linux/fs/nfs/inode.c
David Howells a528d35e8b statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.

The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode.  This change is propagated to the vfs_getattr*()
function.

Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.

========
OVERVIEW
========

The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.

A number of requests were gathered for features to be included.  The
following have been included:

 (1) Make the fields a consistent size on all arches and make them large.

 (2) Spare space, request flags and information flags are provided for
     future expansion.

 (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
     __s64).

 (4) Creation time: The SMB protocol carries the creation time, which could
     be exported by Samba, which will in turn help CIFS make use of
     FS-Cache as that can be used for coherency data (stx_btime).

     This is also specified in NFSv4 as a recommended attribute and could
     be exported by NFSD [Steve French].

 (5) Lightweight stat: Ask for just those details of interest, and allow a
     netfs (such as NFS) to approximate anything not of interest, possibly
     without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
     Dilger] (AT_STATX_DONT_SYNC).

 (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
     its cached attributes are up to date [Trond Myklebust]
     (AT_STATX_FORCE_SYNC).

And the following have been left out for future extension:

 (7) Data version number: Could be used by userspace NFS servers [Aneesh
     Kumar].

     Can also be used to modify fill_post_wcc() in NFSD which retrieves
     i_version directly, but has just called vfs_getattr().  It could get
     it from the kstat struct if it used vfs_xgetattr() instead.

     (There's disagreement on the exact semantics of a single field, since
     not all filesystems do this the same way).

 (8) BSD stat compatibility: Including more fields from the BSD stat such
     as creation time (st_btime) and inode generation number (st_gen)
     [Jeremy Allison, Bernd Schubert].

 (9) Inode generation number: Useful for FUSE and userspace NFS servers
     [Bernd Schubert].

     (This was asked for but later deemed unnecessary with the
     open-by-handle capability available and caused disagreement as to
     whether it's a security hole or not).

(10) Extra coherency data may be useful in making backups [Andreas Dilger].

     (No particular data were offered, but things like last backup
     timestamp, the data version number and the DOS archive bit would come
     into this category).

(11) Allow the filesystem to indicate what it can/cannot provide: A
     filesystem can now say it doesn't support a standard stat feature if
     that isn't available, so if, for instance, inode numbers or UIDs don't
     exist or are fabricated locally...

     (This requires a separate system call - I have an fsinfo() call idea
     for this).

(12) Store a 16-byte volume ID in the superblock that can be returned in
     struct xstat [Steve French].

     (Deferred to fsinfo).

(13) Include granularity fields in the time data to indicate the
     granularity of each of the times (NFSv4 time_delta) [Steve French].

     (Deferred to fsinfo).

(14) FS_IOC_GETFLAGS value.  These could be translated to BSD's st_flags.
     Note that the Linux IOC flags are a mess and filesystems such as Ext4
     define flags that aren't in linux/fs.h, so translation in the kernel
     may be a necessity (or, possibly, we provide the filesystem type too).

     (Some attributes are made available in stx_attributes, but the general
     feeling was that the IOC flags were to ext[234]-specific and shouldn't
     be exposed through statx this way).

(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
     Michael Kerrisk].

     (Deferred, probably to fsinfo.  Finding out if there's an ACL or
     seclabal might require extra filesystem operations).

(16) Femtosecond-resolution timestamps [Dave Chinner].

     (A __reserved field has been left in the statx_timestamp struct for
     this - if there proves to be a need).

(17) A set multiple attributes syscall to go with this.

===============
NEW SYSTEM CALL
===============

The new system call is:

	int ret = statx(int dfd,
			const char *filename,
			unsigned int flags,
			unsigned int mask,
			struct statx *buffer);

The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat().  There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags.  There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.

Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):

 (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
     respect.

 (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
     its attributes with the server - which might require data writeback to
     occur to get the timestamps correct.

 (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
     network filesystem.  The resulting values should be considered
     approximate.

mask is a bitmask indicating the fields in struct statx that are of
interest to the caller.  The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat().  It should be noted that asking for
more information may entail extra I/O operations.

buffer points to the destination for the data.  This must be 256 bytes in
size.

======================
MAIN ATTRIBUTES RECORD
======================

The following structures are defined in which to return the main attribute
set:

	struct statx_timestamp {
		__s64	tv_sec;
		__s32	tv_nsec;
		__s32	__reserved;
	};

	struct statx {
		__u32	stx_mask;
		__u32	stx_blksize;
		__u64	stx_attributes;
		__u32	stx_nlink;
		__u32	stx_uid;
		__u32	stx_gid;
		__u16	stx_mode;
		__u16	__spare0[1];
		__u64	stx_ino;
		__u64	stx_size;
		__u64	stx_blocks;
		__u64	__spare1[1];
		struct statx_timestamp	stx_atime;
		struct statx_timestamp	stx_btime;
		struct statx_timestamp	stx_ctime;
		struct statx_timestamp	stx_mtime;
		__u32	stx_rdev_major;
		__u32	stx_rdev_minor;
		__u32	stx_dev_major;
		__u32	stx_dev_minor;
		__u64	__spare2[14];
	};

The defined bits in request_mask and stx_mask are:

	STATX_TYPE		Want/got stx_mode & S_IFMT
	STATX_MODE		Want/got stx_mode & ~S_IFMT
	STATX_NLINK		Want/got stx_nlink
	STATX_UID		Want/got stx_uid
	STATX_GID		Want/got stx_gid
	STATX_ATIME		Want/got stx_atime{,_ns}
	STATX_MTIME		Want/got stx_mtime{,_ns}
	STATX_CTIME		Want/got stx_ctime{,_ns}
	STATX_INO		Want/got stx_ino
	STATX_SIZE		Want/got stx_size
	STATX_BLOCKS		Want/got stx_blocks
	STATX_BASIC_STATS	[The stuff in the normal stat struct]
	STATX_BTIME		Want/got stx_btime{,_ns}
	STATX_ALL		[All currently available stuff]

stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.

Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution.  Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.

The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does.  The following
attributes map to FS_*_FL flags and are the same numerical value:

	STATX_ATTR_COMPRESSED		File is compressed by the fs
	STATX_ATTR_IMMUTABLE		File is marked immutable
	STATX_ATTR_APPEND		File is append-only
	STATX_ATTR_NODUMP		File is not to be dumped
	STATX_ATTR_ENCRYPTED		File requires key to decrypt in fs

Within the kernel, the supported flags are listed by:

	KSTAT_ATTR_FS_IOC_FLAGS

[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]

New flags include:

	STATX_ATTR_AUTOMOUNT		Object is an automount trigger

These are for the use of GUI tools that might want to mark files specially,
depending on what they are.

Fields in struct statx come in a number of classes:

 (0) stx_dev_*, stx_blksize.

     These are local system information and are always available.

 (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
     stx_size, stx_blocks.

     These will be returned whether the caller asks for them or not.  The
     corresponding bits in stx_mask will be set to indicate whether they
     actually have valid values.

     If the caller didn't ask for them, then they may be approximated.  For
     example, NFS won't waste any time updating them from the server,
     unless as a byproduct of updating something requested.

     If the values don't actually exist for the underlying object (such as
     UID or GID on a DOS file), then the bit won't be set in the stx_mask,
     even if the caller asked for the value.  In such a case, the returned
     value will be a fabrication.

     Note that there are instances where the type might not be valid, for
     instance Windows reparse points.

 (2) stx_rdev_*.

     This will be set only if stx_mode indicates we're looking at a
     blockdev or a chardev, otherwise will be 0.

 (3) stx_btime.

     Similar to (1), except this will be set to 0 if it doesn't exist.

=======
TESTING
=======

The following test program can be used to test the statx system call:

	samples/statx/test-statx.c

Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.

Here's some example output.  Firstly, an NFS directory that crosses to
another FSID.  Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.

	[root@andromeda ~]# /tmp/test-statx -A /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:26           Inode: 1703937     Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000
	Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)

Secondly, the result of automounting on that directory.

	[root@andromeda ~]# /tmp/test-statx /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:27           Inode: 2           Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-03-02 20:51:15 -05:00

2162 lines
58 KiB
C

/*
* linux/fs/nfs/inode.c
*
* Copyright (C) 1992 Rick Sladkey
*
* nfs inode and superblock handling functions
*
* Modularised by Alan Cox <alan@lxorguk.ukuu.org.uk>, while hacking some
* experimental NFS changes. Modularisation taken straight from SYS5 fs.
*
* Change to nfs_read_super() to permit NFS mounts to multi-homed hosts.
* J.S.Peatfield@damtp.cam.ac.uk
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/stats.h>
#include <linux/sunrpc/metrics.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_mount.h>
#include <linux/nfs4_mount.h>
#include <linux/lockd/bind.h>
#include <linux/seq_file.h>
#include <linux/mount.h>
#include <linux/vfs.h>
#include <linux/inet.h>
#include <linux/nfs_xdr.h>
#include <linux/slab.h>
#include <linux/compat.h>
#include <linux/freezer.h>
#include <linux/uaccess.h>
#include "nfs4_fs.h"
#include "callback.h"
#include "delegation.h"
#include "iostat.h"
#include "internal.h"
#include "fscache.h"
#include "pnfs.h"
#include "nfs.h"
#include "netns.h"
#include "nfstrace.h"
#define NFSDBG_FACILITY NFSDBG_VFS
#define NFS_64_BIT_INODE_NUMBERS_ENABLED 1
/* Default is to see 64-bit inode numbers */
static bool enable_ino64 = NFS_64_BIT_INODE_NUMBERS_ENABLED;
static void nfs_invalidate_inode(struct inode *);
static int nfs_update_inode(struct inode *, struct nfs_fattr *);
static struct kmem_cache * nfs_inode_cachep;
static inline unsigned long
nfs_fattr_to_ino_t(struct nfs_fattr *fattr)
{
return nfs_fileid_to_ino_t(fattr->fileid);
}
static int nfs_wait_killable(int mode)
{
freezable_schedule_unsafe();
if (signal_pending_state(mode, current))
return -ERESTARTSYS;
return 0;
}
int nfs_wait_bit_killable(struct wait_bit_key *key, int mode)
{
return nfs_wait_killable(mode);
}
EXPORT_SYMBOL_GPL(nfs_wait_bit_killable);
int nfs_wait_atomic_killable(atomic_t *p)
{
return nfs_wait_killable(TASK_KILLABLE);
}
/**
* nfs_compat_user_ino64 - returns the user-visible inode number
* @fileid: 64-bit fileid
*
* This function returns a 32-bit inode number if the boot parameter
* nfs.enable_ino64 is zero.
*/
u64 nfs_compat_user_ino64(u64 fileid)
{
#ifdef CONFIG_COMPAT
compat_ulong_t ino;
#else
unsigned long ino;
#endif
if (enable_ino64)
return fileid;
ino = fileid;
if (sizeof(ino) < sizeof(fileid))
ino ^= fileid >> (sizeof(fileid)-sizeof(ino)) * 8;
return ino;
}
int nfs_drop_inode(struct inode *inode)
{
return NFS_STALE(inode) || generic_drop_inode(inode);
}
EXPORT_SYMBOL_GPL(nfs_drop_inode);
void nfs_clear_inode(struct inode *inode)
{
/*
* The following should never happen...
*/
WARN_ON_ONCE(nfs_have_writebacks(inode));
WARN_ON_ONCE(!list_empty(&NFS_I(inode)->open_files));
nfs_zap_acl_cache(inode);
nfs_access_zap_cache(inode);
nfs_fscache_clear_inode(inode);
}
EXPORT_SYMBOL_GPL(nfs_clear_inode);
void nfs_evict_inode(struct inode *inode)
{
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
nfs_clear_inode(inode);
}
int nfs_sync_inode(struct inode *inode)
{
inode_dio_wait(inode);
return nfs_wb_all(inode);
}
EXPORT_SYMBOL_GPL(nfs_sync_inode);
/**
* nfs_sync_mapping - helper to flush all mmapped dirty data to disk
*/
int nfs_sync_mapping(struct address_space *mapping)
{
int ret = 0;
if (mapping->nrpages != 0) {
unmap_mapping_range(mapping, 0, 0, 0);
ret = nfs_wb_all(mapping->host);
}
return ret;
}
static int nfs_attribute_timeout(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
return !time_in_range_open(jiffies, nfsi->read_cache_jiffies, nfsi->read_cache_jiffies + nfsi->attrtimeo);
}
static bool nfs_check_cache_invalid_delegated(struct inode *inode, unsigned long flags)
{
unsigned long cache_validity = READ_ONCE(NFS_I(inode)->cache_validity);
/* Special case for the pagecache or access cache */
if (flags == NFS_INO_REVAL_PAGECACHE &&
!(cache_validity & NFS_INO_REVAL_FORCED))
return false;
return (cache_validity & flags) != 0;
}
static bool nfs_check_cache_invalid_not_delegated(struct inode *inode, unsigned long flags)
{
unsigned long cache_validity = READ_ONCE(NFS_I(inode)->cache_validity);
if ((cache_validity & flags) != 0)
return true;
if (nfs_attribute_timeout(inode))
return true;
return false;
}
bool nfs_check_cache_invalid(struct inode *inode, unsigned long flags)
{
if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
return nfs_check_cache_invalid_delegated(inode, flags);
return nfs_check_cache_invalid_not_delegated(inode, flags);
}
static void nfs_set_cache_invalid(struct inode *inode, unsigned long flags)
{
struct nfs_inode *nfsi = NFS_I(inode);
if (inode->i_mapping->nrpages == 0)
flags &= ~NFS_INO_INVALID_DATA;
nfsi->cache_validity |= flags;
if (flags & NFS_INO_INVALID_DATA)
nfs_fscache_invalidate(inode);
}
/*
* Invalidate the local caches
*/
static void nfs_zap_caches_locked(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
int mode = inode->i_mode;
nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = jiffies;
memset(NFS_I(inode)->cookieverf, 0, sizeof(NFS_I(inode)->cookieverf));
if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_DATA
| NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL
| NFS_INO_REVAL_PAGECACHE);
} else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL
| NFS_INO_REVAL_PAGECACHE);
nfs_zap_label_cache_locked(nfsi);
}
void nfs_zap_caches(struct inode *inode)
{
spin_lock(&inode->i_lock);
nfs_zap_caches_locked(inode);
spin_unlock(&inode->i_lock);
}
void nfs_zap_mapping(struct inode *inode, struct address_space *mapping)
{
if (mapping->nrpages != 0) {
spin_lock(&inode->i_lock);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
spin_unlock(&inode->i_lock);
}
}
void nfs_zap_acl_cache(struct inode *inode)
{
void (*clear_acl_cache)(struct inode *);
clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache;
if (clear_acl_cache != NULL)
clear_acl_cache(inode);
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL;
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_zap_acl_cache);
void nfs_invalidate_atime(struct inode *inode)
{
spin_lock(&inode->i_lock);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_invalidate_atime);
/*
* Invalidate, but do not unhash, the inode.
* NB: must be called with inode->i_lock held!
*/
static void nfs_invalidate_inode(struct inode *inode)
{
set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
nfs_zap_caches_locked(inode);
}
struct nfs_find_desc {
struct nfs_fh *fh;
struct nfs_fattr *fattr;
};
/*
* In NFSv3 we can have 64bit inode numbers. In order to support
* this, and re-exported directories (also seen in NFSv2)
* we are forced to allow 2 different inodes to have the same
* i_ino.
*/
static int
nfs_find_actor(struct inode *inode, void *opaque)
{
struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque;
struct nfs_fh *fh = desc->fh;
struct nfs_fattr *fattr = desc->fattr;
if (NFS_FILEID(inode) != fattr->fileid)
return 0;
if ((S_IFMT & inode->i_mode) != (S_IFMT & fattr->mode))
return 0;
if (nfs_compare_fh(NFS_FH(inode), fh))
return 0;
if (is_bad_inode(inode) || NFS_STALE(inode))
return 0;
return 1;
}
static int
nfs_init_locked(struct inode *inode, void *opaque)
{
struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque;
struct nfs_fattr *fattr = desc->fattr;
set_nfs_fileid(inode, fattr->fileid);
inode->i_mode = fattr->mode;
nfs_copy_fh(NFS_FH(inode), desc->fh);
return 0;
}
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static void nfs_clear_label_invalid(struct inode *inode)
{
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_LABEL;
spin_unlock(&inode->i_lock);
}
void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr,
struct nfs4_label *label)
{
int error;
if (label == NULL)
return;
if ((fattr->valid & NFS_ATTR_FATTR_V4_SECURITY_LABEL) && inode->i_security) {
error = security_inode_notifysecctx(inode, label->label,
label->len);
if (error)
printk(KERN_ERR "%s() %s %d "
"security_inode_notifysecctx() %d\n",
__func__,
(char *)label->label,
label->len, error);
nfs_clear_label_invalid(inode);
}
}
struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags)
{
struct nfs4_label *label = NULL;
int minor_version = server->nfs_client->cl_minorversion;
if (minor_version < 2)
return label;
if (!(server->caps & NFS_CAP_SECURITY_LABEL))
return label;
label = kzalloc(sizeof(struct nfs4_label), flags);
if (label == NULL)
return ERR_PTR(-ENOMEM);
label->label = kzalloc(NFS4_MAXLABELLEN, flags);
if (label->label == NULL) {
kfree(label);
return ERR_PTR(-ENOMEM);
}
label->len = NFS4_MAXLABELLEN;
return label;
}
EXPORT_SYMBOL_GPL(nfs4_label_alloc);
#else
void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr,
struct nfs4_label *label)
{
}
#endif
EXPORT_SYMBOL_GPL(nfs_setsecurity);
/*
* This is our front-end to iget that looks up inodes by file handle
* instead of inode number.
*/
struct inode *
nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr, struct nfs4_label *label)
{
struct nfs_find_desc desc = {
.fh = fh,
.fattr = fattr
};
struct inode *inode = ERR_PTR(-ENOENT);
unsigned long hash;
nfs_attr_check_mountpoint(sb, fattr);
if (nfs_attr_use_mounted_on_fileid(fattr))
fattr->fileid = fattr->mounted_on_fileid;
else if ((fattr->valid & NFS_ATTR_FATTR_FILEID) == 0)
goto out_no_inode;
if ((fattr->valid & NFS_ATTR_FATTR_TYPE) == 0)
goto out_no_inode;
hash = nfs_fattr_to_ino_t(fattr);
inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc);
if (inode == NULL) {
inode = ERR_PTR(-ENOMEM);
goto out_no_inode;
}
if (inode->i_state & I_NEW) {
struct nfs_inode *nfsi = NFS_I(inode);
unsigned long now = jiffies;
/* We set i_ino for the few things that still rely on it,
* such as stat(2) */
inode->i_ino = hash;
/* We can't support update_atime(), since the server will reset it */
inode->i_flags |= S_NOATIME|S_NOCMTIME;
inode->i_mode = fattr->mode;
if ((fattr->valid & NFS_ATTR_FATTR_MODE) == 0
&& nfs_server_capable(inode, NFS_CAP_MODE))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR);
/* Why so? Because we want revalidate for devices/FIFOs, and
* that's precisely what we have in nfs_file_inode_operations.
*/
inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops;
if (S_ISREG(inode->i_mode)) {
inode->i_fop = NFS_SB(sb)->nfs_client->rpc_ops->file_ops;
inode->i_data.a_ops = &nfs_file_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops;
inode->i_fop = &nfs_dir_operations;
inode->i_data.a_ops = &nfs_dir_aops;
/* Deal with crossing mountpoints */
if (fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT ||
fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) {
if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL)
inode->i_op = &nfs_referral_inode_operations;
else
inode->i_op = &nfs_mountpoint_inode_operations;
inode->i_fop = NULL;
inode->i_flags |= S_AUTOMOUNT;
}
} else if (S_ISLNK(inode->i_mode)) {
inode->i_op = &nfs_symlink_inode_operations;
inode_nohighmem(inode);
} else
init_special_inode(inode, inode->i_mode, fattr->rdev);
memset(&inode->i_atime, 0, sizeof(inode->i_atime));
memset(&inode->i_mtime, 0, sizeof(inode->i_mtime));
memset(&inode->i_ctime, 0, sizeof(inode->i_ctime));
inode->i_version = 0;
inode->i_size = 0;
clear_nlink(inode);
inode->i_uid = make_kuid(&init_user_ns, -2);
inode->i_gid = make_kgid(&init_user_ns, -2);
inode->i_blocks = 0;
memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
nfsi->write_io = 0;
nfsi->read_io = 0;
nfsi->read_cache_jiffies = fattr->time_start;
nfsi->attr_gencount = fattr->gencount;
if (fattr->valid & NFS_ATTR_FATTR_ATIME)
inode->i_atime = fattr->atime;
else if (nfs_server_capable(inode, NFS_CAP_ATIME))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR);
if (fattr->valid & NFS_ATTR_FATTR_MTIME)
inode->i_mtime = fattr->mtime;
else if (nfs_server_capable(inode, NFS_CAP_MTIME))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR);
if (fattr->valid & NFS_ATTR_FATTR_CTIME)
inode->i_ctime = fattr->ctime;
else if (nfs_server_capable(inode, NFS_CAP_CTIME))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR);
if (fattr->valid & NFS_ATTR_FATTR_CHANGE)
inode->i_version = fattr->change_attr;
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR
| NFS_INO_REVAL_PAGECACHE);
if (fattr->valid & NFS_ATTR_FATTR_SIZE)
inode->i_size = nfs_size_to_loff_t(fattr->size);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR
| NFS_INO_REVAL_PAGECACHE);
if (fattr->valid & NFS_ATTR_FATTR_NLINK)
set_nlink(inode, fattr->nlink);
else if (nfs_server_capable(inode, NFS_CAP_NLINK))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR);
if (fattr->valid & NFS_ATTR_FATTR_OWNER)
inode->i_uid = fattr->uid;
else if (nfs_server_capable(inode, NFS_CAP_OWNER))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR);
if (fattr->valid & NFS_ATTR_FATTR_GROUP)
inode->i_gid = fattr->gid;
else if (nfs_server_capable(inode, NFS_CAP_OWNER_GROUP))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR);
if (fattr->valid & NFS_ATTR_FATTR_BLOCKS_USED)
inode->i_blocks = fattr->du.nfs2.blocks;
if (fattr->valid & NFS_ATTR_FATTR_SPACE_USED) {
/*
* report the blocks in 512byte units
*/
inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
}
nfs_setsecurity(inode, fattr, label);
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = now;
nfsi->access_cache = RB_ROOT;
nfs_fscache_init_inode(inode);
unlock_new_inode(inode);
} else
nfs_refresh_inode(inode, fattr);
dprintk("NFS: nfs_fhget(%s/%Lu fh_crc=0x%08x ct=%d)\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode),
nfs_display_fhandle_hash(fh),
atomic_read(&inode->i_count));
out:
return inode;
out_no_inode:
dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode));
goto out;
}
EXPORT_SYMBOL_GPL(nfs_fhget);
#define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE|ATTR_OPEN)
int
nfs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct nfs_fattr *fattr;
int error = 0;
nfs_inc_stats(inode, NFSIOS_VFSSETATTR);
/* skip mode change if it's just for clearing setuid/setgid */
if (attr->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID))
attr->ia_valid &= ~ATTR_MODE;
if (attr->ia_valid & ATTR_SIZE) {
BUG_ON(!S_ISREG(inode->i_mode));
error = inode_newsize_ok(inode, attr->ia_size);
if (error)
return error;
if (attr->ia_size == i_size_read(inode))
attr->ia_valid &= ~ATTR_SIZE;
}
/* Optimization: if the end result is no change, don't RPC */
attr->ia_valid &= NFS_VALID_ATTRS;
if ((attr->ia_valid & ~(ATTR_FILE|ATTR_OPEN)) == 0)
return 0;
trace_nfs_setattr_enter(inode);
/* Write all dirty data */
if (S_ISREG(inode->i_mode))
nfs_sync_inode(inode);
fattr = nfs_alloc_fattr();
if (fattr == NULL) {
error = -ENOMEM;
goto out;
}
/*
* Return any delegations if we're going to change ACLs
*/
if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0)
NFS_PROTO(inode)->return_delegation(inode);
error = NFS_PROTO(inode)->setattr(dentry, fattr, attr);
if (error == 0)
error = nfs_refresh_inode(inode, fattr);
nfs_free_fattr(fattr);
out:
trace_nfs_setattr_exit(inode, error);
return error;
}
EXPORT_SYMBOL_GPL(nfs_setattr);
/**
* nfs_vmtruncate - unmap mappings "freed" by truncate() syscall
* @inode: inode of the file used
* @offset: file offset to start truncating
*
* This is a copy of the common vmtruncate, but with the locking
* corrected to take into account the fact that NFS requires
* inode->i_size to be updated under the inode->i_lock.
* Note: must be called with inode->i_lock held!
*/
static int nfs_vmtruncate(struct inode * inode, loff_t offset)
{
int err;
err = inode_newsize_ok(inode, offset);
if (err)
goto out;
i_size_write(inode, offset);
/* Optimisation */
if (offset == 0)
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_DATA;
spin_unlock(&inode->i_lock);
truncate_pagecache(inode, offset);
spin_lock(&inode->i_lock);
out:
return err;
}
/**
* nfs_setattr_update_inode - Update inode metadata after a setattr call.
* @inode: pointer to struct inode
* @attr: pointer to struct iattr
*
* Note: we do this in the *proc.c in order to ensure that
* it works for things like exclusive creates too.
*/
void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr,
struct nfs_fattr *fattr)
{
/* Barrier: bump the attribute generation count. */
nfs_fattr_set_barrier(fattr);
spin_lock(&inode->i_lock);
NFS_I(inode)->attr_gencount = fattr->gencount;
if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) {
if ((attr->ia_valid & ATTR_MODE) != 0) {
int mode = attr->ia_mode & S_IALLUGO;
mode |= inode->i_mode & ~S_IALLUGO;
inode->i_mode = mode;
}
if ((attr->ia_valid & ATTR_UID) != 0)
inode->i_uid = attr->ia_uid;
if ((attr->ia_valid & ATTR_GID) != 0)
inode->i_gid = attr->ia_gid;
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL);
}
if ((attr->ia_valid & ATTR_SIZE) != 0) {
nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC);
nfs_vmtruncate(inode, attr->ia_size);
}
if (fattr->valid)
nfs_update_inode(inode, fattr);
else
NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_setattr_update_inode);
static void nfs_readdirplus_parent_cache_miss(struct dentry *dentry)
{
struct dentry *parent;
if (!nfs_server_capable(d_inode(dentry), NFS_CAP_READDIRPLUS))
return;
parent = dget_parent(dentry);
nfs_force_use_readdirplus(d_inode(parent));
dput(parent);
}
static void nfs_readdirplus_parent_cache_hit(struct dentry *dentry)
{
struct dentry *parent;
if (!nfs_server_capable(d_inode(dentry), NFS_CAP_READDIRPLUS))
return;
parent = dget_parent(dentry);
nfs_advise_use_readdirplus(d_inode(parent));
dput(parent);
}
static bool nfs_need_revalidate_inode(struct inode *inode)
{
if (NFS_I(inode)->cache_validity &
(NFS_INO_INVALID_ATTR|NFS_INO_INVALID_LABEL))
return true;
if (nfs_attribute_cache_expired(inode))
return true;
return false;
}
int nfs_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
int need_atime = NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATIME;
int err = 0;
trace_nfs_getattr_enter(inode);
/* Flush out writes to the server in order to update c/mtime. */
if (S_ISREG(inode->i_mode)) {
err = filemap_write_and_wait(inode->i_mapping);
if (err)
goto out;
}
/*
* We may force a getattr if the user cares about atime.
*
* Note that we only have to check the vfsmount flags here:
* - NFS always sets S_NOATIME by so checking it would give a
* bogus result
* - NFS never sets MS_NOATIME or MS_NODIRATIME so there is
* no point in checking those.
*/
if ((path->mnt->mnt_flags & MNT_NOATIME) ||
((path->mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
need_atime = 0;
if (need_atime || nfs_need_revalidate_inode(inode)) {
struct nfs_server *server = NFS_SERVER(inode);
nfs_readdirplus_parent_cache_miss(path->dentry);
err = __nfs_revalidate_inode(server, inode);
} else
nfs_readdirplus_parent_cache_hit(path->dentry);
if (!err) {
generic_fillattr(inode, stat);
stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode));
if (S_ISDIR(inode->i_mode))
stat->blksize = NFS_SERVER(inode)->dtsize;
}
out:
trace_nfs_getattr_exit(inode, err);
return err;
}
EXPORT_SYMBOL_GPL(nfs_getattr);
static void nfs_init_lock_context(struct nfs_lock_context *l_ctx)
{
atomic_set(&l_ctx->count, 1);
l_ctx->lockowner = current->files;
INIT_LIST_HEAD(&l_ctx->list);
atomic_set(&l_ctx->io_count, 0);
}
static struct nfs_lock_context *__nfs_find_lock_context(struct nfs_open_context *ctx)
{
struct nfs_lock_context *head = &ctx->lock_context;
struct nfs_lock_context *pos = head;
do {
if (pos->lockowner != current->files)
continue;
atomic_inc(&pos->count);
return pos;
} while ((pos = list_entry(pos->list.next, typeof(*pos), list)) != head);
return NULL;
}
struct nfs_lock_context *nfs_get_lock_context(struct nfs_open_context *ctx)
{
struct nfs_lock_context *res, *new = NULL;
struct inode *inode = d_inode(ctx->dentry);
spin_lock(&inode->i_lock);
res = __nfs_find_lock_context(ctx);
if (res == NULL) {
spin_unlock(&inode->i_lock);
new = kmalloc(sizeof(*new), GFP_KERNEL);
if (new == NULL)
return ERR_PTR(-ENOMEM);
nfs_init_lock_context(new);
spin_lock(&inode->i_lock);
res = __nfs_find_lock_context(ctx);
if (res == NULL) {
list_add_tail(&new->list, &ctx->lock_context.list);
new->open_context = ctx;
res = new;
new = NULL;
}
}
spin_unlock(&inode->i_lock);
kfree(new);
return res;
}
EXPORT_SYMBOL_GPL(nfs_get_lock_context);
void nfs_put_lock_context(struct nfs_lock_context *l_ctx)
{
struct nfs_open_context *ctx = l_ctx->open_context;
struct inode *inode = d_inode(ctx->dentry);
if (!atomic_dec_and_lock(&l_ctx->count, &inode->i_lock))
return;
list_del(&l_ctx->list);
spin_unlock(&inode->i_lock);
kfree(l_ctx);
}
EXPORT_SYMBOL_GPL(nfs_put_lock_context);
/**
* nfs_close_context - Common close_context() routine NFSv2/v3
* @ctx: pointer to context
* @is_sync: is this a synchronous close
*
* Ensure that the attributes are up to date if we're mounted
* with close-to-open semantics and we have cached data that will
* need to be revalidated on open.
*/
void nfs_close_context(struct nfs_open_context *ctx, int is_sync)
{
struct nfs_inode *nfsi;
struct inode *inode;
struct nfs_server *server;
if (!(ctx->mode & FMODE_WRITE))
return;
if (!is_sync)
return;
inode = d_inode(ctx->dentry);
if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
return;
nfsi = NFS_I(inode);
if (inode->i_mapping->nrpages == 0)
return;
if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
return;
if (!list_empty(&nfsi->open_files))
return;
server = NFS_SERVER(inode);
if (server->flags & NFS_MOUNT_NOCTO)
return;
nfs_revalidate_inode(server, inode);
}
EXPORT_SYMBOL_GPL(nfs_close_context);
struct nfs_open_context *alloc_nfs_open_context(struct dentry *dentry,
fmode_t f_mode,
struct file *filp)
{
struct nfs_open_context *ctx;
struct rpc_cred *cred = rpc_lookup_cred();
if (IS_ERR(cred))
return ERR_CAST(cred);
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
put_rpccred(cred);
return ERR_PTR(-ENOMEM);
}
nfs_sb_active(dentry->d_sb);
ctx->dentry = dget(dentry);
ctx->cred = cred;
ctx->state = NULL;
ctx->mode = f_mode;
ctx->flags = 0;
ctx->error = 0;
ctx->flock_owner = (fl_owner_t)filp;
nfs_init_lock_context(&ctx->lock_context);
ctx->lock_context.open_context = ctx;
INIT_LIST_HEAD(&ctx->list);
ctx->mdsthreshold = NULL;
return ctx;
}
EXPORT_SYMBOL_GPL(alloc_nfs_open_context);
struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx)
{
if (ctx != NULL)
atomic_inc(&ctx->lock_context.count);
return ctx;
}
EXPORT_SYMBOL_GPL(get_nfs_open_context);
static void __put_nfs_open_context(struct nfs_open_context *ctx, int is_sync)
{
struct inode *inode = d_inode(ctx->dentry);
struct super_block *sb = ctx->dentry->d_sb;
if (!list_empty(&ctx->list)) {
if (!atomic_dec_and_lock(&ctx->lock_context.count, &inode->i_lock))
return;
list_del(&ctx->list);
spin_unlock(&inode->i_lock);
} else if (!atomic_dec_and_test(&ctx->lock_context.count))
return;
if (inode != NULL)
NFS_PROTO(inode)->close_context(ctx, is_sync);
if (ctx->cred != NULL)
put_rpccred(ctx->cred);
dput(ctx->dentry);
nfs_sb_deactive(sb);
kfree(ctx->mdsthreshold);
kfree(ctx);
}
void put_nfs_open_context(struct nfs_open_context *ctx)
{
__put_nfs_open_context(ctx, 0);
}
EXPORT_SYMBOL_GPL(put_nfs_open_context);
static void put_nfs_open_context_sync(struct nfs_open_context *ctx)
{
__put_nfs_open_context(ctx, 1);
}
/*
* Ensure that mmap has a recent RPC credential for use when writing out
* shared pages
*/
void nfs_inode_attach_open_context(struct nfs_open_context *ctx)
{
struct inode *inode = d_inode(ctx->dentry);
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
if (ctx->mode & FMODE_WRITE)
list_add(&ctx->list, &nfsi->open_files);
else
list_add_tail(&ctx->list, &nfsi->open_files);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_inode_attach_open_context);
void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx)
{
filp->private_data = get_nfs_open_context(ctx);
if (list_empty(&ctx->list))
nfs_inode_attach_open_context(ctx);
}
EXPORT_SYMBOL_GPL(nfs_file_set_open_context);
/*
* Given an inode, search for an open context with the desired characteristics
*/
struct nfs_open_context *nfs_find_open_context(struct inode *inode, struct rpc_cred *cred, fmode_t mode)
{
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs_open_context *pos, *ctx = NULL;
spin_lock(&inode->i_lock);
list_for_each_entry(pos, &nfsi->open_files, list) {
if (cred != NULL && pos->cred != cred)
continue;
if ((pos->mode & (FMODE_READ|FMODE_WRITE)) != mode)
continue;
ctx = get_nfs_open_context(pos);
break;
}
spin_unlock(&inode->i_lock);
return ctx;
}
void nfs_file_clear_open_context(struct file *filp)
{
struct nfs_open_context *ctx = nfs_file_open_context(filp);
if (ctx) {
struct inode *inode = d_inode(ctx->dentry);
/*
* We fatal error on write before. Try to writeback
* every page again.
*/
if (ctx->error < 0)
invalidate_inode_pages2(inode->i_mapping);
filp->private_data = NULL;
spin_lock(&inode->i_lock);
list_move_tail(&ctx->list, &NFS_I(inode)->open_files);
spin_unlock(&inode->i_lock);
put_nfs_open_context_sync(ctx);
}
}
/*
* These allocate and release file read/write context information.
*/
int nfs_open(struct inode *inode, struct file *filp)
{
struct nfs_open_context *ctx;
ctx = alloc_nfs_open_context(file_dentry(filp), filp->f_mode, filp);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
nfs_file_set_open_context(filp, ctx);
put_nfs_open_context(ctx);
nfs_fscache_open_file(inode, filp);
return 0;
}
/*
* This function is called whenever some part of NFS notices that
* the cached attributes have to be refreshed.
*/
int
__nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
{
int status = -ESTALE;
struct nfs4_label *label = NULL;
struct nfs_fattr *fattr = NULL;
struct nfs_inode *nfsi = NFS_I(inode);
dfprintk(PAGECACHE, "NFS: revalidating (%s/%Lu)\n",
inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode));
trace_nfs_revalidate_inode_enter(inode);
if (is_bad_inode(inode))
goto out;
if (NFS_STALE(inode))
goto out;
/* pNFS: Attributes aren't updated until we layoutcommit */
if (S_ISREG(inode->i_mode)) {
status = pnfs_sync_inode(inode, false);
if (status)
goto out;
}
status = -ENOMEM;
fattr = nfs_alloc_fattr();
if (fattr == NULL)
goto out;
nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE);
label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
if (IS_ERR(label)) {
status = PTR_ERR(label);
goto out;
}
status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), fattr, label);
if (status != 0) {
dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Lu) getattr failed, error=%d\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode), status);
if (status == -ESTALE) {
nfs_zap_caches(inode);
if (!S_ISDIR(inode->i_mode))
set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
}
goto err_out;
}
status = nfs_refresh_inode(inode, fattr);
if (status) {
dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Lu) refresh failed, error=%d\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode), status);
goto err_out;
}
if (nfsi->cache_validity & NFS_INO_INVALID_ACL)
nfs_zap_acl_cache(inode);
nfs_setsecurity(inode, fattr, label);
dfprintk(PAGECACHE, "NFS: (%s/%Lu) revalidation complete\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode));
err_out:
nfs4_label_free(label);
out:
nfs_free_fattr(fattr);
trace_nfs_revalidate_inode_exit(inode, status);
return status;
}
int nfs_attribute_cache_expired(struct inode *inode)
{
if (nfs_have_delegated_attributes(inode))
return 0;
return nfs_attribute_timeout(inode);
}
/**
* nfs_revalidate_inode - Revalidate the inode attributes
* @server - pointer to nfs_server struct
* @inode - pointer to inode struct
*
* Updates inode attribute information by retrieving the data from the server.
*/
int nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
{
if (!nfs_need_revalidate_inode(inode))
return NFS_STALE(inode) ? -ESTALE : 0;
return __nfs_revalidate_inode(server, inode);
}
EXPORT_SYMBOL_GPL(nfs_revalidate_inode);
static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping)
{
struct nfs_inode *nfsi = NFS_I(inode);
int ret;
if (mapping->nrpages != 0) {
if (S_ISREG(inode->i_mode)) {
unmap_mapping_range(mapping, 0, 0, 0);
ret = nfs_sync_mapping(mapping);
if (ret < 0)
return ret;
}
ret = invalidate_inode_pages2(mapping);
if (ret < 0)
return ret;
}
if (S_ISDIR(inode->i_mode)) {
spin_lock(&inode->i_lock);
memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
spin_unlock(&inode->i_lock);
}
nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE);
nfs_fscache_wait_on_invalidate(inode);
dfprintk(PAGECACHE, "NFS: (%s/%Lu) data cache invalidated\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode));
return 0;
}
bool nfs_mapping_need_revalidate_inode(struct inode *inode)
{
return nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE) ||
NFS_STALE(inode);
}
int nfs_revalidate_mapping_rcu(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
unsigned long *bitlock = &nfsi->flags;
int ret = 0;
if (IS_SWAPFILE(inode))
goto out;
if (nfs_mapping_need_revalidate_inode(inode)) {
ret = -ECHILD;
goto out;
}
spin_lock(&inode->i_lock);
if (test_bit(NFS_INO_INVALIDATING, bitlock) ||
(nfsi->cache_validity & NFS_INO_INVALID_DATA))
ret = -ECHILD;
spin_unlock(&inode->i_lock);
out:
return ret;
}
/**
* nfs_revalidate_mapping - Revalidate the pagecache
* @inode - pointer to host inode
* @mapping - pointer to mapping
*/
int nfs_revalidate_mapping(struct inode *inode,
struct address_space *mapping)
{
struct nfs_inode *nfsi = NFS_I(inode);
unsigned long *bitlock = &nfsi->flags;
int ret = 0;
/* swapfiles are not supposed to be shared. */
if (IS_SWAPFILE(inode))
goto out;
if (nfs_mapping_need_revalidate_inode(inode)) {
ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
if (ret < 0)
goto out;
}
/*
* We must clear NFS_INO_INVALID_DATA first to ensure that
* invalidations that come in while we're shooting down the mappings
* are respected. But, that leaves a race window where one revalidator
* can clear the flag, and then another checks it before the mapping
* gets invalidated. Fix that by serializing access to this part of
* the function.
*
* At the same time, we need to allow other tasks to see whether we
* might be in the middle of invalidating the pages, so we only set
* the bit lock here if it looks like we're going to be doing that.
*/
for (;;) {
ret = wait_on_bit_action(bitlock, NFS_INO_INVALIDATING,
nfs_wait_bit_killable, TASK_KILLABLE);
if (ret)
goto out;
spin_lock(&inode->i_lock);
if (test_bit(NFS_INO_INVALIDATING, bitlock)) {
spin_unlock(&inode->i_lock);
continue;
}
if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
break;
spin_unlock(&inode->i_lock);
goto out;
}
set_bit(NFS_INO_INVALIDATING, bitlock);
smp_wmb();
nfsi->cache_validity &= ~NFS_INO_INVALID_DATA;
spin_unlock(&inode->i_lock);
trace_nfs_invalidate_mapping_enter(inode);
ret = nfs_invalidate_mapping(inode, mapping);
trace_nfs_invalidate_mapping_exit(inode, ret);
clear_bit_unlock(NFS_INO_INVALIDATING, bitlock);
smp_mb__after_atomic();
wake_up_bit(bitlock, NFS_INO_INVALIDATING);
out:
return ret;
}
static bool nfs_file_has_writers(struct nfs_inode *nfsi)
{
struct inode *inode = &nfsi->vfs_inode;
assert_spin_locked(&inode->i_lock);
if (!S_ISREG(inode->i_mode))
return false;
if (list_empty(&nfsi->open_files))
return false;
/* Note: This relies on nfsi->open_files being ordered with writers
* being placed at the head of the list.
* See nfs_inode_attach_open_context()
*/
return (list_first_entry(&nfsi->open_files,
struct nfs_open_context,
list)->mode & FMODE_WRITE) == FMODE_WRITE;
}
static bool nfs_file_has_buffered_writers(struct nfs_inode *nfsi)
{
return nfs_file_has_writers(nfsi) && nfs_file_io_is_buffered(nfsi);
}
static unsigned long nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_inode *nfsi = NFS_I(inode);
unsigned long ret = 0;
if ((fattr->valid & NFS_ATTR_FATTR_PRECHANGE)
&& (fattr->valid & NFS_ATTR_FATTR_CHANGE)
&& inode->i_version == fattr->pre_change_attr) {
inode->i_version = fattr->change_attr;
if (S_ISDIR(inode->i_mode))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
ret |= NFS_INO_INVALID_ATTR;
}
/* If we have atomic WCC data, we may update some attributes */
if ((fattr->valid & NFS_ATTR_FATTR_PRECTIME)
&& (fattr->valid & NFS_ATTR_FATTR_CTIME)
&& timespec_equal(&inode->i_ctime, &fattr->pre_ctime)) {
memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime));
ret |= NFS_INO_INVALID_ATTR;
}
if ((fattr->valid & NFS_ATTR_FATTR_PREMTIME)
&& (fattr->valid & NFS_ATTR_FATTR_MTIME)
&& timespec_equal(&inode->i_mtime, &fattr->pre_mtime)) {
memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime));
if (S_ISDIR(inode->i_mode))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
ret |= NFS_INO_INVALID_ATTR;
}
if ((fattr->valid & NFS_ATTR_FATTR_PRESIZE)
&& (fattr->valid & NFS_ATTR_FATTR_SIZE)
&& i_size_read(inode) == nfs_size_to_loff_t(fattr->pre_size)
&& nfsi->nrequests == 0) {
i_size_write(inode, nfs_size_to_loff_t(fattr->size));
ret |= NFS_INO_INVALID_ATTR;
}
return ret;
}
/**
* nfs_check_inode_attributes - verify consistency of the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* Verifies the attribute cache. If we have just changed the attributes,
* so that fattr carries weak cache consistency data, then it may
* also update the ctime/mtime/change_attribute.
*/
static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_inode *nfsi = NFS_I(inode);
loff_t cur_size, new_isize;
unsigned long invalid = 0;
if (nfs_have_delegated_attributes(inode))
return 0;
/* Has the inode gone and changed behind our back? */
if ((fattr->valid & NFS_ATTR_FATTR_FILEID) && nfsi->fileid != fattr->fileid)
return -EIO;
if ((fattr->valid & NFS_ATTR_FATTR_TYPE) && (inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT))
return -EIO;
if (!nfs_file_has_buffered_writers(nfsi)) {
/* Verify a few of the more important attributes */
if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 && inode->i_version != fattr->change_attr)
invalid |= NFS_INO_INVALID_ATTR | NFS_INO_REVAL_PAGECACHE;
if ((fattr->valid & NFS_ATTR_FATTR_MTIME) && !timespec_equal(&inode->i_mtime, &fattr->mtime))
invalid |= NFS_INO_INVALID_ATTR;
if ((fattr->valid & NFS_ATTR_FATTR_CTIME) && !timespec_equal(&inode->i_ctime, &fattr->ctime))
invalid |= NFS_INO_INVALID_ATTR;
if (fattr->valid & NFS_ATTR_FATTR_SIZE) {
cur_size = i_size_read(inode);
new_isize = nfs_size_to_loff_t(fattr->size);
if (cur_size != new_isize)
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
}
}
/* Have any file permissions changed? */
if ((fattr->valid & NFS_ATTR_FATTR_MODE) && (inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO))
invalid |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL;
if ((fattr->valid & NFS_ATTR_FATTR_OWNER) && !uid_eq(inode->i_uid, fattr->uid))
invalid |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL;
if ((fattr->valid & NFS_ATTR_FATTR_GROUP) && !gid_eq(inode->i_gid, fattr->gid))
invalid |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL;
/* Has the link count changed? */
if ((fattr->valid & NFS_ATTR_FATTR_NLINK) && inode->i_nlink != fattr->nlink)
invalid |= NFS_INO_INVALID_ATTR;
if ((fattr->valid & NFS_ATTR_FATTR_ATIME) && !timespec_equal(&inode->i_atime, &fattr->atime))
invalid |= NFS_INO_INVALID_ATIME;
if (invalid != 0)
nfs_set_cache_invalid(inode, invalid | NFS_INO_REVAL_FORCED);
nfsi->read_cache_jiffies = fattr->time_start;
return 0;
}
static atomic_long_t nfs_attr_generation_counter;
static unsigned long nfs_read_attr_generation_counter(void)
{
return atomic_long_read(&nfs_attr_generation_counter);
}
unsigned long nfs_inc_attr_generation_counter(void)
{
return atomic_long_inc_return(&nfs_attr_generation_counter);
}
EXPORT_SYMBOL_GPL(nfs_inc_attr_generation_counter);
void nfs_fattr_init(struct nfs_fattr *fattr)
{
fattr->valid = 0;
fattr->time_start = jiffies;
fattr->gencount = nfs_inc_attr_generation_counter();
fattr->owner_name = NULL;
fattr->group_name = NULL;
}
EXPORT_SYMBOL_GPL(nfs_fattr_init);
/**
* nfs_fattr_set_barrier
* @fattr: attributes
*
* Used to set a barrier after an attribute was updated. This
* barrier ensures that older attributes from RPC calls that may
* have raced with our update cannot clobber these new values.
* Note that you are still responsible for ensuring that other
* operations which change the attribute on the server do not
* collide.
*/
void nfs_fattr_set_barrier(struct nfs_fattr *fattr)
{
fattr->gencount = nfs_inc_attr_generation_counter();
}
struct nfs_fattr *nfs_alloc_fattr(void)
{
struct nfs_fattr *fattr;
fattr = kmalloc(sizeof(*fattr), GFP_NOFS);
if (fattr != NULL)
nfs_fattr_init(fattr);
return fattr;
}
EXPORT_SYMBOL_GPL(nfs_alloc_fattr);
struct nfs_fh *nfs_alloc_fhandle(void)
{
struct nfs_fh *fh;
fh = kmalloc(sizeof(struct nfs_fh), GFP_NOFS);
if (fh != NULL)
fh->size = 0;
return fh;
}
EXPORT_SYMBOL_GPL(nfs_alloc_fhandle);
#ifdef NFS_DEBUG
/*
* _nfs_display_fhandle_hash - calculate the crc32 hash for the filehandle
* in the same way that wireshark does
*
* @fh: file handle
*
* For debugging only.
*/
u32 _nfs_display_fhandle_hash(const struct nfs_fh *fh)
{
/* wireshark uses 32-bit AUTODIN crc and does a bitwise
* not on the result */
return nfs_fhandle_hash(fh);
}
EXPORT_SYMBOL_GPL(_nfs_display_fhandle_hash);
/*
* _nfs_display_fhandle - display an NFS file handle on the console
*
* @fh: file handle to display
* @caption: display caption
*
* For debugging only.
*/
void _nfs_display_fhandle(const struct nfs_fh *fh, const char *caption)
{
unsigned short i;
if (fh == NULL || fh->size == 0) {
printk(KERN_DEFAULT "%s at %p is empty\n", caption, fh);
return;
}
printk(KERN_DEFAULT "%s at %p is %u bytes, crc: 0x%08x:\n",
caption, fh, fh->size, _nfs_display_fhandle_hash(fh));
for (i = 0; i < fh->size; i += 16) {
__be32 *pos = (__be32 *)&fh->data[i];
switch ((fh->size - i - 1) >> 2) {
case 0:
printk(KERN_DEFAULT " %08x\n",
be32_to_cpup(pos));
break;
case 1:
printk(KERN_DEFAULT " %08x %08x\n",
be32_to_cpup(pos), be32_to_cpup(pos + 1));
break;
case 2:
printk(KERN_DEFAULT " %08x %08x %08x\n",
be32_to_cpup(pos), be32_to_cpup(pos + 1),
be32_to_cpup(pos + 2));
break;
default:
printk(KERN_DEFAULT " %08x %08x %08x %08x\n",
be32_to_cpup(pos), be32_to_cpup(pos + 1),
be32_to_cpup(pos + 2), be32_to_cpup(pos + 3));
}
}
}
EXPORT_SYMBOL_GPL(_nfs_display_fhandle);
#endif
/**
* nfs_inode_attrs_need_update - check if the inode attributes need updating
* @inode - pointer to inode
* @fattr - attributes
*
* Attempt to divine whether or not an RPC call reply carrying stale
* attributes got scheduled after another call carrying updated ones.
*
* To do so, the function first assumes that a more recent ctime means
* that the attributes in fattr are newer, however it also attempt to
* catch the case where ctime either didn't change, or went backwards
* (if someone reset the clock on the server) by looking at whether
* or not this RPC call was started after the inode was last updated.
* Note also the check for wraparound of 'attr_gencount'
*
* The function returns 'true' if it thinks the attributes in 'fattr' are
* more recent than the ones cached in the inode.
*
*/
static int nfs_inode_attrs_need_update(const struct inode *inode, const struct nfs_fattr *fattr)
{
const struct nfs_inode *nfsi = NFS_I(inode);
return ((long)fattr->gencount - (long)nfsi->attr_gencount) > 0 ||
((long)nfsi->attr_gencount - (long)nfs_read_attr_generation_counter() > 0);
}
static int nfs_refresh_inode_locked(struct inode *inode, struct nfs_fattr *fattr)
{
int ret;
trace_nfs_refresh_inode_enter(inode);
if (nfs_inode_attrs_need_update(inode, fattr))
ret = nfs_update_inode(inode, fattr);
else
ret = nfs_check_inode_attributes(inode, fattr);
trace_nfs_refresh_inode_exit(inode, ret);
return ret;
}
/**
* nfs_refresh_inode - try to update the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* Check that an RPC call that returned attributes has not overlapped with
* other recent updates of the inode metadata, then decide whether it is
* safe to do a full update of the inode attributes, or whether just to
* call nfs_check_inode_attributes.
*/
int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr)
{
int status;
if ((fattr->valid & NFS_ATTR_FATTR) == 0)
return 0;
spin_lock(&inode->i_lock);
status = nfs_refresh_inode_locked(inode, fattr);
spin_unlock(&inode->i_lock);
return status;
}
EXPORT_SYMBOL_GPL(nfs_refresh_inode);
static int nfs_post_op_update_inode_locked(struct inode *inode, struct nfs_fattr *fattr)
{
unsigned long invalid = NFS_INO_INVALID_ATTR;
if (S_ISDIR(inode->i_mode))
invalid |= NFS_INO_INVALID_DATA;
nfs_set_cache_invalid(inode, invalid);
if ((fattr->valid & NFS_ATTR_FATTR) == 0)
return 0;
return nfs_refresh_inode_locked(inode, fattr);
}
/**
* nfs_post_op_update_inode - try to update the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* After an operation that has changed the inode metadata, mark the
* attribute cache as being invalid, then try to update it.
*
* NB: if the server didn't return any post op attributes, this
* function will force the retrieval of attributes before the next
* NFS request. Thus it should be used only for operations that
* are expected to change one or more attributes, to avoid
* unnecessary NFS requests and trips through nfs_update_inode().
*/
int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
int status;
spin_lock(&inode->i_lock);
nfs_fattr_set_barrier(fattr);
status = nfs_post_op_update_inode_locked(inode, fattr);
spin_unlock(&inode->i_lock);
return status;
}
EXPORT_SYMBOL_GPL(nfs_post_op_update_inode);
/**
* nfs_post_op_update_inode_force_wcc_locked - update the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* After an operation that has changed the inode metadata, mark the
* attribute cache as being invalid, then try to update it. Fake up
* weak cache consistency data, if none exist.
*
* This function is mainly designed to be used by the ->write_done() functions.
*/
int nfs_post_op_update_inode_force_wcc_locked(struct inode *inode, struct nfs_fattr *fattr)
{
int status;
/* Don't do a WCC update if these attributes are already stale */
if ((fattr->valid & NFS_ATTR_FATTR) == 0 ||
!nfs_inode_attrs_need_update(inode, fattr)) {
fattr->valid &= ~(NFS_ATTR_FATTR_PRECHANGE
| NFS_ATTR_FATTR_PRESIZE
| NFS_ATTR_FATTR_PREMTIME
| NFS_ATTR_FATTR_PRECTIME);
goto out_noforce;
}
if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_PRECHANGE) == 0) {
fattr->pre_change_attr = inode->i_version;
fattr->valid |= NFS_ATTR_FATTR_PRECHANGE;
}
if ((fattr->valid & NFS_ATTR_FATTR_CTIME) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_PRECTIME) == 0) {
memcpy(&fattr->pre_ctime, &inode->i_ctime, sizeof(fattr->pre_ctime));
fattr->valid |= NFS_ATTR_FATTR_PRECTIME;
}
if ((fattr->valid & NFS_ATTR_FATTR_MTIME) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_PREMTIME) == 0) {
memcpy(&fattr->pre_mtime, &inode->i_mtime, sizeof(fattr->pre_mtime));
fattr->valid |= NFS_ATTR_FATTR_PREMTIME;
}
if ((fattr->valid & NFS_ATTR_FATTR_SIZE) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_PRESIZE) == 0) {
fattr->pre_size = i_size_read(inode);
fattr->valid |= NFS_ATTR_FATTR_PRESIZE;
}
out_noforce:
status = nfs_post_op_update_inode_locked(inode, fattr);
return status;
}
/**
* nfs_post_op_update_inode_force_wcc - try to update the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* After an operation that has changed the inode metadata, mark the
* attribute cache as being invalid, then try to update it. Fake up
* weak cache consistency data, if none exist.
*
* This function is mainly designed to be used by the ->write_done() functions.
*/
int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr)
{
int status;
spin_lock(&inode->i_lock);
nfs_fattr_set_barrier(fattr);
status = nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
spin_unlock(&inode->i_lock);
return status;
}
EXPORT_SYMBOL_GPL(nfs_post_op_update_inode_force_wcc);
static inline bool nfs_fileid_valid(struct nfs_inode *nfsi,
struct nfs_fattr *fattr)
{
bool ret1 = true, ret2 = true;
if (fattr->valid & NFS_ATTR_FATTR_FILEID)
ret1 = (nfsi->fileid == fattr->fileid);
if (fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID)
ret2 = (nfsi->fileid == fattr->mounted_on_fileid);
return ret1 || ret2;
}
/*
* Many nfs protocol calls return the new file attributes after
* an operation. Here we update the inode to reflect the state
* of the server's inode.
*
* This is a bit tricky because we have to make sure all dirty pages
* have been sent off to the server before calling invalidate_inode_pages.
* To make sure no other process adds more write requests while we try
* our best to flush them, we make them sleep during the attribute refresh.
*
* A very similar scenario holds for the dir cache.
*/
static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_server *server;
struct nfs_inode *nfsi = NFS_I(inode);
loff_t cur_isize, new_isize;
unsigned long invalid = 0;
unsigned long now = jiffies;
unsigned long save_cache_validity;
bool have_writers = nfs_file_has_buffered_writers(nfsi);
bool cache_revalidated = true;
dfprintk(VFS, "NFS: %s(%s/%lu fh_crc=0x%08x ct=%d info=0x%x)\n",
__func__, inode->i_sb->s_id, inode->i_ino,
nfs_display_fhandle_hash(NFS_FH(inode)),
atomic_read(&inode->i_count), fattr->valid);
if (!nfs_fileid_valid(nfsi, fattr)) {
printk(KERN_ERR "NFS: server %s error: fileid changed\n"
"fsid %s: expected fileid 0x%Lx, got 0x%Lx\n",
NFS_SERVER(inode)->nfs_client->cl_hostname,
inode->i_sb->s_id, (long long)nfsi->fileid,
(long long)fattr->fileid);
goto out_err;
}
/*
* Make sure the inode's type hasn't changed.
*/
if ((fattr->valid & NFS_ATTR_FATTR_TYPE) && (inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT)) {
/*
* Big trouble! The inode has become a different object.
*/
printk(KERN_DEBUG "NFS: %s: inode %lu mode changed, %07o to %07o\n",
__func__, inode->i_ino, inode->i_mode, fattr->mode);
goto out_err;
}
server = NFS_SERVER(inode);
/* Update the fsid? */
if (S_ISDIR(inode->i_mode) && (fattr->valid & NFS_ATTR_FATTR_FSID) &&
!nfs_fsid_equal(&server->fsid, &fattr->fsid) &&
!IS_AUTOMOUNT(inode))
server->fsid = fattr->fsid;
/*
* Update the read time so we don't revalidate too often.
*/
nfsi->read_cache_jiffies = fattr->time_start;
save_cache_validity = nfsi->cache_validity;
nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_ATIME
| NFS_INO_REVAL_FORCED
| NFS_INO_REVAL_PAGECACHE);
/* Do atomic weak cache consistency updates */
invalid |= nfs_wcc_update_inode(inode, fattr);
if (pnfs_layoutcommit_outstanding(inode)) {
nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_ATTR;
cache_revalidated = false;
}
/* More cache consistency checks */
if (fattr->valid & NFS_ATTR_FATTR_CHANGE) {
if (inode->i_version != fattr->change_attr) {
dprintk("NFS: change_attr change on server for file %s/%ld\n",
inode->i_sb->s_id, inode->i_ino);
/* Could it be a race with writeback? */
if (!have_writers) {
invalid |= NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_DATA
| NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL;
if (S_ISDIR(inode->i_mode))
nfs_force_lookup_revalidate(inode);
}
inode->i_version = fattr->change_attr;
}
} else {
nfsi->cache_validity |= save_cache_validity;
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_MTIME) {
memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime));
} else if (server->caps & NFS_CAP_MTIME) {
nfsi->cache_validity |= save_cache_validity &
(NFS_INO_INVALID_ATTR
| NFS_INO_REVAL_FORCED);
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_CTIME) {
memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime));
} else if (server->caps & NFS_CAP_CTIME) {
nfsi->cache_validity |= save_cache_validity &
(NFS_INO_INVALID_ATTR
| NFS_INO_REVAL_FORCED);
cache_revalidated = false;
}
/* Check if our cached file size is stale */
if (fattr->valid & NFS_ATTR_FATTR_SIZE) {
new_isize = nfs_size_to_loff_t(fattr->size);
cur_isize = i_size_read(inode);
if (new_isize != cur_isize) {
/* Do we perhaps have any outstanding writes, or has
* the file grown beyond our last write? */
if (nfsi->nrequests == 0 || new_isize > cur_isize) {
i_size_write(inode, new_isize);
if (!have_writers)
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA;
}
dprintk("NFS: isize change on server for file %s/%ld "
"(%Ld to %Ld)\n",
inode->i_sb->s_id,
inode->i_ino,
(long long)cur_isize,
(long long)new_isize);
}
} else {
nfsi->cache_validity |= save_cache_validity &
(NFS_INO_INVALID_ATTR
| NFS_INO_REVAL_PAGECACHE
| NFS_INO_REVAL_FORCED);
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_ATIME)
memcpy(&inode->i_atime, &fattr->atime, sizeof(inode->i_atime));
else if (server->caps & NFS_CAP_ATIME) {
nfsi->cache_validity |= save_cache_validity &
(NFS_INO_INVALID_ATIME
| NFS_INO_REVAL_FORCED);
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_MODE) {
if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)) {
umode_t newmode = inode->i_mode & S_IFMT;
newmode |= fattr->mode & S_IALLUGO;
inode->i_mode = newmode;
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
}
} else if (server->caps & NFS_CAP_MODE) {
nfsi->cache_validity |= save_cache_validity &
(NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL
| NFS_INO_REVAL_FORCED);
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_OWNER) {
if (!uid_eq(inode->i_uid, fattr->uid)) {
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
inode->i_uid = fattr->uid;
}
} else if (server->caps & NFS_CAP_OWNER) {
nfsi->cache_validity |= save_cache_validity &
(NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL
| NFS_INO_REVAL_FORCED);
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_GROUP) {
if (!gid_eq(inode->i_gid, fattr->gid)) {
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
inode->i_gid = fattr->gid;
}
} else if (server->caps & NFS_CAP_OWNER_GROUP) {
nfsi->cache_validity |= save_cache_validity &
(NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL
| NFS_INO_REVAL_FORCED);
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_NLINK) {
if (inode->i_nlink != fattr->nlink) {
invalid |= NFS_INO_INVALID_ATTR;
if (S_ISDIR(inode->i_mode))
invalid |= NFS_INO_INVALID_DATA;
set_nlink(inode, fattr->nlink);
}
} else if (server->caps & NFS_CAP_NLINK) {
nfsi->cache_validity |= save_cache_validity &
(NFS_INO_INVALID_ATTR
| NFS_INO_REVAL_FORCED);
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_SPACE_USED) {
/*
* report the blocks in 512byte units
*/
inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
} else if (fattr->valid & NFS_ATTR_FATTR_BLOCKS_USED)
inode->i_blocks = fattr->du.nfs2.blocks;
else
cache_revalidated = false;
/* Update attrtimeo value if we're out of the unstable period */
if (invalid & NFS_INO_INVALID_ATTR) {
nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = now;
/* Set barrier to be more recent than all outstanding updates */
nfsi->attr_gencount = nfs_inc_attr_generation_counter();
} else {
if (cache_revalidated) {
if (!time_in_range_open(now, nfsi->attrtimeo_timestamp,
nfsi->attrtimeo_timestamp + nfsi->attrtimeo)) {
nfsi->attrtimeo <<= 1;
if (nfsi->attrtimeo > NFS_MAXATTRTIMEO(inode))
nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode);
}
nfsi->attrtimeo_timestamp = now;
}
/* Set the barrier to be more recent than this fattr */
if ((long)fattr->gencount - (long)nfsi->attr_gencount > 0)
nfsi->attr_gencount = fattr->gencount;
}
/* Don't declare attrcache up to date if there were no attrs! */
if (cache_revalidated)
invalid &= ~NFS_INO_INVALID_ATTR;
/* Don't invalidate the data if we were to blame */
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
|| S_ISLNK(inode->i_mode)))
invalid &= ~NFS_INO_INVALID_DATA;
if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ) ||
(save_cache_validity & NFS_INO_REVAL_FORCED))
nfs_set_cache_invalid(inode, invalid);
return 0;
out_err:
/*
* No need to worry about unhashing the dentry, as the
* lookup validation will know that the inode is bad.
* (But we fall through to invalidate the caches.)
*/
nfs_invalidate_inode(inode);
return -ESTALE;
}
struct inode *nfs_alloc_inode(struct super_block *sb)
{
struct nfs_inode *nfsi;
nfsi = kmem_cache_alloc(nfs_inode_cachep, GFP_KERNEL);
if (!nfsi)
return NULL;
nfsi->flags = 0UL;
nfsi->cache_validity = 0UL;
#if IS_ENABLED(CONFIG_NFS_V4)
nfsi->nfs4_acl = NULL;
#endif /* CONFIG_NFS_V4 */
return &nfsi->vfs_inode;
}
EXPORT_SYMBOL_GPL(nfs_alloc_inode);
static void nfs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(nfs_inode_cachep, NFS_I(inode));
}
void nfs_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, nfs_i_callback);
}
EXPORT_SYMBOL_GPL(nfs_destroy_inode);
static inline void nfs4_init_once(struct nfs_inode *nfsi)
{
#if IS_ENABLED(CONFIG_NFS_V4)
INIT_LIST_HEAD(&nfsi->open_states);
nfsi->delegation = NULL;
init_rwsem(&nfsi->rwsem);
nfsi->layout = NULL;
#endif
}
static void init_once(void *foo)
{
struct nfs_inode *nfsi = (struct nfs_inode *) foo;
inode_init_once(&nfsi->vfs_inode);
INIT_LIST_HEAD(&nfsi->open_files);
INIT_LIST_HEAD(&nfsi->access_cache_entry_lru);
INIT_LIST_HEAD(&nfsi->access_cache_inode_lru);
INIT_LIST_HEAD(&nfsi->commit_info.list);
nfsi->nrequests = 0;
nfsi->commit_info.ncommit = 0;
atomic_set(&nfsi->commit_info.rpcs_out, 0);
init_rwsem(&nfsi->rmdir_sem);
nfs4_init_once(nfsi);
}
static int __init nfs_init_inodecache(void)
{
nfs_inode_cachep = kmem_cache_create("nfs_inode_cache",
sizeof(struct nfs_inode),
0, (SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD|SLAB_ACCOUNT),
init_once);
if (nfs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void nfs_destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(nfs_inode_cachep);
}
struct workqueue_struct *nfsiod_workqueue;
EXPORT_SYMBOL_GPL(nfsiod_workqueue);
/*
* start up the nfsiod workqueue
*/
static int nfsiod_start(void)
{
struct workqueue_struct *wq;
dprintk("RPC: creating workqueue nfsiod\n");
wq = alloc_workqueue("nfsiod", WQ_MEM_RECLAIM, 0);
if (wq == NULL)
return -ENOMEM;
nfsiod_workqueue = wq;
return 0;
}
/*
* Destroy the nfsiod workqueue
*/
static void nfsiod_stop(void)
{
struct workqueue_struct *wq;
wq = nfsiod_workqueue;
if (wq == NULL)
return;
nfsiod_workqueue = NULL;
destroy_workqueue(wq);
}
unsigned int nfs_net_id;
EXPORT_SYMBOL_GPL(nfs_net_id);
static int nfs_net_init(struct net *net)
{
nfs_clients_init(net);
return nfs_fs_proc_net_init(net);
}
static void nfs_net_exit(struct net *net)
{
nfs_fs_proc_net_exit(net);
nfs_cleanup_cb_ident_idr(net);
}
static struct pernet_operations nfs_net_ops = {
.init = nfs_net_init,
.exit = nfs_net_exit,
.id = &nfs_net_id,
.size = sizeof(struct nfs_net),
};
/*
* Initialize NFS
*/
static int __init init_nfs_fs(void)
{
int err;
err = register_pernet_subsys(&nfs_net_ops);
if (err < 0)
goto out9;
err = nfs_fscache_register();
if (err < 0)
goto out8;
err = nfsiod_start();
if (err)
goto out7;
err = nfs_fs_proc_init();
if (err)
goto out6;
err = nfs_init_nfspagecache();
if (err)
goto out5;
err = nfs_init_inodecache();
if (err)
goto out4;
err = nfs_init_readpagecache();
if (err)
goto out3;
err = nfs_init_writepagecache();
if (err)
goto out2;
err = nfs_init_directcache();
if (err)
goto out1;
rpc_proc_register(&init_net, &nfs_rpcstat);
err = register_nfs_fs();
if (err)
goto out0;
return 0;
out0:
rpc_proc_unregister(&init_net, "nfs");
nfs_destroy_directcache();
out1:
nfs_destroy_writepagecache();
out2:
nfs_destroy_readpagecache();
out3:
nfs_destroy_inodecache();
out4:
nfs_destroy_nfspagecache();
out5:
nfs_fs_proc_exit();
out6:
nfsiod_stop();
out7:
nfs_fscache_unregister();
out8:
unregister_pernet_subsys(&nfs_net_ops);
out9:
return err;
}
static void __exit exit_nfs_fs(void)
{
nfs_destroy_directcache();
nfs_destroy_writepagecache();
nfs_destroy_readpagecache();
nfs_destroy_inodecache();
nfs_destroy_nfspagecache();
nfs_fscache_unregister();
unregister_pernet_subsys(&nfs_net_ops);
rpc_proc_unregister(&init_net, "nfs");
unregister_nfs_fs();
nfs_fs_proc_exit();
nfsiod_stop();
}
/* Not quite true; I just maintain it */
MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>");
MODULE_LICENSE("GPL");
module_param(enable_ino64, bool, 0644);
module_init(init_nfs_fs)
module_exit(exit_nfs_fs)