertisement register. */
 | |
| 	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
 | |
| }
 | |
| 
 | |
| /* Once status is latched (by happy_meal_interrupt) it is cleared by
 | |
|  * the hardware, so we cannot re-read it and get a correct value.
 | |
|  *
 | |
|  * hp->happy_lock must be held
 | |
|  */
 | |
| static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
 | |
| {
 | |
| 	int reset = 0;
 | |
| 
 | |
| 	/* Only print messages for non-counter related interrupts. */
 | |
| 	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
 | |
| 		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
 | |
| 		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
 | |
| 		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
 | |
| 		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
 | |
| 		      GREG_STAT_SLVPERR))
 | |
| 		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
 | |
| 		       hp->dev->name, status);
 | |
| 
 | |
| 	if (status & GREG_STAT_RFIFOVF) {
 | |
| 		/* Receive FIFO overflow is harmless and the hardware will take
 | |
| 		   care of it, just some packets are lost. Who cares. */
 | |
| 		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
 | |
| 	}
 | |
| 
 | |
| 	if (status & GREG_STAT_STSTERR) {
 | |
| 		/* BigMAC SQE link test failed. */
 | |
| 		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
 | |
| 		reset = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (status & GREG_STAT_TFIFO_UND) {
 | |
| 		/* Transmit FIFO underrun, again DMA error likely. */
 | |
| 		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
 | |
| 		       hp->dev->name);
 | |
| 		reset = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (status & GREG_STAT_MAXPKTERR) {
 | |
| 		/* Driver error, tried to transmit something larger
 | |
| 		 * than ethernet max mtu.
 | |
| 		 */
 | |
| 		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
 | |
| 		reset = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (status & GREG_STAT_NORXD) {
 | |
| 		/* This is harmless, it just means the system is
 | |
| 		 * quite loaded and the incoming packet rate was
 | |
| 		 * faster than the interrupt handler could keep up
 | |
| 		 * with.
 | |
| 		 */
 | |
| 		printk(KERN_INFO "%s: Happy Meal out of receive "
 | |
| 		       "descriptors, packet dropped.\n",
 | |
| 		       hp->dev->name);
 | |
| 	}
 | |
| 
 | |
| 	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
 | |
| 		/* All sorts of DMA receive errors. */
 | |
| 		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
 | |
| 		if (status & GREG_STAT_RXERR)
 | |
| 			printk("GenericError ");
 | |
| 		if (status & GREG_STAT_RXPERR)
 | |
| 			printk("ParityError ");
 | |
| 		if (status & GREG_STAT_RXTERR)
 | |
| 			printk("RxTagBotch ");
 | |
| 		printk("]\n");
 | |
| 		reset = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (status & GREG_STAT_EOPERR) {
 | |
| 		/* Driver bug, didn't set EOP bit in tx descriptor given
 | |
| 		 * to the happy meal.
 | |
| 		 */
 | |
| 		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
 | |
| 		       hp->dev->name);
 | |
| 		reset = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (status & GREG_STAT_MIFIRQ) {
 | |
| 		/* MIF signalled an interrupt, were we polling it? */
 | |
| 		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
 | |
| 	}
 | |
| 
 | |
| 	if (status &
 | |
| 	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
 | |
| 		/* All sorts of transmit DMA errors. */
 | |
| 		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
 | |
| 		if (status & GREG_STAT_TXEACK)
 | |
| 			printk("GenericError ");
 | |
| 		if (status & GREG_STAT_TXLERR)
 | |
| 			printk("LateError ");
 | |
| 		if (status & GREG_STAT_TXPERR)
 | |
| 			printk("ParityError ");
 | |
| 		if (status & GREG_STAT_TXTERR)
 | |
| 			printk("TagBotch ");
 | |
| 		printk("]\n");
 | |
| 		reset = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
 | |
| 		/* Bus or parity error when cpu accessed happy meal registers
 | |
| 		 * or it's internal FIFO's.  Should never see this.
 | |
| 		 */
 | |
| 		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
 | |
| 		       hp->dev->name,
 | |
| 		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
 | |
| 		reset = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (reset) {
 | |
| 		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
 | |
| 		happy_meal_init(hp);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_mif_interrupt(struct happy_meal *hp)
 | |
| {
 | |
| 	void __iomem *tregs = hp->tcvregs;
 | |
| 
 | |
| 	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
 | |
| 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 | |
| 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 | |
| 
 | |
| 	/* Use the fastest transmission protocol possible. */
 | |
| 	if (hp->sw_lpa & LPA_100FULL) {
 | |
| 		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
 | |
| 		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
 | |
| 	} else if (hp->sw_lpa & LPA_100HALF) {
 | |
| 		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
 | |
| 		hp->sw_bmcr |= BMCR_SPEED100;
 | |
| 	} else if (hp->sw_lpa & LPA_10FULL) {
 | |
| 		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
 | |
| 		hp->sw_bmcr |= BMCR_FULLDPLX;
 | |
| 	} else {
 | |
| 		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
 | |
| 	}
 | |
| 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 | |
| 
 | |
| 	/* Finally stop polling and shut up the MIF. */
 | |
| 	happy_meal_poll_stop(hp, tregs);
 | |
| }
 | |
| 
 | |
| #ifdef TXDEBUG
 | |
| #define TXD(x) printk x
 | |
| #else
 | |
| #define TXD(x)
 | |
| #endif
 | |
| 
 | |
| /* hp->happy_lock must be held */
 | |
| static void happy_meal_tx(struct happy_meal *hp)
 | |
| {
 | |
| 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
 | |
| 	struct happy_meal_txd *this;
 | |
| 	struct net_device *dev = hp->dev;
 | |
| 	int elem;
 | |
| 
 | |
| 	elem = hp->tx_old;
 | |
| 	TXD(("TX<"));
 | |
| 	while (elem != hp->tx_new) {
 | |
| 		struct sk_buff *skb;
 | |
| 		u32 flags, dma_addr, dma_len;
 | |
| 		int frag;
 | |
| 
 | |
| 		TXD(("[%d]", elem));
 | |
| 		this = &txbase[elem];
 | |
| 		flags = hme_read_desc32(hp, &this->tx_flags);
 | |
| 		if (flags & TXFLAG_OWN)
 | |
| 			break;
 | |
| 		skb = hp->tx_skbs[elem];
 | |
| 		if (skb_shinfo(skb)->nr_frags) {
 | |
| 			int last;
 | |
| 
 | |
| 			last = elem + skb_shinfo(skb)->nr_frags;
 | |
| 			last &= (TX_RING_SIZE - 1);
 | |
| 			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
 | |
| 			if (flags & TXFLAG_OWN)
 | |
| 				break;
 | |
| 		}
 | |
| 		hp->tx_skbs[elem] = NULL;
 | |
| 		dev->stats.tx_bytes += skb->len;
 | |
| 
 | |
| 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 | |
| 			dma_addr = hme_read_desc32(hp, &this->tx_addr);
 | |
| 			dma_len = hme_read_desc32(hp, &this->tx_flags);
 | |
| 
 | |
| 			dma_len &= TXFLAG_SIZE;
 | |
| 			if (!frag)
 | |
| 				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
 | |
| 			else
 | |
| 				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 			elem = NEXT_TX(elem);
 | |
| 			this = &txbase[elem];
 | |
| 		}
 | |
| 
 | |
| 		dev_consume_skb_irq(skb);
 | |
| 		dev->stats.tx_packets++;
 | |
| 	}
 | |
| 	hp->tx_old = elem;
 | |
| 	TXD((">"));
 | |
| 
 | |
| 	if (netif_queue_stopped(dev) &&
 | |
| 	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
 | |
| 		netif_wake_queue(dev);
 | |
| }
 | |
| 
 | |
| #ifdef RXDEBUG
 | |
| #define RXD(x) printk x
 | |
| #else
 | |
| #define RXD(x)
 | |
| #endif
 | |
| 
 | |
| /* Originally I used to handle the allocation failure by just giving back just
 | |
|  * that one ring buffer to the happy meal.  Problem is that usually when that
 | |
|  * condition is triggered, the happy meal expects you to do something reasonable
 | |
|  * with all of the packets it has DMA'd in.  So now I just drop the entire
 | |
|  * ring when we cannot get a new skb and give them all back to the happy meal,
 | |
|  * maybe things will be "happier" now.
 | |
|  *
 | |
|  * hp->happy_lock must be held
 | |
|  */
 | |
| static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
 | |
| {
 | |
| 	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
 | |
| 	struct happy_meal_rxd *this;
 | |
| 	int elem = hp->rx_new, drops = 0;
 | |
| 	u32 flags;
 | |
| 
 | |
| 	RXD(("RX<"));
 | |
| 	this = &rxbase[elem];
 | |
| 	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
 | |
| 		struct sk_buff *skb;
 | |
| 		int len = flags >> 16;
 | |
| 		u16 csum = flags & RXFLAG_CSUM;
 | |
| 		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
 | |
| 
 | |
| 		RXD(("[%d ", elem));
 | |
| 
 | |
| 		/* Check for errors. */
 | |
| 		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
 | |
| 			RXD(("ERR(%08x)]", flags));
 | |
| 			dev->stats.rx_errors++;
 | |
| 			if (len < ETH_ZLEN)
 | |
| 				dev->stats.rx_length_errors++;
 | |
| 			if (len & (RXFLAG_OVERFLOW >> 16)) {
 | |
| 				dev->stats.rx_over_errors++;
 | |
| 				dev->stats.rx_fifo_errors++;
 | |
| 			}
 | |
| 
 | |
| 			/* Return it to the Happy meal. */
 | |
| 	drop_it:
 | |
| 			dev->stats.rx_dropped++;
 | |
| 			hme_write_rxd(hp, this,
 | |
| 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
 | |
| 				      dma_addr);
 | |
| 			goto next;
 | |
| 		}
 | |
| 		skb = hp->rx_skbs[elem];
 | |
| 		if (len > RX_COPY_THRESHOLD) {
 | |
| 			struct sk_buff *new_skb;
 | |
| 			u32 mapping;
 | |
| 
 | |
| 			/* Now refill the entry, if we can. */
 | |
| 			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
 | |
| 			if (new_skb == NULL) {
 | |
| 				drops++;
 | |
| 				goto drop_it;
 | |
| 			}
 | |
| 			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
 | |
| 			mapping = dma_map_single(hp->dma_dev, new_skb->data,
 | |
| 						 RX_BUF_ALLOC_SIZE,
 | |
| 						 DMA_FROM_DEVICE);
 | |
| 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
 | |
| 				dev_kfree_skb_any(new_skb);
 | |
| 				drops++;
 | |
| 				goto drop_it;
 | |
| 			}
 | |
| 
 | |
| 			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
 | |
| 			hp->rx_skbs[elem] = new_skb;
 | |
| 			hme_write_rxd(hp, this,
 | |
| 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
 | |
| 				      mapping);
 | |
| 			skb_reserve(new_skb, RX_OFFSET);
 | |
| 
 | |
| 			/* Trim the original skb for the netif. */
 | |
| 			skb_trim(skb, len);
 | |
| 		} else {
 | |
| 			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
 | |
| 
 | |
| 			if (copy_skb == NULL) {
 | |
| 				drops++;
 | |
| 				goto drop_it;
 | |
| 			}
 | |
| 
 | |
| 			skb_reserve(copy_skb, 2);
 | |
| 			skb_put(copy_skb, len);
 | |
| 			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
 | |
| 			skb_copy_from_linear_data(skb, copy_skb->data, len);
 | |
| 			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
 | |
| 			/* Reuse original ring buffer. */
 | |
| 			hme_write_rxd(hp, this,
 | |
| 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
 | |
| 				      dma_addr);
 | |
| 
 | |
| 			skb = copy_skb;
 | |
| 		}
 | |
| 
 | |
| 		/* This card is _fucking_ hot... */
 | |
| 		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
 | |
| 		skb->ip_summed = CHECKSUM_COMPLETE;
 | |
| 
 | |
| 		RXD(("len=%d csum=%4x]", len, csum));
 | |
| 		skb->protocol = eth_type_trans(skb, dev);
 | |
| 		netif_rx(skb);
 | |
| 
 | |
| 		dev->stats.rx_packets++;
 | |
| 		dev->stats.rx_bytes += len;
 | |
| 	next:
 | |
| 		elem = NEXT_RX(elem);
 | |
| 		this = &rxbase[elem];
 | |
| 	}
 | |
| 	hp->rx_new = elem;
 | |
| 	if (drops)
 | |
| 		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
 | |
| 	RXD((">"));
 | |
| }
 | |
| 
 | |
| static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct net_device *dev = dev_id;
 | |
| 	struct happy_meal *hp  = netdev_priv(dev);
 | |
| 	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
 | |
| 
 | |
| 	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
 | |
| 
 | |
| 	spin_lock(&hp->happy_lock);
 | |
| 
 | |
| 	if (happy_status & GREG_STAT_ERRORS) {
 | |
| 		HMD(("ERRORS "));
 | |
| 		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (happy_status & GREG_STAT_MIFIRQ) {
 | |
| 		HMD(("MIFIRQ "));
 | |
| 		happy_meal_mif_interrupt(hp);
 | |
| 	}
 | |
| 
 | |
| 	if (happy_status & GREG_STAT_TXALL) {
 | |
| 		HMD(("TXALL "));
 | |
| 		happy_meal_tx(hp);
 | |
| 	}
 | |
| 
 | |
| 	if (happy_status & GREG_STAT_RXTOHOST) {
 | |
| 		HMD(("RXTOHOST "));
 | |
| 		happy_meal_rx(hp, dev);
 | |
| 	}
 | |
| 
 | |
| 	HMD(("done\n"));
 | |
| out:
 | |
| 	spin_unlock(&hp->happy_lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SBUS
 | |
| static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
 | |
| {
 | |
| 	struct quattro *qp = (struct quattro *) cookie;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		struct net_device *dev = qp->happy_meals[i];
 | |
| 		struct happy_meal *hp  = netdev_priv(dev);
 | |
| 		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
 | |
| 
 | |
| 		HMD(("quattro_interrupt: status=%08x ", happy_status));
 | |
| 
 | |
| 		if (!(happy_status & (GREG_STAT_ERRORS |
 | |
| 				      GREG_STAT_MIFIRQ |
 | |
| 				      GREG_STAT_TXALL |
 | |
| 				      GREG_STAT_RXTOHOST)))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&hp->happy_lock);
 | |
| 
 | |
| 		if (happy_status & GREG_STAT_ERRORS) {
 | |
| 			HMD(("ERRORS "));
 | |
| 			if (happy_meal_is_not_so_happy(hp, happy_status))
 | |
| 				goto next;
 | |
| 		}
 | |
| 
 | |
| 		if (happy_status & GREG_STAT_MIFIRQ) {
 | |
| 			HMD(("MIFIRQ "));
 | |
| 			happy_meal_mif_interrupt(hp);
 | |
| 		}
 | |
| 
 | |
| 		if (happy_status & GREG_STAT_TXALL) {
 | |
| 			HMD(("TXALL "));
 | |
| 			happy_meal_tx(hp);
 | |
| 		}
 | |
| 
 | |
| 		if (happy_status & GREG_STAT_RXTOHOST) {
 | |
| 			HMD(("RXTOHOST "));
 | |
| 			happy_meal_rx(hp, dev);
 | |
| 		}
 | |
| 
 | |
| 	next:
 | |
| 		spin_unlock(&hp->happy_lock);
 | |
| 	}
 | |
| 	HMD(("done\n"));
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int happy_meal_open(struct net_device *dev)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 	int res;
 | |
| 
 | |
| 	HMD(("happy_meal_open: "));
 | |
| 
 | |
| 	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
 | |
| 	 * into a single source which we register handling at probe time.
 | |
| 	 */
 | |
| 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
 | |
| 		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
 | |
| 				  dev->name, dev);
 | |
| 		if (res) {
 | |
| 			HMD(("EAGAIN\n"));
 | |
| 			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
 | |
| 			       hp->irq);
 | |
| 
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	HMD(("to happy_meal_init\n"));
 | |
| 
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	res = happy_meal_init(hp);
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
 | |
| 		free_irq(hp->irq, dev);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int happy_meal_close(struct net_device *dev)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	happy_meal_stop(hp, hp->gregs);
 | |
| 	happy_meal_clean_rings(hp);
 | |
| 
 | |
| 	/* If auto-negotiation timer is running, kill it. */
 | |
| 	del_timer(&hp->happy_timer);
 | |
| 
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	/* On Quattro QFE cards, all hme interrupts are concentrated
 | |
| 	 * into a single source which we register handling at probe
 | |
| 	 * time and never unregister.
 | |
| 	 */
 | |
| 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
 | |
| 		free_irq(hp->irq, dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef SXDEBUG
 | |
| #define SXD(x) printk x
 | |
| #else
 | |
| #define SXD(x)
 | |
| #endif
 | |
| 
 | |
| static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 
 | |
| 	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
 | |
| 	tx_dump_log();
 | |
| 	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
 | |
| 		hme_read32(hp, hp->gregs + GREG_STAT),
 | |
| 		hme_read32(hp, hp->etxregs + ETX_CFG),
 | |
| 		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
 | |
| 
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	happy_meal_init(hp);
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	netif_wake_queue(dev);
 | |
| }
 | |
| 
 | |
| static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
 | |
| 				 u32 first_len, u32 first_entry, u32 entry)
 | |
| {
 | |
| 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
 | |
| 
 | |
| 	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	first_entry = NEXT_TX(first_entry);
 | |
| 	while (first_entry != entry) {
 | |
| 		struct happy_meal_txd *this = &txbase[first_entry];
 | |
| 		u32 addr, len;
 | |
| 
 | |
| 		addr = hme_read_desc32(hp, &this->tx_addr);
 | |
| 		len = hme_read_desc32(hp, &this->tx_flags);
 | |
| 		len &= TXFLAG_SIZE;
 | |
| 		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
 | |
| 					 struct net_device *dev)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
|  	int entry;
 | |
|  	u32 tx_flags;
 | |
| 
 | |
| 	tx_flags = TXFLAG_OWN;
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		const u32 csum_start_off = skb_checksum_start_offset(skb);
 | |
| 		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
 | |
| 
 | |
| 		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
 | |
| 			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
 | |
| 			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 
 | |
|  	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
 | |
| 		netif_stop_queue(dev);
 | |
| 		spin_unlock_irq(&hp->happy_lock);
 | |
| 		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
 | |
| 		       dev->name);
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	entry = hp->tx_new;
 | |
| 	SXD(("SX<l[%d]e[%d]>", len, entry));
 | |
| 	hp->tx_skbs[entry] = skb;
 | |
| 
 | |
| 	if (skb_shinfo(skb)->nr_frags == 0) {
 | |
| 		u32 mapping, len;
 | |
| 
 | |
| 		len = skb->len;
 | |
| 		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
 | |
| 		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
 | |
| 			goto out_dma_error;
 | |
| 		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
 | |
| 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
 | |
| 			      (tx_flags | (len & TXFLAG_SIZE)),
 | |
| 			      mapping);
 | |
| 		entry = NEXT_TX(entry);
 | |
| 	} else {
 | |
| 		u32 first_len, first_mapping;
 | |
| 		int frag, first_entry = entry;
 | |
| 
 | |
| 		/* We must give this initial chunk to the device last.
 | |
| 		 * Otherwise we could race with the device.
 | |
| 		 */
 | |
| 		first_len = skb_headlen(skb);
 | |
| 		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
 | |
| 					       DMA_TO_DEVICE);
 | |
| 		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
 | |
| 			goto out_dma_error;
 | |
| 		entry = NEXT_TX(entry);
 | |
| 
 | |
| 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
 | |
| 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
 | |
| 			u32 len, mapping, this_txflags;
 | |
| 
 | |
| 			len = skb_frag_size(this_frag);
 | |
| 			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
 | |
| 						   0, len, DMA_TO_DEVICE);
 | |
| 			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
 | |
| 				unmap_partial_tx_skb(hp, first_mapping, first_len,
 | |
| 						     first_entry, entry);
 | |
| 				goto out_dma_error;
 | |
| 			}
 | |
| 			this_txflags = tx_flags;
 | |
| 			if (frag == skb_shinfo(skb)->nr_frags - 1)
 | |
| 				this_txflags |= TXFLAG_EOP;
 | |
| 			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
 | |
| 				      (this_txflags | (len & TXFLAG_SIZE)),
 | |
| 				      mapping);
 | |
| 			entry = NEXT_TX(entry);
 | |
| 		}
 | |
| 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
 | |
| 			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
 | |
| 			      first_mapping);
 | |
| 	}
 | |
| 
 | |
| 	hp->tx_new = entry;
 | |
| 
 | |
| 	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
 | |
| 		netif_stop_queue(dev);
 | |
| 
 | |
| 	/* Get it going. */
 | |
| 	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
 | |
| 
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| out_dma_error:
 | |
| 	hp->tx_skbs[hp->tx_new] = NULL;
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	dev->stats.tx_dropped++;
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	happy_meal_get_counters(hp, hp->bigmacregs);
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	return &dev->stats;
 | |
| }
 | |
| 
 | |
| static void happy_meal_set_multicast(struct net_device *dev)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 	void __iomem *bregs = hp->bigmacregs;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	u32 crc;
 | |
| 
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
 | |
| 	} else if (dev->flags & IFF_PROMISC) {
 | |
| 		hme_write32(hp, bregs + BMAC_RXCFG,
 | |
| 			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
 | |
| 	} else {
 | |
| 		u16 hash_table[4];
 | |
| 
 | |
| 		memset(hash_table, 0, sizeof(hash_table));
 | |
| 		netdev_for_each_mc_addr(ha, dev) {
 | |
| 			crc = ether_crc_le(6, ha->addr);
 | |
| 			crc >>= 26;
 | |
| 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
 | |
| 		}
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
 | |
| 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| }
 | |
| 
 | |
| /* Ethtool support... */
 | |
| static int hme_get_link_ksettings(struct net_device *dev,
 | |
| 				  struct ethtool_link_ksettings *cmd)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 	u32 speed;
 | |
| 	u32 supported;
 | |
| 
 | |
| 	supported =
 | |
| 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
 | |
| 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
 | |
| 		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
 | |
| 
 | |
| 	/* XXX hardcoded stuff for now */
 | |
| 	cmd->base.port = PORT_TP; /* XXX no MII support */
 | |
| 	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
 | |
| 
 | |
| 	/* Record PHY settings. */
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
 | |
| 	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	if (hp->sw_bmcr & BMCR_ANENABLE) {
 | |
| 		cmd->base.autoneg = AUTONEG_ENABLE;
 | |
| 		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
 | |
| 			 SPEED_100 : SPEED_10);
 | |
| 		if (speed == SPEED_100)
 | |
| 			cmd->base.duplex =
 | |
| 				(hp->sw_lpa & (LPA_100FULL)) ?
 | |
| 				DUPLEX_FULL : DUPLEX_HALF;
 | |
| 		else
 | |
| 			cmd->base.duplex =
 | |
| 				(hp->sw_lpa & (LPA_10FULL)) ?
 | |
| 				DUPLEX_FULL : DUPLEX_HALF;
 | |
| 	} else {
 | |
| 		cmd->base.autoneg = AUTONEG_DISABLE;
 | |
| 		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
 | |
| 		cmd->base.duplex =
 | |
| 			(hp->sw_bmcr & BMCR_FULLDPLX) ?
 | |
| 			DUPLEX_FULL : DUPLEX_HALF;
 | |
| 	}
 | |
| 	cmd->base.speed = speed;
 | |
| 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 | |
| 						supported);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hme_set_link_ksettings(struct net_device *dev,
 | |
| 				  const struct ethtool_link_ksettings *cmd)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 
 | |
| 	/* Verify the settings we care about. */
 | |
| 	if (cmd->base.autoneg != AUTONEG_ENABLE &&
 | |
| 	    cmd->base.autoneg != AUTONEG_DISABLE)
 | |
| 		return -EINVAL;
 | |
| 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
 | |
| 	    ((cmd->base.speed != SPEED_100 &&
 | |
| 	      cmd->base.speed != SPEED_10) ||
 | |
| 	     (cmd->base.duplex != DUPLEX_HALF &&
 | |
| 	      cmd->base.duplex != DUPLEX_FULL)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Ok, do it to it. */
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	del_timer(&hp->happy_timer);
 | |
| 	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 
 | |
| 	strlcpy(info->driver, "sunhme", sizeof(info->driver));
 | |
| 	strlcpy(info->version, "2.02", sizeof(info->version));
 | |
| 	if (hp->happy_flags & HFLAG_PCI) {
 | |
| 		struct pci_dev *pdev = hp->happy_dev;
 | |
| 		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
 | |
| 	}
 | |
| #ifdef CONFIG_SBUS
 | |
| 	else {
 | |
| 		const struct linux_prom_registers *regs;
 | |
| 		struct platform_device *op = hp->happy_dev;
 | |
| 		regs = of_get_property(op->dev.of_node, "regs", NULL);
 | |
| 		if (regs)
 | |
| 			snprintf(info->bus_info, sizeof(info->bus_info),
 | |
| 				"SBUS:%d",
 | |
| 				regs->which_io);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static u32 hme_get_link(struct net_device *dev)
 | |
| {
 | |
| 	struct happy_meal *hp = netdev_priv(dev);
 | |
| 
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	return hp->sw_bmsr & BMSR_LSTATUS;
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops hme_ethtool_ops = {
 | |
| 	.get_drvinfo		= hme_get_drvinfo,
 | |
| 	.get_link		= hme_get_link,
 | |
| 	.get_link_ksettings	= hme_get_link_ksettings,
 | |
| 	.set_link_ksettings	= hme_set_link_ksettings,
 | |
| };
 | |
| 
 | |
| static int hme_version_printed;
 | |
| 
 | |
| #ifdef CONFIG_SBUS
 | |
| /* Given a happy meal sbus device, find it's quattro parent.
 | |
|  * If none exist, allocate and return a new one.
 | |
|  *
 | |
|  * Return NULL on failure.
 | |
|  */
 | |
| static struct quattro *quattro_sbus_find(struct platform_device *child)
 | |
| {
 | |
| 	struct device *parent = child->dev.parent;
 | |
| 	struct platform_device *op;
 | |
| 	struct quattro *qp;
 | |
| 
 | |
| 	op = to_platform_device(parent);
 | |
| 	qp = platform_get_drvdata(op);
 | |
| 	if (qp)
 | |
| 		return qp;
 | |
| 
 | |
| 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
 | |
| 	if (qp != NULL) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < 4; i++)
 | |
| 			qp->happy_meals[i] = NULL;
 | |
| 
 | |
| 		qp->quattro_dev = child;
 | |
| 		qp->next = qfe_sbus_list;
 | |
| 		qfe_sbus_list = qp;
 | |
| 
 | |
| 		platform_set_drvdata(op, qp);
 | |
| 	}
 | |
| 	return qp;
 | |
| }
 | |
| 
 | |
| /* After all quattro cards have been probed, we call these functions
 | |
|  * to register the IRQ handlers for the cards that have been
 | |
|  * successfully probed and skip the cards that failed to initialize
 | |
|  */
 | |
| static int __init quattro_sbus_register_irqs(void)
 | |
| {
 | |
| 	struct quattro *qp;
 | |
| 
 | |
| 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
 | |
| 		struct platform_device *op = qp->quattro_dev;
 | |
| 		int err, qfe_slot, skip = 0;
 | |
| 
 | |
| 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
 | |
| 			if (!qp->happy_meals[qfe_slot])
 | |
| 				skip = 1;
 | |
| 		}
 | |
| 		if (skip)
 | |
| 			continue;
 | |
| 
 | |
| 		err = request_irq(op->archdata.irqs[0],
 | |
| 				  quattro_sbus_interrupt,
 | |
| 				  IRQF_SHARED, "Quattro",
 | |
| 				  qp);
 | |
| 		if (err != 0) {
 | |
| 			printk(KERN_ERR "Quattro HME: IRQ registration "
 | |
| 			       "error %d.\n", err);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void quattro_sbus_free_irqs(void)
 | |
| {
 | |
| 	struct quattro *qp;
 | |
| 
 | |
| 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
 | |
| 		struct platform_device *op = qp->quattro_dev;
 | |
| 		int qfe_slot, skip = 0;
 | |
| 
 | |
| 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
 | |
| 			if (!qp->happy_meals[qfe_slot])
 | |
| 				skip = 1;
 | |
| 		}
 | |
| 		if (skip)
 | |
| 			continue;
 | |
| 
 | |
| 		free_irq(op->archdata.irqs[0], qp);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_SBUS */
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| static struct quattro *quattro_pci_find(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct pci_dev *bdev = pdev->bus->self;
 | |
| 	struct quattro *qp;
 | |
| 
 | |
| 	if (!bdev) return NULL;
 | |
| 	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
 | |
| 		struct pci_dev *qpdev = qp->quattro_dev;
 | |
| 
 | |
| 		if (qpdev == bdev)
 | |
| 			return qp;
 | |
| 	}
 | |
| 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
 | |
| 	if (qp != NULL) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < 4; i++)
 | |
| 			qp->happy_meals[i] = NULL;
 | |
| 
 | |
| 		qp->quattro_dev = bdev;
 | |
| 		qp->next = qfe_pci_list;
 | |
| 		qfe_pci_list = qp;
 | |
| 
 | |
| 		/* No range tricks necessary on PCI. */
 | |
| 		qp->nranges = 0;
 | |
| 	}
 | |
| 	return qp;
 | |
| }
 | |
| #endif /* CONFIG_PCI */
 | |
| 
 | |
| static const struct net_device_ops hme_netdev_ops = {
 | |
| 	.ndo_open		= happy_meal_open,
 | |
| 	.ndo_stop		= happy_meal_close,
 | |
| 	.ndo_start_xmit		= happy_meal_start_xmit,
 | |
| 	.ndo_tx_timeout		= happy_meal_tx_timeout,
 | |
| 	.ndo_get_stats		= happy_meal_get_stats,
 | |
| 	.ndo_set_rx_mode	= happy_meal_set_multicast,
 | |
| 	.ndo_set_mac_address 	= eth_mac_addr,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SBUS
 | |
| static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
 | |
| {
 | |
| 	struct device_node *dp = op->dev.of_node, *sbus_dp;
 | |
| 	struct quattro *qp = NULL;
 | |
| 	struct happy_meal *hp;
 | |
| 	struct net_device *dev;
 | |
| 	int i, qfe_slot = -1;
 | |
| 	int err = -ENODEV;
 | |
| 
 | |
| 	sbus_dp = op->dev.parent->of_node;
 | |
| 
 | |
| 	/* We can match PCI devices too, do not accept those here. */
 | |
| 	if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
 | |
| 		return err;
 | |
| 
 | |
| 	if (is_qfe) {
 | |
| 		qp = quattro_sbus_find(op);
 | |
| 		if (qp == NULL)
 | |
| 			goto err_out;
 | |
| 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
 | |
| 			if (qp->happy_meals[qfe_slot] == NULL)
 | |
| 				break;
 | |
| 		if (qfe_slot == 4)
 | |
| 			goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	dev = alloc_etherdev(sizeof(struct happy_meal));
 | |
| 	if (!dev)
 | |
| 		goto err_out;
 | |
| 	SET_NETDEV_DEV(dev, &op->dev);
 | |
| 
 | |
| 	if (hme_version_printed++ == 0)
 | |
| 		printk(KERN_INFO "%s", version);
 | |
| 
 | |
| 	/* If user did not specify a MAC address specifically, use
 | |
| 	 * the Quattro local-mac-address property...
 | |
| 	 */
 | |
| 	for (i = 0; i < 6; i++) {
 | |
| 		if (macaddr[i] != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i < 6) { /* a mac address was given */
 | |
| 		for (i = 0; i < 6; i++)
 | |
| 			dev->dev_addr[i] = macaddr[i];
 | |
| 		macaddr[5]++;
 | |
| 	} else {
 | |
| 		const unsigned char *addr;
 | |
| 		int len;
 | |
| 
 | |
| 		addr = of_get_property(dp, "local-mac-address", &len);
 | |
| 
 | |
| 		if (qfe_slot != -1 && addr && len == ETH_ALEN)
 | |
| 			memcpy(dev->dev_addr, addr, ETH_ALEN);
 | |
| 		else
 | |
| 			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
 | |
| 	}
 | |
| 
 | |
| 	hp = netdev_priv(dev);
 | |
| 
 | |
| 	hp->happy_dev = op;
 | |
| 	hp->dma_dev = &op->dev;
 | |
| 
 | |
| 	spin_lock_init(&hp->happy_lock);
 | |
| 
 | |
| 	err = -ENODEV;
 | |
| 	if (qp != NULL) {
 | |
| 		hp->qfe_parent = qp;
 | |
| 		hp->qfe_ent = qfe_slot;
 | |
| 		qp->happy_meals[qfe_slot] = dev;
 | |
| 	}
 | |
| 
 | |
| 	hp->gregs = of_ioremap(&op->resource[0], 0,
 | |
| 			       GREG_REG_SIZE, "HME Global Regs");
 | |
| 	if (!hp->gregs) {
 | |
| 		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
 | |
| 		goto err_out_free_netdev;
 | |
| 	}
 | |
| 
 | |
| 	hp->etxregs = of_ioremap(&op->resource[1], 0,
 | |
| 				 ETX_REG_SIZE, "HME TX Regs");
 | |
| 	if (!hp->etxregs) {
 | |
| 		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
 | |
| 		goto err_out_iounmap;
 | |
| 	}
 | |
| 
 | |
| 	hp->erxregs = of_ioremap(&op->resource[2], 0,
 | |
| 				 ERX_REG_SIZE, "HME RX Regs");
 | |
| 	if (!hp->erxregs) {
 | |
| 		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
 | |
| 		goto err_out_iounmap;
 | |
| 	}
 | |
| 
 | |
| 	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
 | |
| 				    BMAC_REG_SIZE, "HME BIGMAC Regs");
 | |
| 	if (!hp->bigmacregs) {
 | |
| 		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
 | |
| 		goto err_out_iounmap;
 | |
| 	}
 | |
| 
 | |
| 	hp->tcvregs = of_ioremap(&op->resource[4], 0,
 | |
| 				 TCVR_REG_SIZE, "HME Tranceiver Regs");
 | |
| 	if (!hp->tcvregs) {
 | |
| 		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
 | |
| 		goto err_out_iounmap;
 | |
| 	}
 | |
| 
 | |
| 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
 | |
| 	if (hp->hm_revision == 0xff)
 | |
| 		hp->hm_revision = 0xa0;
 | |
| 
 | |
| 	/* Now enable the feature flags we can. */
 | |
| 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
 | |
| 		hp->happy_flags = HFLAG_20_21;
 | |
| 	else if (hp->hm_revision != 0xa0)
 | |
| 		hp->happy_flags = HFLAG_NOT_A0;
 | |
| 
 | |
| 	if (qp != NULL)
 | |
| 		hp->happy_flags |= HFLAG_QUATTRO;
 | |
| 
 | |
| 	/* Get the supported DVMA burst sizes from our Happy SBUS. */
 | |
| 	hp->happy_bursts = of_getintprop_default(sbus_dp,
 | |
| 						 "burst-sizes", 0x00);
 | |
| 
 | |
| 	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
 | |
| 					     PAGE_SIZE,
 | |
| 					     &hp->hblock_dvma,
 | |
| 					     GFP_ATOMIC);
 | |
| 	err = -ENOMEM;
 | |
| 	if (!hp->happy_block)
 | |
| 		goto err_out_iounmap;
 | |
| 
 | |
| 	/* Force check of the link first time we are brought up. */
 | |
| 	hp->linkcheck = 0;
 | |
| 
 | |
| 	/* Force timer state to 'asleep' with count of zero. */
 | |
| 	hp->timer_state = asleep;
 | |
| 	hp->timer_ticks = 0;
 | |
| 
 | |
| 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
 | |
| 
 | |
| 	hp->dev = dev;
 | |
| 	dev->netdev_ops = &hme_netdev_ops;
 | |
| 	dev->watchdog_timeo = 5*HZ;
 | |
| 	dev->ethtool_ops = &hme_ethtool_ops;
 | |
| 
 | |
| 	/* Happy Meal can do it all... */
 | |
| 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
 | |
| 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
 | |
| 
 | |
| 	hp->irq = op->archdata.irqs[0];
 | |
| 
 | |
| #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 | |
| 	/* Hook up SBUS register/descriptor accessors. */
 | |
| 	hp->read_desc32 = sbus_hme_read_desc32;
 | |
| 	hp->write_txd = sbus_hme_write_txd;
 | |
| 	hp->write_rxd = sbus_hme_write_rxd;
 | |
| 	hp->read32 = sbus_hme_read32;
 | |
| 	hp->write32 = sbus_hme_write32;
 | |
| #endif
 | |
| 
 | |
| 	/* Grrr, Happy Meal comes up by default not advertising
 | |
| 	 * full duplex 100baseT capabilities, fix this.
 | |
| 	 */
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	happy_meal_set_initial_advertisement(hp);
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	err = register_netdev(hp->dev);
 | |
| 	if (err) {
 | |
| 		printk(KERN_ERR "happymeal: Cannot register net device, "
 | |
| 		       "aborting.\n");
 | |
| 		goto err_out_free_coherent;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(op, hp);
 | |
| 
 | |
| 	if (qfe_slot != -1)
 | |
| 		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
 | |
| 		       dev->name, qfe_slot);
 | |
| 	else
 | |
| 		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
 | |
| 		       dev->name);
 | |
| 
 | |
| 	printk("%pM\n", dev->dev_addr);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_free_coherent:
 | |
| 	dma_free_coherent(hp->dma_dev,
 | |
| 			  PAGE_SIZE,
 | |
| 			  hp->happy_block,
 | |
| 			  hp->hblock_dvma);
 | |
| 
 | |
| err_out_iounmap:
 | |
| 	if (hp->gregs)
 | |
| 		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
 | |
| 	if (hp->etxregs)
 | |
| 		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
 | |
| 	if (hp->erxregs)
 | |
| 		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
 | |
| 	if (hp->bigmacregs)
 | |
| 		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
 | |
| 	if (hp->tcvregs)
 | |
| 		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
 | |
| 
 | |
| 	if (qp)
 | |
| 		qp->happy_meals[qfe_slot] = NULL;
 | |
| 
 | |
| err_out_free_netdev:
 | |
| 	free_netdev(dev);
 | |
| 
 | |
| err_out:
 | |
| 	return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| #ifndef CONFIG_SPARC
 | |
| static int is_quattro_p(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct pci_dev *busdev = pdev->bus->self;
 | |
| 	struct pci_dev *this_pdev;
 | |
| 	int n_hmes;
 | |
| 
 | |
| 	if (busdev == NULL ||
 | |
| 	    busdev->vendor != PCI_VENDOR_ID_DEC ||
 | |
| 	    busdev->device != PCI_DEVICE_ID_DEC_21153)
 | |
| 		return 0;
 | |
| 
 | |
| 	n_hmes = 0;
 | |
| 	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
 | |
| 		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
 | |
| 		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
 | |
| 			n_hmes++;
 | |
| 	}
 | |
| 
 | |
| 	if (n_hmes != 4)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Fetch MAC address from vital product data of PCI ROM. */
 | |
| static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
 | |
| {
 | |
| 	int this_offset;
 | |
| 
 | |
| 	for (this_offset = 0x20; this_offset < len; this_offset++) {
 | |
| 		void __iomem *p = rom_base + this_offset;
 | |
| 
 | |
| 		if (readb(p + 0) != 0x90 ||
 | |
| 		    readb(p + 1) != 0x00 ||
 | |
| 		    readb(p + 2) != 0x09 ||
 | |
| 		    readb(p + 3) != 0x4e ||
 | |
| 		    readb(p + 4) != 0x41 ||
 | |
| 		    readb(p + 5) != 0x06)
 | |
| 			continue;
 | |
| 
 | |
| 		this_offset += 6;
 | |
| 		p += 6;
 | |
| 
 | |
| 		if (index == 0) {
 | |
| 			int i;
 | |
| 
 | |
| 			for (i = 0; i < 6; i++)
 | |
| 				dev_addr[i] = readb(p + i);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		index--;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
 | |
| {
 | |
| 	size_t size;
 | |
| 	void __iomem *p = pci_map_rom(pdev, &size);
 | |
| 
 | |
| 	if (p) {
 | |
| 		int index = 0;
 | |
| 		int found;
 | |
| 
 | |
| 		if (is_quattro_p(pdev))
 | |
| 			index = PCI_SLOT(pdev->devfn);
 | |
| 
 | |
| 		found = readb(p) == 0x55 &&
 | |
| 			readb(p + 1) == 0xaa &&
 | |
| 			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
 | |
| 		pci_unmap_rom(pdev, p);
 | |
| 		if (found)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* Sun MAC prefix then 3 random bytes. */
 | |
| 	dev_addr[0] = 0x08;
 | |
| 	dev_addr[1] = 0x00;
 | |
| 	dev_addr[2] = 0x20;
 | |
| 	get_random_bytes(&dev_addr[3], 3);
 | |
| }
 | |
| #endif /* !(CONFIG_SPARC) */
 | |
| 
 | |
| static int happy_meal_pci_probe(struct pci_dev *pdev,
 | |
| 				const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct quattro *qp = NULL;
 | |
| #ifdef CONFIG_SPARC
 | |
| 	struct device_node *dp;
 | |
| #endif
 | |
| 	struct happy_meal *hp;
 | |
| 	struct net_device *dev;
 | |
| 	void __iomem *hpreg_base;
 | |
| 	unsigned long hpreg_res;
 | |
| 	int i, qfe_slot = -1;
 | |
| 	char prom_name[64];
 | |
| 	int err;
 | |
| 
 | |
| 	/* Now make sure pci_dev cookie is there. */
 | |
| #ifdef CONFIG_SPARC
 | |
| 	dp = pci_device_to_OF_node(pdev);
 | |
| 	snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
 | |
| #else
 | |
| 	if (is_quattro_p(pdev))
 | |
| 		strcpy(prom_name, "SUNW,qfe");
 | |
| 	else
 | |
| 		strcpy(prom_name, "SUNW,hme");
 | |
| #endif
 | |
| 
 | |
| 	err = -ENODEV;
 | |
| 
 | |
| 	if (pci_enable_device(pdev))
 | |
| 		goto err_out;
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
 | |
| 		qp = quattro_pci_find(pdev);
 | |
| 		if (qp == NULL)
 | |
| 			goto err_out;
 | |
| 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
 | |
| 			if (qp->happy_meals[qfe_slot] == NULL)
 | |
| 				break;
 | |
| 		if (qfe_slot == 4)
 | |
| 			goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	dev = alloc_etherdev(sizeof(struct happy_meal));
 | |
| 	err = -ENOMEM;
 | |
| 	if (!dev)
 | |
| 		goto err_out;
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 
 | |
| 	if (hme_version_printed++ == 0)
 | |
| 		printk(KERN_INFO "%s", version);
 | |
| 
 | |
| 	hp = netdev_priv(dev);
 | |
| 
 | |
| 	hp->happy_dev = pdev;
 | |
| 	hp->dma_dev = &pdev->dev;
 | |
| 
 | |
| 	spin_lock_init(&hp->happy_lock);
 | |
| 
 | |
| 	if (qp != NULL) {
 | |
| 		hp->qfe_parent = qp;
 | |
| 		hp->qfe_ent = qfe_slot;
 | |
| 		qp->happy_meals[qfe_slot] = dev;
 | |
| 	}
 | |
| 
 | |
| 	hpreg_res = pci_resource_start(pdev, 0);
 | |
| 	err = -ENODEV;
 | |
| 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
 | |
| 		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
 | |
| 		goto err_out_clear_quattro;
 | |
| 	}
 | |
| 	if (pci_request_regions(pdev, DRV_NAME)) {
 | |
| 		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
 | |
| 		       "aborting.\n");
 | |
| 		goto err_out_clear_quattro;
 | |
| 	}
 | |
| 
 | |
| 	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
 | |
| 		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
 | |
| 		goto err_out_free_res;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 6; i++) {
 | |
| 		if (macaddr[i] != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i < 6) { /* a mac address was given */
 | |
| 		for (i = 0; i < 6; i++)
 | |
| 			dev->dev_addr[i] = macaddr[i];
 | |
| 		macaddr[5]++;
 | |
| 	} else {
 | |
| #ifdef CONFIG_SPARC
 | |
| 		const unsigned char *addr;
 | |
| 		int len;
 | |
| 
 | |
| 		if (qfe_slot != -1 &&
 | |
| 		    (addr = of_get_property(dp, "local-mac-address", &len))
 | |
| 			!= NULL &&
 | |
| 		    len == 6) {
 | |
| 			memcpy(dev->dev_addr, addr, ETH_ALEN);
 | |
| 		} else {
 | |
| 			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
 | |
| 		}
 | |
| #else
 | |
| 		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Layout registers. */
 | |
| 	hp->gregs      = (hpreg_base + 0x0000UL);
 | |
| 	hp->etxregs    = (hpreg_base + 0x2000UL);
 | |
| 	hp->erxregs    = (hpreg_base + 0x4000UL);
 | |
| 	hp->bigmacregs = (hpreg_base + 0x6000UL);
 | |
| 	hp->tcvregs    = (hpreg_base + 0x7000UL);
 | |
| 
 | |
| #ifdef CONFIG_SPARC
 | |
| 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
 | |
| 	if (hp->hm_revision == 0xff)
 | |
| 		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
 | |
| #else
 | |
| 	/* works with this on non-sparc hosts */
 | |
| 	hp->hm_revision = 0x20;
 | |
| #endif
 | |
| 
 | |
| 	/* Now enable the feature flags we can. */
 | |
| 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
 | |
| 		hp->happy_flags = HFLAG_20_21;
 | |
| 	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
 | |
| 		hp->happy_flags = HFLAG_NOT_A0;
 | |
| 
 | |
| 	if (qp != NULL)
 | |
| 		hp->happy_flags |= HFLAG_QUATTRO;
 | |
| 
 | |
| 	/* And of course, indicate this is PCI. */
 | |
| 	hp->happy_flags |= HFLAG_PCI;
 | |
| 
 | |
| #ifdef CONFIG_SPARC
 | |
| 	/* Assume PCI happy meals can handle all burst sizes. */
 | |
| 	hp->happy_bursts = DMA_BURSTBITS;
 | |
| #endif
 | |
| 
 | |
| 	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
 | |
| 					     &hp->hblock_dvma, GFP_KERNEL);
 | |
| 	err = -ENODEV;
 | |
| 	if (!hp->happy_block)
 | |
| 		goto err_out_iounmap;
 | |
| 
 | |
| 	hp->linkcheck = 0;
 | |
| 	hp->timer_state = asleep;
 | |
| 	hp->timer_ticks = 0;
 | |
| 
 | |
| 	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
 | |
| 
 | |
| 	hp->irq = pdev->irq;
 | |
| 	hp->dev = dev;
 | |
| 	dev->netdev_ops = &hme_netdev_ops;
 | |
| 	dev->watchdog_timeo = 5*HZ;
 | |
| 	dev->ethtool_ops = &hme_ethtool_ops;
 | |
| 
 | |
| 	/* Happy Meal can do it all... */
 | |
| 	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
 | |
| 	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
 | |
| 
 | |
| #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 | |
| 	/* Hook up PCI register/descriptor accessors. */
 | |
| 	hp->read_desc32 = pci_hme_read_desc32;
 | |
| 	hp->write_txd = pci_hme_write_txd;
 | |
| 	hp->write_rxd = pci_hme_write_rxd;
 | |
| 	hp->read32 = pci_hme_read32;
 | |
| 	hp->write32 = pci_hme_write32;
 | |
| #endif
 | |
| 
 | |
| 	/* Grrr, Happy Meal comes up by default not advertising
 | |
| 	 * full duplex 100baseT capabilities, fix this.
 | |
| 	 */
 | |
| 	spin_lock_irq(&hp->happy_lock);
 | |
| 	happy_meal_set_initial_advertisement(hp);
 | |
| 	spin_unlock_irq(&hp->happy_lock);
 | |
| 
 | |
| 	err = register_netdev(hp->dev);
 | |
| 	if (err) {
 | |
| 		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
 | |
| 		       "aborting.\n");
 | |
| 		goto err_out_iounmap;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_drvdata(pdev, hp);
 | |
| 
 | |
| 	if (!qfe_slot) {
 | |
| 		struct pci_dev *qpdev = qp->quattro_dev;
 | |
| 
 | |
| 		prom_name[0] = 0;
 | |
| 		if (!strncmp(dev->name, "eth", 3)) {
 | |
| 			int i = simple_strtoul(dev->name + 3, NULL, 10);
 | |
| 			sprintf(prom_name, "-%d", i + 3);
 | |
| 		}
 | |
| 		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
 | |
| 		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
 | |
| 		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
 | |
| 			printk("DEC 21153 PCI Bridge\n");
 | |
| 		else
 | |
| 			printk("unknown bridge %04x.%04x\n",
 | |
| 				qpdev->vendor, qpdev->device);
 | |
| 	}
 | |
| 
 | |
| 	if (qfe_slot != -1)
 | |
| 		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
 | |
| 		       dev->name, qfe_slot);
 | |
| 	else
 | |
| 		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
 | |
| 		       dev->name);
 | |
| 
 | |
| 	printk("%pM\n", dev->dev_addr);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_iounmap:
 | |
| 	iounmap(hp->gregs);
 | |
| 
 | |
| err_out_free_res:
 | |
| 	pci_release_regions(pdev);
 | |
| 
 | |
| err_out_clear_quattro:
 | |
| 	if (qp != NULL)
 | |
| 		qp->happy_meals[qfe_slot] = NULL;
 | |
| 
 | |
| 	free_netdev(dev);
 | |
| 
 | |
| err_out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void happy_meal_pci_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct happy_meal *hp = pci_get_drvdata(pdev);
 | |
| 	struct net_device *net_dev = hp->dev;
 | |
| 
 | |
| 	unregister_netdev(net_dev);
 | |
| 
 | |
| 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
 | |
| 			  hp->happy_block, hp->hblock_dvma);
 | |
| 	iounmap(hp->gregs);
 | |
| 	pci_release_regions(hp->happy_dev);
 | |
| 
 | |
| 	free_netdev(net_dev);
 | |
| }
 | |
| 
 | |
| static const struct pci_device_id happymeal_pci_ids[] = {
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
 | |
| 	{ }			/* Terminating entry */
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
 | |
| 
 | |
| static struct pci_driver hme_pci_driver = {
 | |
| 	.name		= "hme",
 | |
| 	.id_table	= happymeal_pci_ids,
 | |
| 	.probe		= happy_meal_pci_probe,
 | |
| 	.remove		= happy_meal_pci_remove,
 | |
| };
 | |
| 
 | |
| static int __init happy_meal_pci_init(void)
 | |
| {
 | |
| 	return pci_register_driver(&hme_pci_driver);
 | |
| }
 | |
| 
 | |
| static void happy_meal_pci_exit(void)
 | |
| {
 | |
| 	pci_unregister_driver(&hme_pci_driver);
 | |
| 
 | |
| 	while (qfe_pci_list) {
 | |
| 		struct quattro *qfe = qfe_pci_list;
 | |
| 		struct quattro *next = qfe->next;
 | |
| 
 | |
| 		kfree(qfe);
 | |
| 
 | |
| 		qfe_pci_list = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SBUS
 | |
| static const struct of_device_id hme_sbus_match[];
 | |
| static int hme_sbus_probe(struct platform_device *op)
 | |
| {
 | |
| 	const struct of_device_id *match;
 | |
| 	struct device_node *dp = op->dev.of_node;
 | |
| 	const char *model = of_get_property(dp, "model", NULL);
 | |
| 	int is_qfe;
 | |
| 
 | |
| 	match = of_match_device(hme_sbus_match, &op->dev);
 | |
| 	if (!match)
 | |
| 		return -EINVAL;
 | |
| 	is_qfe = (match->data != NULL);
 | |
| 
 | |
| 	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
 | |
| 		is_qfe = 1;
 | |
| 
 | |
| 	return happy_meal_sbus_probe_one(op, is_qfe);
 | |
| }
 | |
| 
 | |
| static int hme_sbus_remove(struct platform_device *op)
 | |
| {
 | |
| 	struct happy_meal *hp = platform_get_drvdata(op);
 | |
| 	struct net_device *net_dev = hp->dev;
 | |
| 
 | |
| 	unregister_netdev(net_dev);
 | |
| 
 | |
| 	/* XXX qfe parent interrupt... */
 | |
| 
 | |
| 	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
 | |
| 	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
 | |
| 	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
 | |
| 	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
 | |
| 	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
 | |
| 	dma_free_coherent(hp->dma_dev,
 | |
| 			  PAGE_SIZE,
 | |
| 			  hp->happy_block,
 | |
| 			  hp->hblock_dvma);
 | |
| 
 | |
| 	free_netdev(net_dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id hme_sbus_match[] = {
 | |
| 	{
 | |
| 		.name = "SUNW,hme",
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "SUNW,qfe",
 | |
| 		.data = (void *) 1,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "qfe",
 | |
| 		.data = (void *) 1,
 | |
| 	},
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(of, hme_sbus_match);
 | |
| 
 | |
| static struct platform_driver hme_sbus_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "hme",
 | |
| 		.of_match_table = hme_sbus_match,
 | |
| 	},
 | |
| 	.probe		= hme_sbus_probe,
 | |
| 	.remove		= hme_sbus_remove,
 | |
| };
 | |
| 
 | |
| static int __init happy_meal_sbus_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = platform_driver_register(&hme_sbus_driver);
 | |
| 	if (!err)
 | |
| 		err = quattro_sbus_register_irqs();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void happy_meal_sbus_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&hme_sbus_driver);
 | |
| 	quattro_sbus_free_irqs();
 | |
| 
 | |
| 	while (qfe_sbus_list) {
 | |
| 		struct quattro *qfe = qfe_sbus_list;
 | |
| 		struct quattro *next = qfe->next;
 | |
| 
 | |
| 		kfree(qfe);
 | |
| 
 | |
| 		qfe_sbus_list = next;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int __init happy_meal_probe(void)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| #ifdef CONFIG_SBUS
 | |
| 	err = happy_meal_sbus_init();
 | |
| #endif
 | |
| #ifdef CONFIG_PCI
 | |
| 	if (!err) {
 | |
| 		err = happy_meal_pci_init();
 | |
| #ifdef CONFIG_SBUS
 | |
| 		if (err)
 | |
| 			happy_meal_sbus_exit();
 | |
| #endif
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __exit happy_meal_exit(void)
 | |
| {
 | |
| #ifdef CONFIG_SBUS
 | |
| 	happy_meal_sbus_exit();
 | |
| #endif
 | |
| #ifdef CONFIG_PCI
 | |
| 	happy_meal_pci_exit();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| module_init(happy_meal_probe);
 | |
| module_exit(happy_meal_exit);
 |