linux/drivers/mmc/core/mmc.c
Bradley Bolen f3d7c2292d mmc: core: Fix size overflow for mmc partitions
With large eMMC cards, it is possible to create general purpose
partitions that are bigger than 4GB.  The size member of the mmc_part
struct is only an unsigned int which overflows for gp partitions larger
than 4GB.  Change this to a u64 to handle the overflow.

Signed-off-by: Bradley Bolen <bradleybolen@gmail.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2019-11-18 10:05:38 +01:00

2260 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/core/mmc.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
*/
#include <linux/err.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/pm_runtime.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include "core.h"
#include "card.h"
#include "host.h"
#include "bus.h"
#include "mmc_ops.h"
#include "quirks.h"
#include "sd_ops.h"
#include "pwrseq.h"
#define DEFAULT_CMD6_TIMEOUT_MS 500
#define MIN_CACHE_EN_TIMEOUT_MS 1600
static const unsigned int tran_exp[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const unsigned char tran_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int taac_exp[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const unsigned int taac_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
#define UNSTUFF_BITS(resp,start,size) \
({ \
const int __size = size; \
const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
const int __off = 3 - ((start) / 32); \
const int __shft = (start) & 31; \
u32 __res; \
\
__res = resp[__off] >> __shft; \
if (__size + __shft > 32) \
__res |= resp[__off-1] << ((32 - __shft) % 32); \
__res & __mask; \
})
/*
* Given the decoded CSD structure, decode the raw CID to our CID structure.
*/
static int mmc_decode_cid(struct mmc_card *card)
{
u32 *resp = card->raw_cid;
/*
* The selection of the format here is based upon published
* specs from sandisk and from what people have reported.
*/
switch (card->csd.mmca_vsn) {
case 0: /* MMC v1.0 - v1.2 */
case 1: /* MMC v1.4 */
card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
card->cid.month = UNSTUFF_BITS(resp, 12, 4);
card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
break;
case 2: /* MMC v2.0 - v2.2 */
case 3: /* MMC v3.1 - v3.3 */
case 4: /* MMC v4 */
card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
card->cid.month = UNSTUFF_BITS(resp, 12, 4);
card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
break;
default:
pr_err("%s: card has unknown MMCA version %d\n",
mmc_hostname(card->host), card->csd.mmca_vsn);
return -EINVAL;
}
return 0;
}
static void mmc_set_erase_size(struct mmc_card *card)
{
if (card->ext_csd.erase_group_def & 1)
card->erase_size = card->ext_csd.hc_erase_size;
else
card->erase_size = card->csd.erase_size;
mmc_init_erase(card);
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static int mmc_decode_csd(struct mmc_card *card)
{
struct mmc_csd *csd = &card->csd;
unsigned int e, m, a, b;
u32 *resp = card->raw_csd;
/*
* We only understand CSD structure v1.1 and v1.2.
* v1.2 has extra information in bits 15, 11 and 10.
* We also support eMMC v4.4 & v4.41.
*/
csd->structure = UNSTUFF_BITS(resp, 126, 2);
if (csd->structure == 0) {
pr_err("%s: unrecognised CSD structure version %d\n",
mmc_hostname(card->host), csd->structure);
return -EINVAL;
}
csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
m = UNSTUFF_BITS(resp, 115, 4);
e = UNSTUFF_BITS(resp, 112, 3);
csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
e = UNSTUFF_BITS(resp, 47, 3);
m = UNSTUFF_BITS(resp, 62, 12);
csd->capacity = (1 + m) << (e + 2);
csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
if (csd->write_blkbits >= 9) {
a = UNSTUFF_BITS(resp, 42, 5);
b = UNSTUFF_BITS(resp, 37, 5);
csd->erase_size = (a + 1) * (b + 1);
csd->erase_size <<= csd->write_blkbits - 9;
}
return 0;
}
static void mmc_select_card_type(struct mmc_card *card)
{
struct mmc_host *host = card->host;
u8 card_type = card->ext_csd.raw_card_type;
u32 caps = host->caps, caps2 = host->caps2;
unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
unsigned int avail_type = 0;
if (caps & MMC_CAP_MMC_HIGHSPEED &&
card_type & EXT_CSD_CARD_TYPE_HS_26) {
hs_max_dtr = MMC_HIGH_26_MAX_DTR;
avail_type |= EXT_CSD_CARD_TYPE_HS_26;
}
if (caps & MMC_CAP_MMC_HIGHSPEED &&
card_type & EXT_CSD_CARD_TYPE_HS_52) {
hs_max_dtr = MMC_HIGH_52_MAX_DTR;
avail_type |= EXT_CSD_CARD_TYPE_HS_52;
}
if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
}
if (caps & MMC_CAP_1_2V_DDR &&
card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
}
if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
hs200_max_dtr = MMC_HS200_MAX_DTR;
avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
}
if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
hs200_max_dtr = MMC_HS200_MAX_DTR;
avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
}
if (caps2 & MMC_CAP2_HS400_1_8V &&
card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
hs200_max_dtr = MMC_HS200_MAX_DTR;
avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
}
if (caps2 & MMC_CAP2_HS400_1_2V &&
card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
hs200_max_dtr = MMC_HS200_MAX_DTR;
avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
}
if ((caps2 & MMC_CAP2_HS400_ES) &&
card->ext_csd.strobe_support &&
(avail_type & EXT_CSD_CARD_TYPE_HS400))
avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
card->ext_csd.hs_max_dtr = hs_max_dtr;
card->ext_csd.hs200_max_dtr = hs200_max_dtr;
card->mmc_avail_type = avail_type;
}
static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
{
u8 hc_erase_grp_sz, hc_wp_grp_sz;
/*
* Disable these attributes by default
*/
card->ext_csd.enhanced_area_offset = -EINVAL;
card->ext_csd.enhanced_area_size = -EINVAL;
/*
* Enhanced area feature support -- check whether the eMMC
* card has the Enhanced area enabled. If so, export enhanced
* area offset and size to user by adding sysfs interface.
*/
if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
(ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
if (card->ext_csd.partition_setting_completed) {
hc_erase_grp_sz =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
hc_wp_grp_sz =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
/*
* calculate the enhanced data area offset, in bytes
*/
card->ext_csd.enhanced_area_offset =
(((unsigned long long)ext_csd[139]) << 24) +
(((unsigned long long)ext_csd[138]) << 16) +
(((unsigned long long)ext_csd[137]) << 8) +
(((unsigned long long)ext_csd[136]));
if (mmc_card_blockaddr(card))
card->ext_csd.enhanced_area_offset <<= 9;
/*
* calculate the enhanced data area size, in kilobytes
*/
card->ext_csd.enhanced_area_size =
(ext_csd[142] << 16) + (ext_csd[141] << 8) +
ext_csd[140];
card->ext_csd.enhanced_area_size *=
(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
card->ext_csd.enhanced_area_size <<= 9;
} else {
pr_warn("%s: defines enhanced area without partition setting complete\n",
mmc_hostname(card->host));
}
}
}
static void mmc_part_add(struct mmc_card *card, u64 size,
unsigned int part_cfg, char *name, int idx, bool ro,
int area_type)
{
card->part[card->nr_parts].size = size;
card->part[card->nr_parts].part_cfg = part_cfg;
sprintf(card->part[card->nr_parts].name, name, idx);
card->part[card->nr_parts].force_ro = ro;
card->part[card->nr_parts].area_type = area_type;
card->nr_parts++;
}
static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
{
int idx;
u8 hc_erase_grp_sz, hc_wp_grp_sz;
u64 part_size;
/*
* General purpose partition feature support --
* If ext_csd has the size of general purpose partitions,
* set size, part_cfg, partition name in mmc_part.
*/
if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
EXT_CSD_PART_SUPPORT_PART_EN) {
hc_erase_grp_sz =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
hc_wp_grp_sz =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
continue;
if (card->ext_csd.partition_setting_completed == 0) {
pr_warn("%s: has partition size defined without partition complete\n",
mmc_hostname(card->host));
break;
}
part_size =
(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
<< 16) +
(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
<< 8) +
ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
mmc_part_add(card, part_size << 19,
EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
"gp%d", idx, false,
MMC_BLK_DATA_AREA_GP);
}
}
}
/* Minimum partition switch timeout in milliseconds */
#define MMC_MIN_PART_SWITCH_TIME 300
/*
* Decode extended CSD.
*/
static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
{
int err = 0, idx;
u64 part_size;
struct device_node *np;
bool broken_hpi = false;
/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
if (card->csd.structure == 3) {
if (card->ext_csd.raw_ext_csd_structure > 2) {
pr_err("%s: unrecognised EXT_CSD structure "
"version %d\n", mmc_hostname(card->host),
card->ext_csd.raw_ext_csd_structure);
err = -EINVAL;
goto out;
}
}
np = mmc_of_find_child_device(card->host, 0);
if (np && of_device_is_compatible(np, "mmc-card"))
broken_hpi = of_property_read_bool(np, "broken-hpi");
of_node_put(np);
/*
* The EXT_CSD format is meant to be forward compatible. As long
* as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
* are authorized, see JEDEC JESD84-B50 section B.8.
*/
card->ext_csd.rev = ext_csd[EXT_CSD_REV];
/* fixup device after ext_csd revision field is updated */
mmc_fixup_device(card, mmc_ext_csd_fixups);
card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
if (card->ext_csd.rev >= 2) {
card->ext_csd.sectors =
ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
/* Cards with density > 2GiB are sector addressed */
if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
mmc_card_set_blockaddr(card);
}
card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
mmc_select_card_type(card);
card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.raw_erase_timeout_mult =
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
card->ext_csd.raw_hc_erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
if (card->ext_csd.rev >= 3) {
u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
/* EXT_CSD value is in units of 10ms, but we store in ms */
card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
/* Some eMMC set the value too low so set a minimum */
if (card->ext_csd.part_time &&
card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
/* Sleep / awake timeout in 100ns units */
if (sa_shift > 0 && sa_shift <= 0x17)
card->ext_csd.sa_timeout =
1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.erase_group_def =
ext_csd[EXT_CSD_ERASE_GROUP_DEF];
card->ext_csd.hc_erase_timeout = 300 *
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
card->ext_csd.hc_erase_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
/*
* There are two boot regions of equal size, defined in
* multiples of 128K.
*/
if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
mmc_part_add(card, part_size,
EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
"boot%d", idx, true,
MMC_BLK_DATA_AREA_BOOT);
}
}
}
card->ext_csd.raw_hc_erase_gap_size =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
card->ext_csd.raw_sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
card->ext_csd.raw_sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
card->ext_csd.raw_sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
card->ext_csd.raw_trim_mult =
ext_csd[EXT_CSD_TRIM_MULT];
card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
if (card->ext_csd.rev >= 4) {
if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
EXT_CSD_PART_SETTING_COMPLETED)
card->ext_csd.partition_setting_completed = 1;
else
card->ext_csd.partition_setting_completed = 0;
mmc_manage_enhanced_area(card, ext_csd);
mmc_manage_gp_partitions(card, ext_csd);
card->ext_csd.sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
card->ext_csd.sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
card->ext_csd.sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
card->ext_csd.trim_timeout = 300 *
ext_csd[EXT_CSD_TRIM_MULT];
/*
* Note that the call to mmc_part_add above defaults to read
* only. If this default assumption is changed, the call must
* take into account the value of boot_locked below.
*/
card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
card->ext_csd.boot_ro_lockable = true;
/* Save power class values */
card->ext_csd.raw_pwr_cl_52_195 =
ext_csd[EXT_CSD_PWR_CL_52_195];
card->ext_csd.raw_pwr_cl_26_195 =
ext_csd[EXT_CSD_PWR_CL_26_195];
card->ext_csd.raw_pwr_cl_52_360 =
ext_csd[EXT_CSD_PWR_CL_52_360];
card->ext_csd.raw_pwr_cl_26_360 =
ext_csd[EXT_CSD_PWR_CL_26_360];
card->ext_csd.raw_pwr_cl_200_195 =
ext_csd[EXT_CSD_PWR_CL_200_195];
card->ext_csd.raw_pwr_cl_200_360 =
ext_csd[EXT_CSD_PWR_CL_200_360];
card->ext_csd.raw_pwr_cl_ddr_52_195 =
ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
card->ext_csd.raw_pwr_cl_ddr_52_360 =
ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
card->ext_csd.raw_pwr_cl_ddr_200_360 =
ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
}
if (card->ext_csd.rev >= 5) {
/* Adjust production date as per JEDEC JESD84-B451 */
if (card->cid.year < 2010)
card->cid.year += 16;
/* check whether the eMMC card supports BKOPS */
if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
card->ext_csd.bkops = 1;
card->ext_csd.man_bkops_en =
(ext_csd[EXT_CSD_BKOPS_EN] &
EXT_CSD_MANUAL_BKOPS_MASK);
card->ext_csd.raw_bkops_status =
ext_csd[EXT_CSD_BKOPS_STATUS];
if (card->ext_csd.man_bkops_en)
pr_debug("%s: MAN_BKOPS_EN bit is set\n",
mmc_hostname(card->host));
card->ext_csd.auto_bkops_en =
(ext_csd[EXT_CSD_BKOPS_EN] &
EXT_CSD_AUTO_BKOPS_MASK);
if (card->ext_csd.auto_bkops_en)
pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
mmc_hostname(card->host));
}
/* check whether the eMMC card supports HPI */
if (!mmc_card_broken_hpi(card) &&
!broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
card->ext_csd.hpi = 1;
if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
else
card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
/*
* Indicate the maximum timeout to close
* a command interrupted by HPI
*/
card->ext_csd.out_of_int_time =
ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
}
card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
/*
* RPMB regions are defined in multiples of 128K.
*/
card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
EXT_CSD_PART_CONFIG_ACC_RPMB,
"rpmb", 0, false,
MMC_BLK_DATA_AREA_RPMB);
}
}
card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
card->erased_byte = 0xFF;
else
card->erased_byte = 0x0;
/* eMMC v4.5 or later */
card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
if (card->ext_csd.rev >= 6) {
card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
card->ext_csd.generic_cmd6_time = 10 *
ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
card->ext_csd.power_off_longtime = 10 *
ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
card->ext_csd.cache_size =
ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
card->ext_csd.data_sector_size = 4096;
else
card->ext_csd.data_sector_size = 512;
if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
(ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
card->ext_csd.data_tag_unit_size =
((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
(card->ext_csd.data_sector_size);
} else {
card->ext_csd.data_tag_unit_size = 0;
}
card->ext_csd.max_packed_writes =
ext_csd[EXT_CSD_MAX_PACKED_WRITES];
card->ext_csd.max_packed_reads =
ext_csd[EXT_CSD_MAX_PACKED_READS];
} else {
card->ext_csd.data_sector_size = 512;
}
/* eMMC v5 or later */
if (card->ext_csd.rev >= 7) {
memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
MMC_FIRMWARE_LEN);
card->ext_csd.ffu_capable =
(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
card->ext_csd.device_life_time_est_typ_a =
ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
card->ext_csd.device_life_time_est_typ_b =
ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
}
/* eMMC v5.1 or later */
if (card->ext_csd.rev >= 8) {
card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
EXT_CSD_CMDQ_SUPPORTED;
card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
EXT_CSD_CMDQ_DEPTH_MASK) + 1;
/* Exclude inefficiently small queue depths */
if (card->ext_csd.cmdq_depth <= 2) {
card->ext_csd.cmdq_support = false;
card->ext_csd.cmdq_depth = 0;
}
if (card->ext_csd.cmdq_support) {
pr_debug("%s: Command Queue supported depth %u\n",
mmc_hostname(card->host),
card->ext_csd.cmdq_depth);
}
}
out:
return err;
}
static int mmc_read_ext_csd(struct mmc_card *card)
{
u8 *ext_csd;
int err;
if (!mmc_can_ext_csd(card))
return 0;
err = mmc_get_ext_csd(card, &ext_csd);
if (err) {
/* If the host or the card can't do the switch,
* fail more gracefully. */
if ((err != -EINVAL)
&& (err != -ENOSYS)
&& (err != -EFAULT))
return err;
/*
* High capacity cards should have this "magic" size
* stored in their CSD.
*/
if (card->csd.capacity == (4096 * 512)) {
pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
mmc_hostname(card->host));
} else {
pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
mmc_hostname(card->host));
err = 0;
}
return err;
}
err = mmc_decode_ext_csd(card, ext_csd);
kfree(ext_csd);
return err;
}
static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
{
u8 *bw_ext_csd;
int err;
if (bus_width == MMC_BUS_WIDTH_1)
return 0;
err = mmc_get_ext_csd(card, &bw_ext_csd);
if (err)
return err;
/* only compare read only fields */
err = !((card->ext_csd.raw_partition_support ==
bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
(card->ext_csd.raw_erased_mem_count ==
bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
(card->ext_csd.rev ==
bw_ext_csd[EXT_CSD_REV]) &&
(card->ext_csd.raw_ext_csd_structure ==
bw_ext_csd[EXT_CSD_STRUCTURE]) &&
(card->ext_csd.raw_card_type ==
bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
(card->ext_csd.raw_s_a_timeout ==
bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
(card->ext_csd.raw_hc_erase_gap_size ==
bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
(card->ext_csd.raw_erase_timeout_mult ==
bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
(card->ext_csd.raw_hc_erase_grp_size ==
bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
(card->ext_csd.raw_sec_trim_mult ==
bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
(card->ext_csd.raw_sec_erase_mult ==
bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
(card->ext_csd.raw_sec_feature_support ==
bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
(card->ext_csd.raw_trim_mult ==
bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
(card->ext_csd.raw_sectors[0] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
(card->ext_csd.raw_sectors[1] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
(card->ext_csd.raw_sectors[2] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
(card->ext_csd.raw_sectors[3] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
(card->ext_csd.raw_pwr_cl_52_195 ==
bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
(card->ext_csd.raw_pwr_cl_26_195 ==
bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
(card->ext_csd.raw_pwr_cl_52_360 ==
bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
(card->ext_csd.raw_pwr_cl_26_360 ==
bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
(card->ext_csd.raw_pwr_cl_200_195 ==
bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
(card->ext_csd.raw_pwr_cl_200_360 ==
bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
if (err)
err = -EINVAL;
kfree(bw_ext_csd);
return err;
}
MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
card->raw_cid[2], card->raw_cid[3]);
MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
card->ext_csd.device_life_time_est_typ_a,
card->ext_csd.device_life_time_est_typ_b);
MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
card->ext_csd.enhanced_area_offset);
MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
static ssize_t mmc_fwrev_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mmc_card *card = mmc_dev_to_card(dev);
if (card->ext_csd.rev < 7) {
return sprintf(buf, "0x%x\n", card->cid.fwrev);
} else {
return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
card->ext_csd.fwrev);
}
}
static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
static ssize_t mmc_dsr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mmc_card *card = mmc_dev_to_card(dev);
struct mmc_host *host = card->host;
if (card->csd.dsr_imp && host->dsr_req)
return sprintf(buf, "0x%x\n", host->dsr);
else
/* return default DSR value */
return sprintf(buf, "0x%x\n", 0x404);
}
static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
static struct attribute *mmc_std_attrs[] = {
&dev_attr_cid.attr,
&dev_attr_csd.attr,
&dev_attr_date.attr,
&dev_attr_erase_size.attr,
&dev_attr_preferred_erase_size.attr,
&dev_attr_fwrev.attr,
&dev_attr_ffu_capable.attr,
&dev_attr_hwrev.attr,
&dev_attr_manfid.attr,
&dev_attr_name.attr,
&dev_attr_oemid.attr,
&dev_attr_prv.attr,
&dev_attr_rev.attr,
&dev_attr_pre_eol_info.attr,
&dev_attr_life_time.attr,
&dev_attr_serial.attr,
&dev_attr_enhanced_area_offset.attr,
&dev_attr_enhanced_area_size.attr,
&dev_attr_raw_rpmb_size_mult.attr,
&dev_attr_rel_sectors.attr,
&dev_attr_ocr.attr,
&dev_attr_rca.attr,
&dev_attr_dsr.attr,
&dev_attr_cmdq_en.attr,
NULL,
};
ATTRIBUTE_GROUPS(mmc_std);
static struct device_type mmc_type = {
.groups = mmc_std_groups,
};
/*
* Select the PowerClass for the current bus width
* If power class is defined for 4/8 bit bus in the
* extended CSD register, select it by executing the
* mmc_switch command.
*/
static int __mmc_select_powerclass(struct mmc_card *card,
unsigned int bus_width)
{
struct mmc_host *host = card->host;
struct mmc_ext_csd *ext_csd = &card->ext_csd;
unsigned int pwrclass_val = 0;
int err = 0;
switch (1 << host->ios.vdd) {
case MMC_VDD_165_195:
if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
pwrclass_val = ext_csd->raw_pwr_cl_26_195;
else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
ext_csd->raw_pwr_cl_52_195 :
ext_csd->raw_pwr_cl_ddr_52_195;
else if (host->ios.clock <= MMC_HS200_MAX_DTR)
pwrclass_val = ext_csd->raw_pwr_cl_200_195;
break;
case MMC_VDD_27_28:
case MMC_VDD_28_29:
case MMC_VDD_29_30:
case MMC_VDD_30_31:
case MMC_VDD_31_32:
case MMC_VDD_32_33:
case MMC_VDD_33_34:
case MMC_VDD_34_35:
case MMC_VDD_35_36:
if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
pwrclass_val = ext_csd->raw_pwr_cl_26_360;
else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
ext_csd->raw_pwr_cl_52_360 :
ext_csd->raw_pwr_cl_ddr_52_360;
else if (host->ios.clock <= MMC_HS200_MAX_DTR)
pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
ext_csd->raw_pwr_cl_ddr_200_360 :
ext_csd->raw_pwr_cl_200_360;
break;
default:
pr_warn("%s: Voltage range not supported for power class\n",
mmc_hostname(host));
return -EINVAL;
}
if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
EXT_CSD_PWR_CL_8BIT_SHIFT;
else
pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
EXT_CSD_PWR_CL_4BIT_SHIFT;
/* If the power class is different from the default value */
if (pwrclass_val > 0) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_CLASS,
pwrclass_val,
card->ext_csd.generic_cmd6_time);
}
return err;
}
static int mmc_select_powerclass(struct mmc_card *card)
{
struct mmc_host *host = card->host;
u32 bus_width, ext_csd_bits;
int err, ddr;
/* Power class selection is supported for versions >= 4.0 */
if (!mmc_can_ext_csd(card))
return 0;
bus_width = host->ios.bus_width;
/* Power class values are defined only for 4/8 bit bus */
if (bus_width == MMC_BUS_WIDTH_1)
return 0;
ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
if (ddr)
ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
else
ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
err = __mmc_select_powerclass(card, ext_csd_bits);
if (err)
pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
mmc_hostname(host), 1 << bus_width, ddr);
return err;
}
/*
* Set the bus speed for the selected speed mode.
*/
static void mmc_set_bus_speed(struct mmc_card *card)
{
unsigned int max_dtr = (unsigned int)-1;
if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
max_dtr > card->ext_csd.hs200_max_dtr)
max_dtr = card->ext_csd.hs200_max_dtr;
else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
max_dtr = card->ext_csd.hs_max_dtr;
else if (max_dtr > card->csd.max_dtr)
max_dtr = card->csd.max_dtr;
mmc_set_clock(card->host, max_dtr);
}
/*
* Select the bus width amoung 4-bit and 8-bit(SDR).
* If the bus width is changed successfully, return the selected width value.
* Zero is returned instead of error value if the wide width is not supported.
*/
static int mmc_select_bus_width(struct mmc_card *card)
{
static unsigned ext_csd_bits[] = {
EXT_CSD_BUS_WIDTH_8,
EXT_CSD_BUS_WIDTH_4,
};
static unsigned bus_widths[] = {
MMC_BUS_WIDTH_8,
MMC_BUS_WIDTH_4,
};
struct mmc_host *host = card->host;
unsigned idx, bus_width = 0;
int err = 0;
if (!mmc_can_ext_csd(card) ||
!(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
return 0;
idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
/*
* Unlike SD, MMC cards dont have a configuration register to notify
* supported bus width. So bus test command should be run to identify
* the supported bus width or compare the ext csd values of current
* bus width and ext csd values of 1 bit mode read earlier.
*/
for (; idx < ARRAY_SIZE(bus_widths); idx++) {
/*
* Host is capable of 8bit transfer, then switch
* the device to work in 8bit transfer mode. If the
* mmc switch command returns error then switch to
* 4bit transfer mode. On success set the corresponding
* bus width on the host.
*/
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits[idx],
card->ext_csd.generic_cmd6_time);
if (err)
continue;
bus_width = bus_widths[idx];
mmc_set_bus_width(host, bus_width);
/*
* If controller can't handle bus width test,
* compare ext_csd previously read in 1 bit mode
* against ext_csd at new bus width
*/
if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
err = mmc_compare_ext_csds(card, bus_width);
else
err = mmc_bus_test(card, bus_width);
if (!err) {
err = bus_width;
break;
} else {
pr_warn("%s: switch to bus width %d failed\n",
mmc_hostname(host), 1 << bus_width);
}
}
return err;
}
/*
* Switch to the high-speed mode
*/
static int mmc_select_hs(struct mmc_card *card)
{
int err;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
true, true, true);
if (err)
pr_warn("%s: switch to high-speed failed, err:%d\n",
mmc_hostname(card->host), err);
return err;
}
/*
* Activate wide bus and DDR if supported.
*/
static int mmc_select_hs_ddr(struct mmc_card *card)
{
struct mmc_host *host = card->host;
u32 bus_width, ext_csd_bits;
int err = 0;
if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
return 0;
bus_width = host->ios.bus_width;
if (bus_width == MMC_BUS_WIDTH_1)
return 0;
ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits,
card->ext_csd.generic_cmd6_time,
MMC_TIMING_MMC_DDR52,
true, true, true);
if (err) {
pr_err("%s: switch to bus width %d ddr failed\n",
mmc_hostname(host), 1 << bus_width);
return err;
}
/*
* eMMC cards can support 3.3V to 1.2V i/o (vccq)
* signaling.
*
* EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
*
* 1.8V vccq at 3.3V core voltage (vcc) is not required
* in the JEDEC spec for DDR.
*
* Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
* host controller can support this, like some of the SDHCI
* controller which connect to an eMMC device. Some of these
* host controller still needs to use 1.8v vccq for supporting
* DDR mode.
*
* So the sequence will be:
* if (host and device can both support 1.2v IO)
* use 1.2v IO;
* else if (host and device can both support 1.8v IO)
* use 1.8v IO;
* so if host and device can only support 3.3v IO, this is the
* last choice.
*
* WARNING: eMMC rules are NOT the same as SD DDR
*/
if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
if (!err)
return 0;
}
if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
host->caps & MMC_CAP_1_8V_DDR)
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
/* make sure vccq is 3.3v after switching disaster */
if (err)
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
return err;
}
static int mmc_select_hs400(struct mmc_card *card)
{
struct mmc_host *host = card->host;
unsigned int max_dtr;
int err = 0;
u8 val;
/*
* HS400 mode requires 8-bit bus width
*/
if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
host->ios.bus_width == MMC_BUS_WIDTH_8))
return 0;
/* Switch card to HS mode */
val = EXT_CSD_TIMING_HS;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, val,
card->ext_csd.generic_cmd6_time, 0,
true, false, true);
if (err) {
pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
mmc_hostname(host), err);
return err;
}
/* Set host controller to HS timing */
mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
/* Prepare host to downgrade to HS timing */
if (host->ops->hs400_downgrade)
host->ops->hs400_downgrade(host);
/* Reduce frequency to HS frequency */
max_dtr = card->ext_csd.hs_max_dtr;
mmc_set_clock(host, max_dtr);
err = mmc_switch_status(card);
if (err)
goto out_err;
if (host->ops->hs400_prepare_ddr)
host->ops->hs400_prepare_ddr(host);
/* Switch card to DDR */
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_DDR_BUS_WIDTH_8,
card->ext_csd.generic_cmd6_time);
if (err) {
pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
mmc_hostname(host), err);
return err;
}
/* Switch card to HS400 */
val = EXT_CSD_TIMING_HS400 |
card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, val,
card->ext_csd.generic_cmd6_time, 0,
true, false, true);
if (err) {
pr_err("%s: switch to hs400 failed, err:%d\n",
mmc_hostname(host), err);
return err;
}
/* Set host controller to HS400 timing and frequency */
mmc_set_timing(host, MMC_TIMING_MMC_HS400);
mmc_set_bus_speed(card);
if (host->ops->hs400_complete)
host->ops->hs400_complete(host);
err = mmc_switch_status(card);
if (err)
goto out_err;
return 0;
out_err:
pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
__func__, err);
return err;
}
int mmc_hs200_to_hs400(struct mmc_card *card)
{
return mmc_select_hs400(card);
}
int mmc_hs400_to_hs200(struct mmc_card *card)
{
struct mmc_host *host = card->host;
unsigned int max_dtr;
int err;
u8 val;
/* Reduce frequency to HS */
max_dtr = card->ext_csd.hs_max_dtr;
mmc_set_clock(host, max_dtr);
/* Switch HS400 to HS DDR */
val = EXT_CSD_TIMING_HS;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
val, card->ext_csd.generic_cmd6_time, 0,
true, false, true);
if (err)
goto out_err;
mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
err = mmc_switch_status(card);
if (err)
goto out_err;
/* Switch HS DDR to HS */
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
0, true, false, true);
if (err)
goto out_err;
mmc_set_timing(host, MMC_TIMING_MMC_HS);
if (host->ops->hs400_downgrade)
host->ops->hs400_downgrade(host);
err = mmc_switch_status(card);
if (err)
goto out_err;
/* Switch HS to HS200 */
val = EXT_CSD_TIMING_HS200 |
card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
val, card->ext_csd.generic_cmd6_time, 0,
true, false, true);
if (err)
goto out_err;
mmc_set_timing(host, MMC_TIMING_MMC_HS200);
/*
* For HS200, CRC errors are not a reliable way to know the switch
* failed. If there really is a problem, we would expect tuning will
* fail and the result ends up the same.
*/
err = __mmc_switch_status(card, false);
if (err)
goto out_err;
mmc_set_bus_speed(card);
/* Prepare tuning for HS400 mode. */
if (host->ops->prepare_hs400_tuning)
host->ops->prepare_hs400_tuning(host, &host->ios);
return 0;
out_err:
pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
__func__, err);
return err;
}
static void mmc_select_driver_type(struct mmc_card *card)
{
int card_drv_type, drive_strength, drv_type = 0;
int fixed_drv_type = card->host->fixed_drv_type;
card_drv_type = card->ext_csd.raw_driver_strength |
mmc_driver_type_mask(0);
if (fixed_drv_type >= 0)
drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
? fixed_drv_type : 0;
else
drive_strength = mmc_select_drive_strength(card,
card->ext_csd.hs200_max_dtr,
card_drv_type, &drv_type);
card->drive_strength = drive_strength;
if (drv_type)
mmc_set_driver_type(card->host, drv_type);
}
static int mmc_select_hs400es(struct mmc_card *card)
{
struct mmc_host *host = card->host;
int err = -EINVAL;
u8 val;
if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
err = -ENOTSUPP;
goto out_err;
}
if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
/* If fails try again during next card power cycle */
if (err)
goto out_err;
err = mmc_select_bus_width(card);
if (err != MMC_BUS_WIDTH_8) {
pr_err("%s: switch to 8bit bus width failed, err:%d\n",
mmc_hostname(host), err);
err = err < 0 ? err : -ENOTSUPP;
goto out_err;
}
/* Switch card to HS mode */
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
card->ext_csd.generic_cmd6_time, 0,
true, false, true);
if (err) {
pr_err("%s: switch to hs for hs400es failed, err:%d\n",
mmc_hostname(host), err);
goto out_err;
}
mmc_set_timing(host, MMC_TIMING_MMC_HS);
err = mmc_switch_status(card);
if (err)
goto out_err;
mmc_set_clock(host, card->ext_csd.hs_max_dtr);
/* Switch card to DDR with strobe bit */
val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
val,
card->ext_csd.generic_cmd6_time);
if (err) {
pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
mmc_hostname(host), err);
goto out_err;
}
mmc_select_driver_type(card);
/* Switch card to HS400 */
val = EXT_CSD_TIMING_HS400 |
card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, val,
card->ext_csd.generic_cmd6_time, 0,
true, false, true);
if (err) {
pr_err("%s: switch to hs400es failed, err:%d\n",
mmc_hostname(host), err);
goto out_err;
}
/* Set host controller to HS400 timing and frequency */
mmc_set_timing(host, MMC_TIMING_MMC_HS400);
/* Controller enable enhanced strobe function */
host->ios.enhanced_strobe = true;
if (host->ops->hs400_enhanced_strobe)
host->ops->hs400_enhanced_strobe(host, &host->ios);
err = mmc_switch_status(card);
if (err)
goto out_err;
return 0;
out_err:
pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
__func__, err);
return err;
}
/*
* For device supporting HS200 mode, the following sequence
* should be done before executing the tuning process.
* 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
* 2. switch to HS200 mode
* 3. set the clock to > 52Mhz and <=200MHz
*/
static int mmc_select_hs200(struct mmc_card *card)
{
struct mmc_host *host = card->host;
unsigned int old_timing, old_signal_voltage;
int err = -EINVAL;
u8 val;
old_signal_voltage = host->ios.signal_voltage;
if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
/* If fails try again during next card power cycle */
if (err)
return err;
mmc_select_driver_type(card);
/*
* Set the bus width(4 or 8) with host's support and
* switch to HS200 mode if bus width is set successfully.
*/
err = mmc_select_bus_width(card);
if (err > 0) {
val = EXT_CSD_TIMING_HS200 |
card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, val,
card->ext_csd.generic_cmd6_time, 0,
true, false, true);
if (err)
goto err;
old_timing = host->ios.timing;
mmc_set_timing(host, MMC_TIMING_MMC_HS200);
/*
* For HS200, CRC errors are not a reliable way to know the
* switch failed. If there really is a problem, we would expect
* tuning will fail and the result ends up the same.
*/
err = __mmc_switch_status(card, false);
/*
* mmc_select_timing() assumes timing has not changed if
* it is a switch error.
*/
if (err == -EBADMSG)
mmc_set_timing(host, old_timing);
}
err:
if (err) {
/* fall back to the old signal voltage, if fails report error */
if (mmc_set_signal_voltage(host, old_signal_voltage))
err = -EIO;
pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
__func__, err);
}
return err;
}
/*
* Activate High Speed, HS200 or HS400ES mode if supported.
*/
static int mmc_select_timing(struct mmc_card *card)
{
int err = 0;
if (!mmc_can_ext_csd(card))
goto bus_speed;
if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
err = mmc_select_hs400es(card);
else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
err = mmc_select_hs200(card);
else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
err = mmc_select_hs(card);
if (err && err != -EBADMSG)
return err;
bus_speed:
/*
* Set the bus speed to the selected bus timing.
* If timing is not selected, backward compatible is the default.
*/
mmc_set_bus_speed(card);
return 0;
}
/*
* Execute tuning sequence to seek the proper bus operating
* conditions for HS200 and HS400, which sends CMD21 to the device.
*/
static int mmc_hs200_tuning(struct mmc_card *card)
{
struct mmc_host *host = card->host;
/*
* Timing should be adjusted to the HS400 target
* operation frequency for tuning process
*/
if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
host->ios.bus_width == MMC_BUS_WIDTH_8)
if (host->ops->prepare_hs400_tuning)
host->ops->prepare_hs400_tuning(host, &host->ios);
return mmc_execute_tuning(card);
}
/*
* Handle the detection and initialisation of a card.
*
* In the case of a resume, "oldcard" will contain the card
* we're trying to reinitialise.
*/
static int mmc_init_card(struct mmc_host *host, u32 ocr,
struct mmc_card *oldcard)
{
struct mmc_card *card;
int err;
u32 cid[4];
u32 rocr;
WARN_ON(!host->claimed);
/* Set correct bus mode for MMC before attempting init */
if (!mmc_host_is_spi(host))
mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
/*
* Since we're changing the OCR value, we seem to
* need to tell some cards to go back to the idle
* state. We wait 1ms to give cards time to
* respond.
* mmc_go_idle is needed for eMMC that are asleep
*/
mmc_go_idle(host);
/* The extra bit indicates that we support high capacity */
err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
if (err)
goto err;
/*
* For SPI, enable CRC as appropriate.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_set_crc(host, use_spi_crc);
if (err)
goto err;
}
/*
* Fetch CID from card.
*/
err = mmc_send_cid(host, cid);
if (err)
goto err;
if (oldcard) {
if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
pr_debug("%s: Perhaps the card was replaced\n",
mmc_hostname(host));
err = -ENOENT;
goto err;
}
card = oldcard;
} else {
/*
* Allocate card structure.
*/
card = mmc_alloc_card(host, &mmc_type);
if (IS_ERR(card)) {
err = PTR_ERR(card);
goto err;
}
card->ocr = ocr;
card->type = MMC_TYPE_MMC;
card->rca = 1;
memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
}
/*
* Call the optional HC's init_card function to handle quirks.
*/
if (host->ops->init_card)
host->ops->init_card(host, card);
/*
* For native busses: set card RCA and quit open drain mode.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_set_relative_addr(card);
if (err)
goto free_card;
mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
}
if (!oldcard) {
/*
* Fetch CSD from card.
*/
err = mmc_send_csd(card, card->raw_csd);
if (err)
goto free_card;
err = mmc_decode_csd(card);
if (err)
goto free_card;
err = mmc_decode_cid(card);
if (err)
goto free_card;
}
/*
* handling only for cards supporting DSR and hosts requesting
* DSR configuration
*/
if (card->csd.dsr_imp && host->dsr_req)
mmc_set_dsr(host);
/*
* Select card, as all following commands rely on that.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_select_card(card);
if (err)
goto free_card;
}
if (!oldcard) {
/* Read extended CSD. */
err = mmc_read_ext_csd(card);
if (err)
goto free_card;
/*
* If doing byte addressing, check if required to do sector
* addressing. Handle the case of <2GB cards needing sector
* addressing. See section 8.1 JEDEC Standard JED84-A441;
* ocr register has bit 30 set for sector addressing.
*/
if (rocr & BIT(30))
mmc_card_set_blockaddr(card);
/* Erase size depends on CSD and Extended CSD */
mmc_set_erase_size(card);
}
/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
if (card->ext_csd.rev >= 3) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto free_card;
if (err) {
err = 0;
/*
* Just disable enhanced area off & sz
* will try to enable ERASE_GROUP_DEF
* during next time reinit
*/
card->ext_csd.enhanced_area_offset = -EINVAL;
card->ext_csd.enhanced_area_size = -EINVAL;
} else {
card->ext_csd.erase_group_def = 1;
/*
* enable ERASE_GRP_DEF successfully.
* This will affect the erase size, so
* here need to reset erase size
*/
mmc_set_erase_size(card);
}
}
/*
* Ensure eMMC user default partition is enabled
*/
if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
card->ext_csd.part_config,
card->ext_csd.part_time);
if (err && err != -EBADMSG)
goto free_card;
}
/*
* Enable power_off_notification byte in the ext_csd register
*/
if (card->ext_csd.rev >= 6) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_OFF_NOTIFICATION,
EXT_CSD_POWER_ON,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto free_card;
/*
* The err can be -EBADMSG or 0,
* so check for success and update the flag
*/
if (!err)
card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
}
/* set erase_arg */
if (mmc_can_discard(card))
card->erase_arg = MMC_DISCARD_ARG;
else if (mmc_can_trim(card))
card->erase_arg = MMC_TRIM_ARG;
else
card->erase_arg = MMC_ERASE_ARG;
/*
* Select timing interface
*/
err = mmc_select_timing(card);
if (err)
goto free_card;
if (mmc_card_hs200(card)) {
err = mmc_hs200_tuning(card);
if (err)
goto free_card;
err = mmc_select_hs400(card);
if (err)
goto free_card;
} else if (!mmc_card_hs400es(card)) {
/* Select the desired bus width optionally */
err = mmc_select_bus_width(card);
if (err > 0 && mmc_card_hs(card)) {
err = mmc_select_hs_ddr(card);
if (err)
goto free_card;
}
}
/*
* Choose the power class with selected bus interface
*/
mmc_select_powerclass(card);
/*
* Enable HPI feature (if supported)
*/
if (card->ext_csd.hpi) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HPI_MGMT, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto free_card;
if (err) {
pr_warn("%s: Enabling HPI failed\n",
mmc_hostname(card->host));
card->ext_csd.hpi_en = 0;
err = 0;
} else {
card->ext_csd.hpi_en = 1;
}
}
/*
* If cache size is higher than 0, this indicates the existence of cache
* and it can be turned on. Note that some eMMCs from Micron has been
* reported to need ~800 ms timeout, while enabling the cache after
* sudden power failure tests. Let's extend the timeout to a minimum of
* DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
*/
if (card->ext_csd.cache_size > 0) {
unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_CACHE_CTRL, 1, timeout_ms);
if (err && err != -EBADMSG)
goto free_card;
/*
* Only if no error, cache is turned on successfully.
*/
if (err) {
pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
mmc_hostname(card->host), err);
card->ext_csd.cache_ctrl = 0;
err = 0;
} else {
card->ext_csd.cache_ctrl = 1;
}
}
/*
* Enable Command Queue if supported. Note that Packed Commands cannot
* be used with Command Queue.
*/
card->ext_csd.cmdq_en = false;
if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
err = mmc_cmdq_enable(card);
if (err && err != -EBADMSG)
goto free_card;
if (err) {
pr_warn("%s: Enabling CMDQ failed\n",
mmc_hostname(card->host));
card->ext_csd.cmdq_support = false;
card->ext_csd.cmdq_depth = 0;
err = 0;
}
}
/*
* In some cases (e.g. RPMB or mmc_test), the Command Queue must be
* disabled for a time, so a flag is needed to indicate to re-enable the
* Command Queue.
*/
card->reenable_cmdq = card->ext_csd.cmdq_en;
if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
err = host->cqe_ops->cqe_enable(host, card);
if (err) {
pr_err("%s: Failed to enable CQE, error %d\n",
mmc_hostname(host), err);
} else {
host->cqe_enabled = true;
pr_info("%s: Command Queue Engine enabled\n",
mmc_hostname(host));
}
}
if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
pr_err("%s: Host failed to negotiate down from 3.3V\n",
mmc_hostname(host));
err = -EINVAL;
goto free_card;
}
if (!oldcard)
host->card = card;
return 0;
free_card:
if (!oldcard)
mmc_remove_card(card);
err:
return err;
}
static int mmc_can_sleep(struct mmc_card *card)
{
return (card && card->ext_csd.rev >= 3);
}
static int mmc_sleep(struct mmc_host *host)
{
struct mmc_command cmd = {};
struct mmc_card *card = host->card;
unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
int err;
/* Re-tuning can't be done once the card is deselected */
mmc_retune_hold(host);
err = mmc_deselect_cards(host);
if (err)
goto out_release;
cmd.opcode = MMC_SLEEP_AWAKE;
cmd.arg = card->rca << 16;
cmd.arg |= 1 << 15;
/*
* If the max_busy_timeout of the host is specified, validate it against
* the sleep cmd timeout. A failure means we need to prevent the host
* from doing hw busy detection, which is done by converting to a R1
* response instead of a R1B.
*/
if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
} else {
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
cmd.busy_timeout = timeout_ms;
}
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err)
goto out_release;
/*
* If the host does not wait while the card signals busy, then we will
* will have to wait the sleep/awake timeout. Note, we cannot use the
* SEND_STATUS command to poll the status because that command (and most
* others) is invalid while the card sleeps.
*/
if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
mmc_delay(timeout_ms);
out_release:
mmc_retune_release(host);
return err;
}
static int mmc_can_poweroff_notify(const struct mmc_card *card)
{
return card &&
mmc_card_mmc(card) &&
(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
}
static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
{
unsigned int timeout = card->ext_csd.generic_cmd6_time;
int err;
/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
if (notify_type == EXT_CSD_POWER_OFF_LONG)
timeout = card->ext_csd.power_off_longtime;
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_OFF_NOTIFICATION,
notify_type, timeout, 0, true, false, false);
if (err)
pr_err("%s: Power Off Notification timed out, %u\n",
mmc_hostname(card->host), timeout);
/* Disable the power off notification after the switch operation. */
card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
return err;
}
/*
* Host is being removed. Free up the current card.
*/
static void mmc_remove(struct mmc_host *host)
{
mmc_remove_card(host->card);
host->card = NULL;
}
/*
* Card detection - card is alive.
*/
static int mmc_alive(struct mmc_host *host)
{
return mmc_send_status(host->card, NULL);
}
/*
* Card detection callback from host.
*/
static void mmc_detect(struct mmc_host *host)
{
int err;
mmc_get_card(host->card, NULL);
/*
* Just check if our card has been removed.
*/
err = _mmc_detect_card_removed(host);
mmc_put_card(host->card, NULL);
if (err) {
mmc_remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
}
}
static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
{
int err = 0;
unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
EXT_CSD_POWER_OFF_LONG;
mmc_claim_host(host);
if (mmc_card_suspended(host->card))
goto out;
err = mmc_flush_cache(host->card);
if (err)
goto out;
if (mmc_can_poweroff_notify(host->card) &&
((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
err = mmc_poweroff_notify(host->card, notify_type);
else if (mmc_can_sleep(host->card))
err = mmc_sleep(host);
else if (!mmc_host_is_spi(host))
err = mmc_deselect_cards(host);
if (!err) {
mmc_power_off(host);
mmc_card_set_suspended(host->card);
}
out:
mmc_release_host(host);
return err;
}
/*
* Suspend callback
*/
static int mmc_suspend(struct mmc_host *host)
{
int err;
err = _mmc_suspend(host, true);
if (!err) {
pm_runtime_disable(&host->card->dev);
pm_runtime_set_suspended(&host->card->dev);
}
return err;
}
/*
* This function tries to determine if the same card is still present
* and, if so, restore all state to it.
*/
static int _mmc_resume(struct mmc_host *host)
{
int err = 0;
mmc_claim_host(host);
if (!mmc_card_suspended(host->card))
goto out;
mmc_power_up(host, host->card->ocr);
err = mmc_init_card(host, host->card->ocr, host->card);
mmc_card_clr_suspended(host->card);
out:
mmc_release_host(host);
return err;
}
/*
* Shutdown callback
*/
static int mmc_shutdown(struct mmc_host *host)
{
int err = 0;
/*
* In a specific case for poweroff notify, we need to resume the card
* before we can shutdown it properly.
*/
if (mmc_can_poweroff_notify(host->card) &&
!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
err = _mmc_resume(host);
if (!err)
err = _mmc_suspend(host, false);
return err;
}
/*
* Callback for resume.
*/
static int mmc_resume(struct mmc_host *host)
{
pm_runtime_enable(&host->card->dev);
return 0;
}
/*
* Callback for runtime_suspend.
*/
static int mmc_runtime_suspend(struct mmc_host *host)
{
int err;
if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
return 0;
err = _mmc_suspend(host, true);
if (err)
pr_err("%s: error %d doing aggressive suspend\n",
mmc_hostname(host), err);
return err;
}
/*
* Callback for runtime_resume.
*/
static int mmc_runtime_resume(struct mmc_host *host)
{
int err;
err = _mmc_resume(host);
if (err && err != -ENOMEDIUM)
pr_err("%s: error %d doing runtime resume\n",
mmc_hostname(host), err);
return 0;
}
static int mmc_can_reset(struct mmc_card *card)
{
u8 rst_n_function;
rst_n_function = card->ext_csd.rst_n_function;
if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
return 0;
return 1;
}
static int _mmc_hw_reset(struct mmc_host *host)
{
struct mmc_card *card = host->card;
/*
* In the case of recovery, we can't expect flushing the cache to work
* always, but we have a go and ignore errors.
*/
mmc_flush_cache(host->card);
if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
mmc_can_reset(card)) {
/* If the card accept RST_n signal, send it. */
mmc_set_clock(host, host->f_init);
host->ops->hw_reset(host);
/* Set initial state and call mmc_set_ios */
mmc_set_initial_state(host);
} else {
/* Do a brute force power cycle */
mmc_power_cycle(host, card->ocr);
mmc_pwrseq_reset(host);
}
return mmc_init_card(host, card->ocr, card);
}
static const struct mmc_bus_ops mmc_ops = {
.remove = mmc_remove,
.detect = mmc_detect,
.suspend = mmc_suspend,
.resume = mmc_resume,
.runtime_suspend = mmc_runtime_suspend,
.runtime_resume = mmc_runtime_resume,
.alive = mmc_alive,
.shutdown = mmc_shutdown,
.hw_reset = _mmc_hw_reset,
};
/*
* Starting point for MMC card init.
*/
int mmc_attach_mmc(struct mmc_host *host)
{
int err;
u32 ocr, rocr;
WARN_ON(!host->claimed);
/* Set correct bus mode for MMC before attempting attach */
if (!mmc_host_is_spi(host))
mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
err = mmc_send_op_cond(host, 0, &ocr);
if (err)
return err;
mmc_attach_bus(host, &mmc_ops);
if (host->ocr_avail_mmc)
host->ocr_avail = host->ocr_avail_mmc;
/*
* We need to get OCR a different way for SPI.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_read_ocr(host, 1, &ocr);
if (err)
goto err;
}
rocr = mmc_select_voltage(host, ocr);
/*
* Can we support the voltage of the card?
*/
if (!rocr) {
err = -EINVAL;
goto err;
}
/*
* Detect and init the card.
*/
err = mmc_init_card(host, rocr, NULL);
if (err)
goto err;
mmc_release_host(host);
err = mmc_add_card(host->card);
if (err)
goto remove_card;
mmc_claim_host(host);
return 0;
remove_card:
mmc_remove_card(host->card);
mmc_claim_host(host);
host->card = NULL;
err:
mmc_detach_bus(host);
pr_err("%s: error %d whilst initialising MMC card\n",
mmc_hostname(host), err);
return err;
}