forked from Minki/linux
32867fcc0e
Commit 55cd48c821
("net: fec: stop the "rcv is not +last, " error
messages") introduces a write to a register that does not exist in
Coldfire.
Move the FEC_FTRL register access inside the FEC_QUIRK_HAS_RACC 'if' block,
so that we guarantee it will not be used on Coldfire CPUs.
Reported-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
3617 lines
92 KiB
C
3617 lines
92 KiB
C
/*
|
|
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
|
|
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
|
|
*
|
|
* Right now, I am very wasteful with the buffers. I allocate memory
|
|
* pages and then divide them into 2K frame buffers. This way I know I
|
|
* have buffers large enough to hold one frame within one buffer descriptor.
|
|
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
|
|
* will be much more memory efficient and will easily handle lots of
|
|
* small packets.
|
|
*
|
|
* Much better multiple PHY support by Magnus Damm.
|
|
* Copyright (c) 2000 Ericsson Radio Systems AB.
|
|
*
|
|
* Support for FEC controller of ColdFire processors.
|
|
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
|
|
*
|
|
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
|
|
* Copyright (c) 2004-2006 Macq Electronique SA.
|
|
*
|
|
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ip.h>
|
|
#include <net/ip.h>
|
|
#include <net/tso.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/icmp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/mdio.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/fec.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/of_mdio.h>
|
|
#include <linux/of_net.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/prefetch.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include "fec.h"
|
|
|
|
static void set_multicast_list(struct net_device *ndev);
|
|
static void fec_enet_itr_coal_init(struct net_device *ndev);
|
|
|
|
#define DRIVER_NAME "fec"
|
|
|
|
#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
|
|
|
|
/* Pause frame feild and FIFO threshold */
|
|
#define FEC_ENET_FCE (1 << 5)
|
|
#define FEC_ENET_RSEM_V 0x84
|
|
#define FEC_ENET_RSFL_V 16
|
|
#define FEC_ENET_RAEM_V 0x8
|
|
#define FEC_ENET_RAFL_V 0x8
|
|
#define FEC_ENET_OPD_V 0xFFF0
|
|
#define FEC_MDIO_PM_TIMEOUT 100 /* ms */
|
|
|
|
static struct platform_device_id fec_devtype[] = {
|
|
{
|
|
/* keep it for coldfire */
|
|
.name = DRIVER_NAME,
|
|
.driver_data = 0,
|
|
}, {
|
|
.name = "imx25-fec",
|
|
.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
|
|
}, {
|
|
.name = "imx27-fec",
|
|
.driver_data = FEC_QUIRK_HAS_RACC,
|
|
}, {
|
|
.name = "imx28-fec",
|
|
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
|
|
FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
|
|
}, {
|
|
.name = "imx6q-fec",
|
|
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
|
|
FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
|
|
FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
|
|
FEC_QUIRK_HAS_RACC,
|
|
}, {
|
|
.name = "mvf600-fec",
|
|
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
|
|
}, {
|
|
.name = "imx6sx-fec",
|
|
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
|
|
FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
|
|
FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
|
|
FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
|
|
FEC_QUIRK_HAS_RACC,
|
|
}, {
|
|
/* sentinel */
|
|
}
|
|
};
|
|
MODULE_DEVICE_TABLE(platform, fec_devtype);
|
|
|
|
enum imx_fec_type {
|
|
IMX25_FEC = 1, /* runs on i.mx25/50/53 */
|
|
IMX27_FEC, /* runs on i.mx27/35/51 */
|
|
IMX28_FEC,
|
|
IMX6Q_FEC,
|
|
MVF600_FEC,
|
|
IMX6SX_FEC,
|
|
};
|
|
|
|
static const struct of_device_id fec_dt_ids[] = {
|
|
{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
|
|
{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
|
|
{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
|
|
{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
|
|
{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
|
|
{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fec_dt_ids);
|
|
|
|
static unsigned char macaddr[ETH_ALEN];
|
|
module_param_array(macaddr, byte, NULL, 0);
|
|
MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
|
|
|
|
#if defined(CONFIG_M5272)
|
|
/*
|
|
* Some hardware gets it MAC address out of local flash memory.
|
|
* if this is non-zero then assume it is the address to get MAC from.
|
|
*/
|
|
#if defined(CONFIG_NETtel)
|
|
#define FEC_FLASHMAC 0xf0006006
|
|
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
|
|
#define FEC_FLASHMAC 0xf0006000
|
|
#elif defined(CONFIG_CANCam)
|
|
#define FEC_FLASHMAC 0xf0020000
|
|
#elif defined (CONFIG_M5272C3)
|
|
#define FEC_FLASHMAC (0xffe04000 + 4)
|
|
#elif defined(CONFIG_MOD5272)
|
|
#define FEC_FLASHMAC 0xffc0406b
|
|
#else
|
|
#define FEC_FLASHMAC 0
|
|
#endif
|
|
#endif /* CONFIG_M5272 */
|
|
|
|
/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
|
|
*/
|
|
#define PKT_MAXBUF_SIZE 1522
|
|
#define PKT_MINBUF_SIZE 64
|
|
#define PKT_MAXBLR_SIZE 1536
|
|
|
|
/* FEC receive acceleration */
|
|
#define FEC_RACC_IPDIS (1 << 1)
|
|
#define FEC_RACC_PRODIS (1 << 2)
|
|
#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
|
|
|
|
/*
|
|
* The 5270/5271/5280/5282/532x RX control register also contains maximum frame
|
|
* size bits. Other FEC hardware does not, so we need to take that into
|
|
* account when setting it.
|
|
*/
|
|
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
|
|
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
|
|
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
|
|
#else
|
|
#define OPT_FRAME_SIZE 0
|
|
#endif
|
|
|
|
/* FEC MII MMFR bits definition */
|
|
#define FEC_MMFR_ST (1 << 30)
|
|
#define FEC_MMFR_OP_READ (2 << 28)
|
|
#define FEC_MMFR_OP_WRITE (1 << 28)
|
|
#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
|
|
#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
|
|
#define FEC_MMFR_TA (2 << 16)
|
|
#define FEC_MMFR_DATA(v) (v & 0xffff)
|
|
/* FEC ECR bits definition */
|
|
#define FEC_ECR_MAGICEN (1 << 2)
|
|
#define FEC_ECR_SLEEP (1 << 3)
|
|
|
|
#define FEC_MII_TIMEOUT 30000 /* us */
|
|
|
|
/* Transmitter timeout */
|
|
#define TX_TIMEOUT (2 * HZ)
|
|
|
|
#define FEC_PAUSE_FLAG_AUTONEG 0x1
|
|
#define FEC_PAUSE_FLAG_ENABLE 0x2
|
|
#define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
|
|
#define FEC_WOL_FLAG_ENABLE (0x1 << 1)
|
|
#define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
|
|
|
|
#define COPYBREAK_DEFAULT 256
|
|
|
|
#define TSO_HEADER_SIZE 128
|
|
/* Max number of allowed TCP segments for software TSO */
|
|
#define FEC_MAX_TSO_SEGS 100
|
|
#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
|
|
|
|
#define IS_TSO_HEADER(txq, addr) \
|
|
((addr >= txq->tso_hdrs_dma) && \
|
|
(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
|
|
|
|
static int mii_cnt;
|
|
|
|
static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
|
|
struct bufdesc_prop *bd)
|
|
{
|
|
return (bdp >= bd->last) ? bd->base
|
|
: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
|
|
}
|
|
|
|
static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
|
|
struct bufdesc_prop *bd)
|
|
{
|
|
return (bdp <= bd->base) ? bd->last
|
|
: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
|
|
}
|
|
|
|
static int fec_enet_get_bd_index(struct bufdesc *bdp,
|
|
struct bufdesc_prop *bd)
|
|
{
|
|
return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
|
|
}
|
|
|
|
static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
|
|
{
|
|
int entries;
|
|
|
|
entries = (((const char *)txq->dirty_tx -
|
|
(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
|
|
|
|
return entries >= 0 ? entries : entries + txq->bd.ring_size;
|
|
}
|
|
|
|
static void swap_buffer(void *bufaddr, int len)
|
|
{
|
|
int i;
|
|
unsigned int *buf = bufaddr;
|
|
|
|
for (i = 0; i < len; i += 4, buf++)
|
|
swab32s(buf);
|
|
}
|
|
|
|
static void swap_buffer2(void *dst_buf, void *src_buf, int len)
|
|
{
|
|
int i;
|
|
unsigned int *src = src_buf;
|
|
unsigned int *dst = dst_buf;
|
|
|
|
for (i = 0; i < len; i += 4, src++, dst++)
|
|
*dst = swab32p(src);
|
|
}
|
|
|
|
static void fec_dump(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct bufdesc *bdp;
|
|
struct fec_enet_priv_tx_q *txq;
|
|
int index = 0;
|
|
|
|
netdev_info(ndev, "TX ring dump\n");
|
|
pr_info("Nr SC addr len SKB\n");
|
|
|
|
txq = fep->tx_queue[0];
|
|
bdp = txq->bd.base;
|
|
|
|
do {
|
|
pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
|
|
index,
|
|
bdp == txq->bd.cur ? 'S' : ' ',
|
|
bdp == txq->dirty_tx ? 'H' : ' ',
|
|
fec16_to_cpu(bdp->cbd_sc),
|
|
fec32_to_cpu(bdp->cbd_bufaddr),
|
|
fec16_to_cpu(bdp->cbd_datlen),
|
|
txq->tx_skbuff[index]);
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
index++;
|
|
} while (bdp != txq->bd.base);
|
|
}
|
|
|
|
static inline bool is_ipv4_pkt(struct sk_buff *skb)
|
|
{
|
|
return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
|
|
}
|
|
|
|
static int
|
|
fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
/* Only run for packets requiring a checksum. */
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
if (unlikely(skb_cow_head(skb, 0)))
|
|
return -1;
|
|
|
|
if (is_ipv4_pkt(skb))
|
|
ip_hdr(skb)->check = 0;
|
|
*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct bufdesc *
|
|
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
|
|
struct sk_buff *skb,
|
|
struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct bufdesc *bdp = txq->bd.cur;
|
|
struct bufdesc_ex *ebdp;
|
|
int nr_frags = skb_shinfo(skb)->nr_frags;
|
|
int frag, frag_len;
|
|
unsigned short status;
|
|
unsigned int estatus = 0;
|
|
skb_frag_t *this_frag;
|
|
unsigned int index;
|
|
void *bufaddr;
|
|
dma_addr_t addr;
|
|
int i;
|
|
|
|
for (frag = 0; frag < nr_frags; frag++) {
|
|
this_frag = &skb_shinfo(skb)->frags[frag];
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
ebdp = (struct bufdesc_ex *)bdp;
|
|
|
|
status = fec16_to_cpu(bdp->cbd_sc);
|
|
status &= ~BD_ENET_TX_STATS;
|
|
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
|
|
frag_len = skb_shinfo(skb)->frags[frag].size;
|
|
|
|
/* Handle the last BD specially */
|
|
if (frag == nr_frags - 1) {
|
|
status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
|
|
if (fep->bufdesc_ex) {
|
|
estatus |= BD_ENET_TX_INT;
|
|
if (unlikely(skb_shinfo(skb)->tx_flags &
|
|
SKBTX_HW_TSTAMP && fep->hwts_tx_en))
|
|
estatus |= BD_ENET_TX_TS;
|
|
}
|
|
}
|
|
|
|
if (fep->bufdesc_ex) {
|
|
if (fep->quirks & FEC_QUIRK_HAS_AVB)
|
|
estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
|
|
ebdp->cbd_bdu = 0;
|
|
ebdp->cbd_esc = cpu_to_fec32(estatus);
|
|
}
|
|
|
|
bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
|
|
|
|
index = fec_enet_get_bd_index(bdp, &txq->bd);
|
|
if (((unsigned long) bufaddr) & fep->tx_align ||
|
|
fep->quirks & FEC_QUIRK_SWAP_FRAME) {
|
|
memcpy(txq->tx_bounce[index], bufaddr, frag_len);
|
|
bufaddr = txq->tx_bounce[index];
|
|
|
|
if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
|
|
swap_buffer(bufaddr, frag_len);
|
|
}
|
|
|
|
addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&fep->pdev->dev, addr)) {
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "Tx DMA memory map failed\n");
|
|
goto dma_mapping_error;
|
|
}
|
|
|
|
bdp->cbd_bufaddr = cpu_to_fec32(addr);
|
|
bdp->cbd_datlen = cpu_to_fec16(frag_len);
|
|
/* Make sure the updates to rest of the descriptor are
|
|
* performed before transferring ownership.
|
|
*/
|
|
wmb();
|
|
bdp->cbd_sc = cpu_to_fec16(status);
|
|
}
|
|
|
|
return bdp;
|
|
dma_mapping_error:
|
|
bdp = txq->bd.cur;
|
|
for (i = 0; i < frag; i++) {
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
|
|
fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
|
|
}
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
|
|
struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int nr_frags = skb_shinfo(skb)->nr_frags;
|
|
struct bufdesc *bdp, *last_bdp;
|
|
void *bufaddr;
|
|
dma_addr_t addr;
|
|
unsigned short status;
|
|
unsigned short buflen;
|
|
unsigned int estatus = 0;
|
|
unsigned int index;
|
|
int entries_free;
|
|
|
|
entries_free = fec_enet_get_free_txdesc_num(txq);
|
|
if (entries_free < MAX_SKB_FRAGS + 1) {
|
|
dev_kfree_skb_any(skb);
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "NOT enough BD for SG!\n");
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Protocol checksum off-load for TCP and UDP. */
|
|
if (fec_enet_clear_csum(skb, ndev)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Fill in a Tx ring entry */
|
|
bdp = txq->bd.cur;
|
|
last_bdp = bdp;
|
|
status = fec16_to_cpu(bdp->cbd_sc);
|
|
status &= ~BD_ENET_TX_STATS;
|
|
|
|
/* Set buffer length and buffer pointer */
|
|
bufaddr = skb->data;
|
|
buflen = skb_headlen(skb);
|
|
|
|
index = fec_enet_get_bd_index(bdp, &txq->bd);
|
|
if (((unsigned long) bufaddr) & fep->tx_align ||
|
|
fep->quirks & FEC_QUIRK_SWAP_FRAME) {
|
|
memcpy(txq->tx_bounce[index], skb->data, buflen);
|
|
bufaddr = txq->tx_bounce[index];
|
|
|
|
if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
|
|
swap_buffer(bufaddr, buflen);
|
|
}
|
|
|
|
/* Push the data cache so the CPM does not get stale memory data. */
|
|
addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&fep->pdev->dev, addr)) {
|
|
dev_kfree_skb_any(skb);
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "Tx DMA memory map failed\n");
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
if (nr_frags) {
|
|
last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
|
|
if (IS_ERR(last_bdp)) {
|
|
dma_unmap_single(&fep->pdev->dev, addr,
|
|
buflen, DMA_TO_DEVICE);
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
} else {
|
|
status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
|
|
if (fep->bufdesc_ex) {
|
|
estatus = BD_ENET_TX_INT;
|
|
if (unlikely(skb_shinfo(skb)->tx_flags &
|
|
SKBTX_HW_TSTAMP && fep->hwts_tx_en))
|
|
estatus |= BD_ENET_TX_TS;
|
|
}
|
|
}
|
|
bdp->cbd_bufaddr = cpu_to_fec32(addr);
|
|
bdp->cbd_datlen = cpu_to_fec16(buflen);
|
|
|
|
if (fep->bufdesc_ex) {
|
|
|
|
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
|
|
|
|
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
|
|
fep->hwts_tx_en))
|
|
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
|
|
|
|
if (fep->quirks & FEC_QUIRK_HAS_AVB)
|
|
estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
|
|
|
|
ebdp->cbd_bdu = 0;
|
|
ebdp->cbd_esc = cpu_to_fec32(estatus);
|
|
}
|
|
|
|
index = fec_enet_get_bd_index(last_bdp, &txq->bd);
|
|
/* Save skb pointer */
|
|
txq->tx_skbuff[index] = skb;
|
|
|
|
/* Make sure the updates to rest of the descriptor are performed before
|
|
* transferring ownership.
|
|
*/
|
|
wmb();
|
|
|
|
/* Send it on its way. Tell FEC it's ready, interrupt when done,
|
|
* it's the last BD of the frame, and to put the CRC on the end.
|
|
*/
|
|
status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
|
|
bdp->cbd_sc = cpu_to_fec16(status);
|
|
|
|
/* If this was the last BD in the ring, start at the beginning again. */
|
|
bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
/* Make sure the update to bdp and tx_skbuff are performed before
|
|
* txq->bd.cur.
|
|
*/
|
|
wmb();
|
|
txq->bd.cur = bdp;
|
|
|
|
/* Trigger transmission start */
|
|
writel(0, txq->bd.reg_desc_active);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
|
|
struct net_device *ndev,
|
|
struct bufdesc *bdp, int index, char *data,
|
|
int size, bool last_tcp, bool is_last)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
|
|
unsigned short status;
|
|
unsigned int estatus = 0;
|
|
dma_addr_t addr;
|
|
|
|
status = fec16_to_cpu(bdp->cbd_sc);
|
|
status &= ~BD_ENET_TX_STATS;
|
|
|
|
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
|
|
|
|
if (((unsigned long) data) & fep->tx_align ||
|
|
fep->quirks & FEC_QUIRK_SWAP_FRAME) {
|
|
memcpy(txq->tx_bounce[index], data, size);
|
|
data = txq->tx_bounce[index];
|
|
|
|
if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
|
|
swap_buffer(data, size);
|
|
}
|
|
|
|
addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&fep->pdev->dev, addr)) {
|
|
dev_kfree_skb_any(skb);
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "Tx DMA memory map failed\n");
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
bdp->cbd_datlen = cpu_to_fec16(size);
|
|
bdp->cbd_bufaddr = cpu_to_fec32(addr);
|
|
|
|
if (fep->bufdesc_ex) {
|
|
if (fep->quirks & FEC_QUIRK_HAS_AVB)
|
|
estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
|
|
ebdp->cbd_bdu = 0;
|
|
ebdp->cbd_esc = cpu_to_fec32(estatus);
|
|
}
|
|
|
|
/* Handle the last BD specially */
|
|
if (last_tcp)
|
|
status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
if (is_last) {
|
|
status |= BD_ENET_TX_INTR;
|
|
if (fep->bufdesc_ex)
|
|
ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
|
|
}
|
|
|
|
bdp->cbd_sc = cpu_to_fec16(status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
|
|
struct sk_buff *skb, struct net_device *ndev,
|
|
struct bufdesc *bdp, int index)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
|
|
void *bufaddr;
|
|
unsigned long dmabuf;
|
|
unsigned short status;
|
|
unsigned int estatus = 0;
|
|
|
|
status = fec16_to_cpu(bdp->cbd_sc);
|
|
status &= ~BD_ENET_TX_STATS;
|
|
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
|
|
|
|
bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
|
|
dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
|
|
if (((unsigned long)bufaddr) & fep->tx_align ||
|
|
fep->quirks & FEC_QUIRK_SWAP_FRAME) {
|
|
memcpy(txq->tx_bounce[index], skb->data, hdr_len);
|
|
bufaddr = txq->tx_bounce[index];
|
|
|
|
if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
|
|
swap_buffer(bufaddr, hdr_len);
|
|
|
|
dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
|
|
hdr_len, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
|
|
dev_kfree_skb_any(skb);
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "Tx DMA memory map failed\n");
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
}
|
|
|
|
bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
|
|
bdp->cbd_datlen = cpu_to_fec16(hdr_len);
|
|
|
|
if (fep->bufdesc_ex) {
|
|
if (fep->quirks & FEC_QUIRK_HAS_AVB)
|
|
estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
|
|
ebdp->cbd_bdu = 0;
|
|
ebdp->cbd_esc = cpu_to_fec32(estatus);
|
|
}
|
|
|
|
bdp->cbd_sc = cpu_to_fec16(status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
|
|
struct sk_buff *skb,
|
|
struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
int total_len, data_left;
|
|
struct bufdesc *bdp = txq->bd.cur;
|
|
struct tso_t tso;
|
|
unsigned int index = 0;
|
|
int ret;
|
|
|
|
if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
|
|
dev_kfree_skb_any(skb);
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "NOT enough BD for TSO!\n");
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Protocol checksum off-load for TCP and UDP. */
|
|
if (fec_enet_clear_csum(skb, ndev)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Initialize the TSO handler, and prepare the first payload */
|
|
tso_start(skb, &tso);
|
|
|
|
total_len = skb->len - hdr_len;
|
|
while (total_len > 0) {
|
|
char *hdr;
|
|
|
|
index = fec_enet_get_bd_index(bdp, &txq->bd);
|
|
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
|
|
total_len -= data_left;
|
|
|
|
/* prepare packet headers: MAC + IP + TCP */
|
|
hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
|
|
tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
|
|
ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
|
|
if (ret)
|
|
goto err_release;
|
|
|
|
while (data_left > 0) {
|
|
int size;
|
|
|
|
size = min_t(int, tso.size, data_left);
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
index = fec_enet_get_bd_index(bdp, &txq->bd);
|
|
ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
|
|
bdp, index,
|
|
tso.data, size,
|
|
size == data_left,
|
|
total_len == 0);
|
|
if (ret)
|
|
goto err_release;
|
|
|
|
data_left -= size;
|
|
tso_build_data(skb, &tso, size);
|
|
}
|
|
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
}
|
|
|
|
/* Save skb pointer */
|
|
txq->tx_skbuff[index] = skb;
|
|
|
|
skb_tx_timestamp(skb);
|
|
txq->bd.cur = bdp;
|
|
|
|
/* Trigger transmission start */
|
|
if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
|
|
!readl(txq->bd.reg_desc_active) ||
|
|
!readl(txq->bd.reg_desc_active) ||
|
|
!readl(txq->bd.reg_desc_active) ||
|
|
!readl(txq->bd.reg_desc_active))
|
|
writel(0, txq->bd.reg_desc_active);
|
|
|
|
return 0;
|
|
|
|
err_release:
|
|
/* TODO: Release all used data descriptors for TSO */
|
|
return ret;
|
|
}
|
|
|
|
static netdev_tx_t
|
|
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int entries_free;
|
|
unsigned short queue;
|
|
struct fec_enet_priv_tx_q *txq;
|
|
struct netdev_queue *nq;
|
|
int ret;
|
|
|
|
queue = skb_get_queue_mapping(skb);
|
|
txq = fep->tx_queue[queue];
|
|
nq = netdev_get_tx_queue(ndev, queue);
|
|
|
|
if (skb_is_gso(skb))
|
|
ret = fec_enet_txq_submit_tso(txq, skb, ndev);
|
|
else
|
|
ret = fec_enet_txq_submit_skb(txq, skb, ndev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
entries_free = fec_enet_get_free_txdesc_num(txq);
|
|
if (entries_free <= txq->tx_stop_threshold)
|
|
netif_tx_stop_queue(nq);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Init RX & TX buffer descriptors
|
|
*/
|
|
static void fec_enet_bd_init(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct fec_enet_priv_tx_q *txq;
|
|
struct fec_enet_priv_rx_q *rxq;
|
|
struct bufdesc *bdp;
|
|
unsigned int i;
|
|
unsigned int q;
|
|
|
|
for (q = 0; q < fep->num_rx_queues; q++) {
|
|
/* Initialize the receive buffer descriptors. */
|
|
rxq = fep->rx_queue[q];
|
|
bdp = rxq->bd.base;
|
|
|
|
for (i = 0; i < rxq->bd.ring_size; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page. */
|
|
if (bdp->cbd_bufaddr)
|
|
bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
|
|
else
|
|
bdp->cbd_sc = cpu_to_fec16(0);
|
|
bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
|
|
}
|
|
|
|
/* Set the last buffer to wrap */
|
|
bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
|
|
bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
|
|
|
|
rxq->bd.cur = rxq->bd.base;
|
|
}
|
|
|
|
for (q = 0; q < fep->num_tx_queues; q++) {
|
|
/* ...and the same for transmit */
|
|
txq = fep->tx_queue[q];
|
|
bdp = txq->bd.base;
|
|
txq->bd.cur = bdp;
|
|
|
|
for (i = 0; i < txq->bd.ring_size; i++) {
|
|
/* Initialize the BD for every fragment in the page. */
|
|
bdp->cbd_sc = cpu_to_fec16(0);
|
|
if (txq->tx_skbuff[i]) {
|
|
dev_kfree_skb_any(txq->tx_skbuff[i]);
|
|
txq->tx_skbuff[i] = NULL;
|
|
}
|
|
bdp->cbd_bufaddr = cpu_to_fec32(0);
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
}
|
|
|
|
/* Set the last buffer to wrap */
|
|
bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
|
|
bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
|
|
txq->dirty_tx = bdp;
|
|
}
|
|
}
|
|
|
|
static void fec_enet_active_rxring(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int i;
|
|
|
|
for (i = 0; i < fep->num_rx_queues; i++)
|
|
writel(0, fep->rx_queue[i]->bd.reg_desc_active);
|
|
}
|
|
|
|
static void fec_enet_enable_ring(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct fec_enet_priv_tx_q *txq;
|
|
struct fec_enet_priv_rx_q *rxq;
|
|
int i;
|
|
|
|
for (i = 0; i < fep->num_rx_queues; i++) {
|
|
rxq = fep->rx_queue[i];
|
|
writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
|
|
writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
|
|
|
|
/* enable DMA1/2 */
|
|
if (i)
|
|
writel(RCMR_MATCHEN | RCMR_CMP(i),
|
|
fep->hwp + FEC_RCMR(i));
|
|
}
|
|
|
|
for (i = 0; i < fep->num_tx_queues; i++) {
|
|
txq = fep->tx_queue[i];
|
|
writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
|
|
|
|
/* enable DMA1/2 */
|
|
if (i)
|
|
writel(DMA_CLASS_EN | IDLE_SLOPE(i),
|
|
fep->hwp + FEC_DMA_CFG(i));
|
|
}
|
|
}
|
|
|
|
static void fec_enet_reset_skb(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct fec_enet_priv_tx_q *txq;
|
|
int i, j;
|
|
|
|
for (i = 0; i < fep->num_tx_queues; i++) {
|
|
txq = fep->tx_queue[i];
|
|
|
|
for (j = 0; j < txq->bd.ring_size; j++) {
|
|
if (txq->tx_skbuff[j]) {
|
|
dev_kfree_skb_any(txq->tx_skbuff[j]);
|
|
txq->tx_skbuff[j] = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is called to start or restart the FEC during a link
|
|
* change, transmit timeout, or to reconfigure the FEC. The network
|
|
* packet processing for this device must be stopped before this call.
|
|
*/
|
|
static void
|
|
fec_restart(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
u32 val;
|
|
u32 temp_mac[2];
|
|
u32 rcntl = OPT_FRAME_SIZE | 0x04;
|
|
u32 ecntl = 0x2; /* ETHEREN */
|
|
|
|
/* Whack a reset. We should wait for this.
|
|
* For i.MX6SX SOC, enet use AXI bus, we use disable MAC
|
|
* instead of reset MAC itself.
|
|
*/
|
|
if (fep->quirks & FEC_QUIRK_HAS_AVB) {
|
|
writel(0, fep->hwp + FEC_ECNTRL);
|
|
} else {
|
|
writel(1, fep->hwp + FEC_ECNTRL);
|
|
udelay(10);
|
|
}
|
|
|
|
/*
|
|
* enet-mac reset will reset mac address registers too,
|
|
* so need to reconfigure it.
|
|
*/
|
|
if (fep->quirks & FEC_QUIRK_ENET_MAC) {
|
|
memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
|
|
writel((__force u32)cpu_to_be32(temp_mac[0]),
|
|
fep->hwp + FEC_ADDR_LOW);
|
|
writel((__force u32)cpu_to_be32(temp_mac[1]),
|
|
fep->hwp + FEC_ADDR_HIGH);
|
|
}
|
|
|
|
/* Clear any outstanding interrupt. */
|
|
writel(0xffffffff, fep->hwp + FEC_IEVENT);
|
|
|
|
fec_enet_bd_init(ndev);
|
|
|
|
fec_enet_enable_ring(ndev);
|
|
|
|
/* Reset tx SKB buffers. */
|
|
fec_enet_reset_skb(ndev);
|
|
|
|
/* Enable MII mode */
|
|
if (fep->full_duplex == DUPLEX_FULL) {
|
|
/* FD enable */
|
|
writel(0x04, fep->hwp + FEC_X_CNTRL);
|
|
} else {
|
|
/* No Rcv on Xmit */
|
|
rcntl |= 0x02;
|
|
writel(0x0, fep->hwp + FEC_X_CNTRL);
|
|
}
|
|
|
|
/* Set MII speed */
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
|
|
#if !defined(CONFIG_M5272)
|
|
if (fep->quirks & FEC_QUIRK_HAS_RACC) {
|
|
/* set RX checksum */
|
|
val = readl(fep->hwp + FEC_RACC);
|
|
if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
|
|
val |= FEC_RACC_OPTIONS;
|
|
else
|
|
val &= ~FEC_RACC_OPTIONS;
|
|
writel(val, fep->hwp + FEC_RACC);
|
|
writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The phy interface and speed need to get configured
|
|
* differently on enet-mac.
|
|
*/
|
|
if (fep->quirks & FEC_QUIRK_ENET_MAC) {
|
|
/* Enable flow control and length check */
|
|
rcntl |= 0x40000000 | 0x00000020;
|
|
|
|
/* RGMII, RMII or MII */
|
|
if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
|
|
fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
|
|
fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
|
|
fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
|
|
rcntl |= (1 << 6);
|
|
else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
|
|
rcntl |= (1 << 8);
|
|
else
|
|
rcntl &= ~(1 << 8);
|
|
|
|
/* 1G, 100M or 10M */
|
|
if (fep->phy_dev) {
|
|
if (fep->phy_dev->speed == SPEED_1000)
|
|
ecntl |= (1 << 5);
|
|
else if (fep->phy_dev->speed == SPEED_100)
|
|
rcntl &= ~(1 << 9);
|
|
else
|
|
rcntl |= (1 << 9);
|
|
}
|
|
} else {
|
|
#ifdef FEC_MIIGSK_ENR
|
|
if (fep->quirks & FEC_QUIRK_USE_GASKET) {
|
|
u32 cfgr;
|
|
/* disable the gasket and wait */
|
|
writel(0, fep->hwp + FEC_MIIGSK_ENR);
|
|
while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
|
|
udelay(1);
|
|
|
|
/*
|
|
* configure the gasket:
|
|
* RMII, 50 MHz, no loopback, no echo
|
|
* MII, 25 MHz, no loopback, no echo
|
|
*/
|
|
cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
|
|
? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
|
|
if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
|
|
cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
|
|
writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
|
|
|
|
/* re-enable the gasket */
|
|
writel(2, fep->hwp + FEC_MIIGSK_ENR);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if !defined(CONFIG_M5272)
|
|
/* enable pause frame*/
|
|
if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
|
|
((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
|
|
fep->phy_dev && fep->phy_dev->pause)) {
|
|
rcntl |= FEC_ENET_FCE;
|
|
|
|
/* set FIFO threshold parameter to reduce overrun */
|
|
writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
|
|
writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
|
|
writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
|
|
writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
|
|
|
|
/* OPD */
|
|
writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
|
|
} else {
|
|
rcntl &= ~FEC_ENET_FCE;
|
|
}
|
|
#endif /* !defined(CONFIG_M5272) */
|
|
|
|
writel(rcntl, fep->hwp + FEC_R_CNTRL);
|
|
|
|
/* Setup multicast filter. */
|
|
set_multicast_list(ndev);
|
|
#ifndef CONFIG_M5272
|
|
writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
|
|
writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
|
|
#endif
|
|
|
|
if (fep->quirks & FEC_QUIRK_ENET_MAC) {
|
|
/* enable ENET endian swap */
|
|
ecntl |= (1 << 8);
|
|
/* enable ENET store and forward mode */
|
|
writel(1 << 8, fep->hwp + FEC_X_WMRK);
|
|
}
|
|
|
|
if (fep->bufdesc_ex)
|
|
ecntl |= (1 << 4);
|
|
|
|
#ifndef CONFIG_M5272
|
|
/* Enable the MIB statistic event counters */
|
|
writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
|
|
#endif
|
|
|
|
/* And last, enable the transmit and receive processing */
|
|
writel(ecntl, fep->hwp + FEC_ECNTRL);
|
|
fec_enet_active_rxring(ndev);
|
|
|
|
if (fep->bufdesc_ex)
|
|
fec_ptp_start_cyclecounter(ndev);
|
|
|
|
/* Enable interrupts we wish to service */
|
|
if (fep->link)
|
|
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
|
|
else
|
|
writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
|
|
|
|
/* Init the interrupt coalescing */
|
|
fec_enet_itr_coal_init(ndev);
|
|
|
|
}
|
|
|
|
static void
|
|
fec_stop(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
|
|
u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
|
|
u32 val;
|
|
|
|
/* We cannot expect a graceful transmit stop without link !!! */
|
|
if (fep->link) {
|
|
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
|
|
udelay(10);
|
|
if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
|
|
netdev_err(ndev, "Graceful transmit stop did not complete!\n");
|
|
}
|
|
|
|
/* Whack a reset. We should wait for this.
|
|
* For i.MX6SX SOC, enet use AXI bus, we use disable MAC
|
|
* instead of reset MAC itself.
|
|
*/
|
|
if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
|
|
if (fep->quirks & FEC_QUIRK_HAS_AVB) {
|
|
writel(0, fep->hwp + FEC_ECNTRL);
|
|
} else {
|
|
writel(1, fep->hwp + FEC_ECNTRL);
|
|
udelay(10);
|
|
}
|
|
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
|
|
} else {
|
|
writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
|
|
val = readl(fep->hwp + FEC_ECNTRL);
|
|
val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
|
|
writel(val, fep->hwp + FEC_ECNTRL);
|
|
|
|
if (pdata && pdata->sleep_mode_enable)
|
|
pdata->sleep_mode_enable(true);
|
|
}
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
|
|
/* We have to keep ENET enabled to have MII interrupt stay working */
|
|
if (fep->quirks & FEC_QUIRK_ENET_MAC &&
|
|
!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
|
|
writel(2, fep->hwp + FEC_ECNTRL);
|
|
writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fec_timeout(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
fec_dump(ndev);
|
|
|
|
ndev->stats.tx_errors++;
|
|
|
|
schedule_work(&fep->tx_timeout_work);
|
|
}
|
|
|
|
static void fec_enet_timeout_work(struct work_struct *work)
|
|
{
|
|
struct fec_enet_private *fep =
|
|
container_of(work, struct fec_enet_private, tx_timeout_work);
|
|
struct net_device *ndev = fep->netdev;
|
|
|
|
rtnl_lock();
|
|
if (netif_device_present(ndev) || netif_running(ndev)) {
|
|
napi_disable(&fep->napi);
|
|
netif_tx_lock_bh(ndev);
|
|
fec_restart(ndev);
|
|
netif_wake_queue(ndev);
|
|
netif_tx_unlock_bh(ndev);
|
|
napi_enable(&fep->napi);
|
|
}
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static void
|
|
fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
|
|
struct skb_shared_hwtstamps *hwtstamps)
|
|
{
|
|
unsigned long flags;
|
|
u64 ns;
|
|
|
|
spin_lock_irqsave(&fep->tmreg_lock, flags);
|
|
ns = timecounter_cyc2time(&fep->tc, ts);
|
|
spin_unlock_irqrestore(&fep->tmreg_lock, flags);
|
|
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
hwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
}
|
|
|
|
static void
|
|
fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
struct bufdesc *bdp;
|
|
unsigned short status;
|
|
struct sk_buff *skb;
|
|
struct fec_enet_priv_tx_q *txq;
|
|
struct netdev_queue *nq;
|
|
int index = 0;
|
|
int entries_free;
|
|
|
|
fep = netdev_priv(ndev);
|
|
|
|
queue_id = FEC_ENET_GET_QUQUE(queue_id);
|
|
|
|
txq = fep->tx_queue[queue_id];
|
|
/* get next bdp of dirty_tx */
|
|
nq = netdev_get_tx_queue(ndev, queue_id);
|
|
bdp = txq->dirty_tx;
|
|
|
|
/* get next bdp of dirty_tx */
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
|
|
while (bdp != READ_ONCE(txq->bd.cur)) {
|
|
/* Order the load of bd.cur and cbd_sc */
|
|
rmb();
|
|
status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
|
|
if (status & BD_ENET_TX_READY)
|
|
break;
|
|
|
|
index = fec_enet_get_bd_index(bdp, &txq->bd);
|
|
|
|
skb = txq->tx_skbuff[index];
|
|
txq->tx_skbuff[index] = NULL;
|
|
if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
|
|
dma_unmap_single(&fep->pdev->dev,
|
|
fec32_to_cpu(bdp->cbd_bufaddr),
|
|
fec16_to_cpu(bdp->cbd_datlen),
|
|
DMA_TO_DEVICE);
|
|
bdp->cbd_bufaddr = cpu_to_fec32(0);
|
|
if (!skb) {
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
continue;
|
|
}
|
|
|
|
/* Check for errors. */
|
|
if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
|
|
BD_ENET_TX_RL | BD_ENET_TX_UN |
|
|
BD_ENET_TX_CSL)) {
|
|
ndev->stats.tx_errors++;
|
|
if (status & BD_ENET_TX_HB) /* No heartbeat */
|
|
ndev->stats.tx_heartbeat_errors++;
|
|
if (status & BD_ENET_TX_LC) /* Late collision */
|
|
ndev->stats.tx_window_errors++;
|
|
if (status & BD_ENET_TX_RL) /* Retrans limit */
|
|
ndev->stats.tx_aborted_errors++;
|
|
if (status & BD_ENET_TX_UN) /* Underrun */
|
|
ndev->stats.tx_fifo_errors++;
|
|
if (status & BD_ENET_TX_CSL) /* Carrier lost */
|
|
ndev->stats.tx_carrier_errors++;
|
|
} else {
|
|
ndev->stats.tx_packets++;
|
|
ndev->stats.tx_bytes += skb->len;
|
|
}
|
|
|
|
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
|
|
fep->bufdesc_ex) {
|
|
struct skb_shared_hwtstamps shhwtstamps;
|
|
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
|
|
|
|
fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
|
|
skb_tstamp_tx(skb, &shhwtstamps);
|
|
}
|
|
|
|
/* Deferred means some collisions occurred during transmit,
|
|
* but we eventually sent the packet OK.
|
|
*/
|
|
if (status & BD_ENET_TX_DEF)
|
|
ndev->stats.collisions++;
|
|
|
|
/* Free the sk buffer associated with this last transmit */
|
|
dev_kfree_skb_any(skb);
|
|
|
|
/* Make sure the update to bdp and tx_skbuff are performed
|
|
* before dirty_tx
|
|
*/
|
|
wmb();
|
|
txq->dirty_tx = bdp;
|
|
|
|
/* Update pointer to next buffer descriptor to be transmitted */
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
|
|
/* Since we have freed up a buffer, the ring is no longer full
|
|
*/
|
|
if (netif_queue_stopped(ndev)) {
|
|
entries_free = fec_enet_get_free_txdesc_num(txq);
|
|
if (entries_free >= txq->tx_wake_threshold)
|
|
netif_tx_wake_queue(nq);
|
|
}
|
|
}
|
|
|
|
/* ERR006538: Keep the transmitter going */
|
|
if (bdp != txq->bd.cur &&
|
|
readl(txq->bd.reg_desc_active) == 0)
|
|
writel(0, txq->bd.reg_desc_active);
|
|
}
|
|
|
|
static void
|
|
fec_enet_tx(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
u16 queue_id;
|
|
/* First process class A queue, then Class B and Best Effort queue */
|
|
for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
|
|
clear_bit(queue_id, &fep->work_tx);
|
|
fec_enet_tx_queue(ndev, queue_id);
|
|
}
|
|
return;
|
|
}
|
|
|
|
static int
|
|
fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int off;
|
|
|
|
off = ((unsigned long)skb->data) & fep->rx_align;
|
|
if (off)
|
|
skb_reserve(skb, fep->rx_align + 1 - off);
|
|
|
|
bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
|
|
if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
|
|
if (net_ratelimit())
|
|
netdev_err(ndev, "Rx DMA memory map failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
|
|
struct bufdesc *bdp, u32 length, bool swap)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct sk_buff *new_skb;
|
|
|
|
if (length > fep->rx_copybreak)
|
|
return false;
|
|
|
|
new_skb = netdev_alloc_skb(ndev, length);
|
|
if (!new_skb)
|
|
return false;
|
|
|
|
dma_sync_single_for_cpu(&fep->pdev->dev,
|
|
fec32_to_cpu(bdp->cbd_bufaddr),
|
|
FEC_ENET_RX_FRSIZE - fep->rx_align,
|
|
DMA_FROM_DEVICE);
|
|
if (!swap)
|
|
memcpy(new_skb->data, (*skb)->data, length);
|
|
else
|
|
swap_buffer2(new_skb->data, (*skb)->data, length);
|
|
*skb = new_skb;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* During a receive, the bd_rx.cur points to the current incoming buffer.
|
|
* When we update through the ring, if the next incoming buffer has
|
|
* not been given to the system, we just set the empty indicator,
|
|
* effectively tossing the packet.
|
|
*/
|
|
static int
|
|
fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct fec_enet_priv_rx_q *rxq;
|
|
struct bufdesc *bdp;
|
|
unsigned short status;
|
|
struct sk_buff *skb_new = NULL;
|
|
struct sk_buff *skb;
|
|
ushort pkt_len;
|
|
__u8 *data;
|
|
int pkt_received = 0;
|
|
struct bufdesc_ex *ebdp = NULL;
|
|
bool vlan_packet_rcvd = false;
|
|
u16 vlan_tag;
|
|
int index = 0;
|
|
bool is_copybreak;
|
|
bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
|
|
|
|
#ifdef CONFIG_M532x
|
|
flush_cache_all();
|
|
#endif
|
|
queue_id = FEC_ENET_GET_QUQUE(queue_id);
|
|
rxq = fep->rx_queue[queue_id];
|
|
|
|
/* First, grab all of the stats for the incoming packet.
|
|
* These get messed up if we get called due to a busy condition.
|
|
*/
|
|
bdp = rxq->bd.cur;
|
|
|
|
while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
|
|
|
|
if (pkt_received >= budget)
|
|
break;
|
|
pkt_received++;
|
|
|
|
writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
|
|
|
|
/* Check for errors. */
|
|
status ^= BD_ENET_RX_LAST;
|
|
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
|
|
BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
|
|
BD_ENET_RX_CL)) {
|
|
ndev->stats.rx_errors++;
|
|
if (status & BD_ENET_RX_OV) {
|
|
/* FIFO overrun */
|
|
ndev->stats.rx_fifo_errors++;
|
|
goto rx_processing_done;
|
|
}
|
|
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
|
|
| BD_ENET_RX_LAST)) {
|
|
/* Frame too long or too short. */
|
|
ndev->stats.rx_length_errors++;
|
|
if (status & BD_ENET_RX_LAST)
|
|
netdev_err(ndev, "rcv is not +last\n");
|
|
}
|
|
if (status & BD_ENET_RX_CR) /* CRC Error */
|
|
ndev->stats.rx_crc_errors++;
|
|
/* Report late collisions as a frame error. */
|
|
if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
|
|
ndev->stats.rx_frame_errors++;
|
|
goto rx_processing_done;
|
|
}
|
|
|
|
/* Process the incoming frame. */
|
|
ndev->stats.rx_packets++;
|
|
pkt_len = fec16_to_cpu(bdp->cbd_datlen);
|
|
ndev->stats.rx_bytes += pkt_len;
|
|
|
|
index = fec_enet_get_bd_index(bdp, &rxq->bd);
|
|
skb = rxq->rx_skbuff[index];
|
|
|
|
/* The packet length includes FCS, but we don't want to
|
|
* include that when passing upstream as it messes up
|
|
* bridging applications.
|
|
*/
|
|
is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
|
|
need_swap);
|
|
if (!is_copybreak) {
|
|
skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
|
|
if (unlikely(!skb_new)) {
|
|
ndev->stats.rx_dropped++;
|
|
goto rx_processing_done;
|
|
}
|
|
dma_unmap_single(&fep->pdev->dev,
|
|
fec32_to_cpu(bdp->cbd_bufaddr),
|
|
FEC_ENET_RX_FRSIZE - fep->rx_align,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
prefetch(skb->data - NET_IP_ALIGN);
|
|
skb_put(skb, pkt_len - 4);
|
|
data = skb->data;
|
|
if (!is_copybreak && need_swap)
|
|
swap_buffer(data, pkt_len);
|
|
|
|
/* Extract the enhanced buffer descriptor */
|
|
ebdp = NULL;
|
|
if (fep->bufdesc_ex)
|
|
ebdp = (struct bufdesc_ex *)bdp;
|
|
|
|
/* If this is a VLAN packet remove the VLAN Tag */
|
|
vlan_packet_rcvd = false;
|
|
if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
|
|
fep->bufdesc_ex &&
|
|
(ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
|
|
/* Push and remove the vlan tag */
|
|
struct vlan_hdr *vlan_header =
|
|
(struct vlan_hdr *) (data + ETH_HLEN);
|
|
vlan_tag = ntohs(vlan_header->h_vlan_TCI);
|
|
|
|
vlan_packet_rcvd = true;
|
|
|
|
memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
|
|
skb_pull(skb, VLAN_HLEN);
|
|
}
|
|
|
|
skb->protocol = eth_type_trans(skb, ndev);
|
|
|
|
/* Get receive timestamp from the skb */
|
|
if (fep->hwts_rx_en && fep->bufdesc_ex)
|
|
fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
|
|
skb_hwtstamps(skb));
|
|
|
|
if (fep->bufdesc_ex &&
|
|
(fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
|
|
if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
|
|
/* don't check it */
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
} else {
|
|
skb_checksum_none_assert(skb);
|
|
}
|
|
}
|
|
|
|
/* Handle received VLAN packets */
|
|
if (vlan_packet_rcvd)
|
|
__vlan_hwaccel_put_tag(skb,
|
|
htons(ETH_P_8021Q),
|
|
vlan_tag);
|
|
|
|
napi_gro_receive(&fep->napi, skb);
|
|
|
|
if (is_copybreak) {
|
|
dma_sync_single_for_device(&fep->pdev->dev,
|
|
fec32_to_cpu(bdp->cbd_bufaddr),
|
|
FEC_ENET_RX_FRSIZE - fep->rx_align,
|
|
DMA_FROM_DEVICE);
|
|
} else {
|
|
rxq->rx_skbuff[index] = skb_new;
|
|
fec_enet_new_rxbdp(ndev, bdp, skb_new);
|
|
}
|
|
|
|
rx_processing_done:
|
|
/* Clear the status flags for this buffer */
|
|
status &= ~BD_ENET_RX_STATS;
|
|
|
|
/* Mark the buffer empty */
|
|
status |= BD_ENET_RX_EMPTY;
|
|
|
|
if (fep->bufdesc_ex) {
|
|
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
|
|
|
|
ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
|
|
ebdp->cbd_prot = 0;
|
|
ebdp->cbd_bdu = 0;
|
|
}
|
|
/* Make sure the updates to rest of the descriptor are
|
|
* performed before transferring ownership.
|
|
*/
|
|
wmb();
|
|
bdp->cbd_sc = cpu_to_fec16(status);
|
|
|
|
/* Update BD pointer to next entry */
|
|
bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
|
|
|
|
/* Doing this here will keep the FEC running while we process
|
|
* incoming frames. On a heavily loaded network, we should be
|
|
* able to keep up at the expense of system resources.
|
|
*/
|
|
writel(0, rxq->bd.reg_desc_active);
|
|
}
|
|
rxq->bd.cur = bdp;
|
|
return pkt_received;
|
|
}
|
|
|
|
static int
|
|
fec_enet_rx(struct net_device *ndev, int budget)
|
|
{
|
|
int pkt_received = 0;
|
|
u16 queue_id;
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
|
|
clear_bit(queue_id, &fep->work_rx);
|
|
pkt_received += fec_enet_rx_queue(ndev,
|
|
budget - pkt_received, queue_id);
|
|
}
|
|
return pkt_received;
|
|
}
|
|
|
|
static bool
|
|
fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
|
|
{
|
|
if (int_events == 0)
|
|
return false;
|
|
|
|
if (int_events & FEC_ENET_RXF)
|
|
fep->work_rx |= (1 << 2);
|
|
if (int_events & FEC_ENET_RXF_1)
|
|
fep->work_rx |= (1 << 0);
|
|
if (int_events & FEC_ENET_RXF_2)
|
|
fep->work_rx |= (1 << 1);
|
|
|
|
if (int_events & FEC_ENET_TXF)
|
|
fep->work_tx |= (1 << 2);
|
|
if (int_events & FEC_ENET_TXF_1)
|
|
fep->work_tx |= (1 << 0);
|
|
if (int_events & FEC_ENET_TXF_2)
|
|
fep->work_tx |= (1 << 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
static irqreturn_t
|
|
fec_enet_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct net_device *ndev = dev_id;
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
uint int_events;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
int_events = readl(fep->hwp + FEC_IEVENT);
|
|
writel(int_events, fep->hwp + FEC_IEVENT);
|
|
fec_enet_collect_events(fep, int_events);
|
|
|
|
if ((fep->work_tx || fep->work_rx) && fep->link) {
|
|
ret = IRQ_HANDLED;
|
|
|
|
if (napi_schedule_prep(&fep->napi)) {
|
|
/* Disable the NAPI interrupts */
|
|
writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
|
|
__napi_schedule(&fep->napi);
|
|
}
|
|
}
|
|
|
|
if (int_events & FEC_ENET_MII) {
|
|
ret = IRQ_HANDLED;
|
|
complete(&fep->mdio_done);
|
|
}
|
|
|
|
if (fep->ptp_clock)
|
|
fec_ptp_check_pps_event(fep);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
|
|
{
|
|
struct net_device *ndev = napi->dev;
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int pkts;
|
|
|
|
pkts = fec_enet_rx(ndev, budget);
|
|
|
|
fec_enet_tx(ndev);
|
|
|
|
if (pkts < budget) {
|
|
napi_complete(napi);
|
|
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
|
|
}
|
|
return pkts;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
static void fec_get_mac(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
|
|
unsigned char *iap, tmpaddr[ETH_ALEN];
|
|
|
|
/*
|
|
* try to get mac address in following order:
|
|
*
|
|
* 1) module parameter via kernel command line in form
|
|
* fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
|
|
*/
|
|
iap = macaddr;
|
|
|
|
/*
|
|
* 2) from device tree data
|
|
*/
|
|
if (!is_valid_ether_addr(iap)) {
|
|
struct device_node *np = fep->pdev->dev.of_node;
|
|
if (np) {
|
|
const char *mac = of_get_mac_address(np);
|
|
if (mac)
|
|
iap = (unsigned char *) mac;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 3) from flash or fuse (via platform data)
|
|
*/
|
|
if (!is_valid_ether_addr(iap)) {
|
|
#ifdef CONFIG_M5272
|
|
if (FEC_FLASHMAC)
|
|
iap = (unsigned char *)FEC_FLASHMAC;
|
|
#else
|
|
if (pdata)
|
|
iap = (unsigned char *)&pdata->mac;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* 4) FEC mac registers set by bootloader
|
|
*/
|
|
if (!is_valid_ether_addr(iap)) {
|
|
*((__be32 *) &tmpaddr[0]) =
|
|
cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
|
|
*((__be16 *) &tmpaddr[4]) =
|
|
cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
|
|
iap = &tmpaddr[0];
|
|
}
|
|
|
|
/*
|
|
* 5) random mac address
|
|
*/
|
|
if (!is_valid_ether_addr(iap)) {
|
|
/* Report it and use a random ethernet address instead */
|
|
netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
|
|
eth_hw_addr_random(ndev);
|
|
netdev_info(ndev, "Using random MAC address: %pM\n",
|
|
ndev->dev_addr);
|
|
return;
|
|
}
|
|
|
|
memcpy(ndev->dev_addr, iap, ETH_ALEN);
|
|
|
|
/* Adjust MAC if using macaddr */
|
|
if (iap == macaddr)
|
|
ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Phy section
|
|
*/
|
|
static void fec_enet_adjust_link(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phy_dev = fep->phy_dev;
|
|
int status_change = 0;
|
|
|
|
/* Prevent a state halted on mii error */
|
|
if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
|
|
phy_dev->state = PHY_RESUMING;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the netdev is down, or is going down, we're not interested
|
|
* in link state events, so just mark our idea of the link as down
|
|
* and ignore the event.
|
|
*/
|
|
if (!netif_running(ndev) || !netif_device_present(ndev)) {
|
|
fep->link = 0;
|
|
} else if (phy_dev->link) {
|
|
if (!fep->link) {
|
|
fep->link = phy_dev->link;
|
|
status_change = 1;
|
|
}
|
|
|
|
if (fep->full_duplex != phy_dev->duplex) {
|
|
fep->full_duplex = phy_dev->duplex;
|
|
status_change = 1;
|
|
}
|
|
|
|
if (phy_dev->speed != fep->speed) {
|
|
fep->speed = phy_dev->speed;
|
|
status_change = 1;
|
|
}
|
|
|
|
/* if any of the above changed restart the FEC */
|
|
if (status_change) {
|
|
napi_disable(&fep->napi);
|
|
netif_tx_lock_bh(ndev);
|
|
fec_restart(ndev);
|
|
netif_wake_queue(ndev);
|
|
netif_tx_unlock_bh(ndev);
|
|
napi_enable(&fep->napi);
|
|
}
|
|
} else {
|
|
if (fep->link) {
|
|
napi_disable(&fep->napi);
|
|
netif_tx_lock_bh(ndev);
|
|
fec_stop(ndev);
|
|
netif_tx_unlock_bh(ndev);
|
|
napi_enable(&fep->napi);
|
|
fep->link = phy_dev->link;
|
|
status_change = 1;
|
|
}
|
|
}
|
|
|
|
if (status_change)
|
|
phy_print_status(phy_dev);
|
|
}
|
|
|
|
static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
|
|
{
|
|
struct fec_enet_private *fep = bus->priv;
|
|
struct device *dev = &fep->pdev->dev;
|
|
unsigned long time_left;
|
|
int ret = 0;
|
|
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
fep->mii_timeout = 0;
|
|
reinit_completion(&fep->mdio_done);
|
|
|
|
/* start a read op */
|
|
writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
|
|
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
|
|
FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
|
|
|
|
/* wait for end of transfer */
|
|
time_left = wait_for_completion_timeout(&fep->mdio_done,
|
|
usecs_to_jiffies(FEC_MII_TIMEOUT));
|
|
if (time_left == 0) {
|
|
fep->mii_timeout = 1;
|
|
netdev_err(fep->netdev, "MDIO read timeout\n");
|
|
ret = -ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
|
|
|
|
out:
|
|
pm_runtime_mark_last_busy(dev);
|
|
pm_runtime_put_autosuspend(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
|
|
u16 value)
|
|
{
|
|
struct fec_enet_private *fep = bus->priv;
|
|
struct device *dev = &fep->pdev->dev;
|
|
unsigned long time_left;
|
|
int ret;
|
|
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
else
|
|
ret = 0;
|
|
|
|
fep->mii_timeout = 0;
|
|
reinit_completion(&fep->mdio_done);
|
|
|
|
/* start a write op */
|
|
writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
|
|
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
|
|
FEC_MMFR_TA | FEC_MMFR_DATA(value),
|
|
fep->hwp + FEC_MII_DATA);
|
|
|
|
/* wait for end of transfer */
|
|
time_left = wait_for_completion_timeout(&fep->mdio_done,
|
|
usecs_to_jiffies(FEC_MII_TIMEOUT));
|
|
if (time_left == 0) {
|
|
fep->mii_timeout = 1;
|
|
netdev_err(fep->netdev, "MDIO write timeout\n");
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
|
|
pm_runtime_mark_last_busy(dev);
|
|
pm_runtime_put_autosuspend(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int ret;
|
|
|
|
if (enable) {
|
|
ret = clk_prepare_enable(fep->clk_ahb);
|
|
if (ret)
|
|
return ret;
|
|
if (fep->clk_enet_out) {
|
|
ret = clk_prepare_enable(fep->clk_enet_out);
|
|
if (ret)
|
|
goto failed_clk_enet_out;
|
|
}
|
|
if (fep->clk_ptp) {
|
|
mutex_lock(&fep->ptp_clk_mutex);
|
|
ret = clk_prepare_enable(fep->clk_ptp);
|
|
if (ret) {
|
|
mutex_unlock(&fep->ptp_clk_mutex);
|
|
goto failed_clk_ptp;
|
|
} else {
|
|
fep->ptp_clk_on = true;
|
|
}
|
|
mutex_unlock(&fep->ptp_clk_mutex);
|
|
}
|
|
if (fep->clk_ref) {
|
|
ret = clk_prepare_enable(fep->clk_ref);
|
|
if (ret)
|
|
goto failed_clk_ref;
|
|
}
|
|
} else {
|
|
clk_disable_unprepare(fep->clk_ahb);
|
|
if (fep->clk_enet_out)
|
|
clk_disable_unprepare(fep->clk_enet_out);
|
|
if (fep->clk_ptp) {
|
|
mutex_lock(&fep->ptp_clk_mutex);
|
|
clk_disable_unprepare(fep->clk_ptp);
|
|
fep->ptp_clk_on = false;
|
|
mutex_unlock(&fep->ptp_clk_mutex);
|
|
}
|
|
if (fep->clk_ref)
|
|
clk_disable_unprepare(fep->clk_ref);
|
|
}
|
|
|
|
return 0;
|
|
|
|
failed_clk_ref:
|
|
if (fep->clk_ref)
|
|
clk_disable_unprepare(fep->clk_ref);
|
|
failed_clk_ptp:
|
|
if (fep->clk_enet_out)
|
|
clk_disable_unprepare(fep->clk_enet_out);
|
|
failed_clk_enet_out:
|
|
clk_disable_unprepare(fep->clk_ahb);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fec_enet_mii_probe(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phy_dev = NULL;
|
|
char mdio_bus_id[MII_BUS_ID_SIZE];
|
|
char phy_name[MII_BUS_ID_SIZE + 3];
|
|
int phy_id;
|
|
int dev_id = fep->dev_id;
|
|
|
|
fep->phy_dev = NULL;
|
|
|
|
if (fep->phy_node) {
|
|
phy_dev = of_phy_connect(ndev, fep->phy_node,
|
|
&fec_enet_adjust_link, 0,
|
|
fep->phy_interface);
|
|
if (!phy_dev)
|
|
return -ENODEV;
|
|
} else {
|
|
/* check for attached phy */
|
|
for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
|
|
if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
|
|
continue;
|
|
if (dev_id--)
|
|
continue;
|
|
strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
|
|
break;
|
|
}
|
|
|
|
if (phy_id >= PHY_MAX_ADDR) {
|
|
netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
|
|
strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
|
|
phy_id = 0;
|
|
}
|
|
|
|
snprintf(phy_name, sizeof(phy_name),
|
|
PHY_ID_FMT, mdio_bus_id, phy_id);
|
|
phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
|
|
fep->phy_interface);
|
|
}
|
|
|
|
if (IS_ERR(phy_dev)) {
|
|
netdev_err(ndev, "could not attach to PHY\n");
|
|
return PTR_ERR(phy_dev);
|
|
}
|
|
|
|
/* mask with MAC supported features */
|
|
if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
|
|
phy_dev->supported &= PHY_GBIT_FEATURES;
|
|
phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
|
|
#if !defined(CONFIG_M5272)
|
|
phy_dev->supported |= SUPPORTED_Pause;
|
|
#endif
|
|
}
|
|
else
|
|
phy_dev->supported &= PHY_BASIC_FEATURES;
|
|
|
|
phy_dev->advertising = phy_dev->supported;
|
|
|
|
fep->phy_dev = phy_dev;
|
|
fep->link = 0;
|
|
fep->full_duplex = 0;
|
|
|
|
phy_attached_info(phy_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_mii_init(struct platform_device *pdev)
|
|
{
|
|
static struct mii_bus *fec0_mii_bus;
|
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct device_node *node;
|
|
int err = -ENXIO;
|
|
u32 mii_speed, holdtime;
|
|
|
|
/*
|
|
* The i.MX28 dual fec interfaces are not equal.
|
|
* Here are the differences:
|
|
*
|
|
* - fec0 supports MII & RMII modes while fec1 only supports RMII
|
|
* - fec0 acts as the 1588 time master while fec1 is slave
|
|
* - external phys can only be configured by fec0
|
|
*
|
|
* That is to say fec1 can not work independently. It only works
|
|
* when fec0 is working. The reason behind this design is that the
|
|
* second interface is added primarily for Switch mode.
|
|
*
|
|
* Because of the last point above, both phys are attached on fec0
|
|
* mdio interface in board design, and need to be configured by
|
|
* fec0 mii_bus.
|
|
*/
|
|
if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
|
|
/* fec1 uses fec0 mii_bus */
|
|
if (mii_cnt && fec0_mii_bus) {
|
|
fep->mii_bus = fec0_mii_bus;
|
|
mii_cnt++;
|
|
return 0;
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
fep->mii_timeout = 0;
|
|
|
|
/*
|
|
* Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
|
|
*
|
|
* The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
|
|
* for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
|
|
* Reference Manual has an error on this, and gets fixed on i.MX6Q
|
|
* document.
|
|
*/
|
|
mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
|
|
if (fep->quirks & FEC_QUIRK_ENET_MAC)
|
|
mii_speed--;
|
|
if (mii_speed > 63) {
|
|
dev_err(&pdev->dev,
|
|
"fec clock (%lu) to fast to get right mii speed\n",
|
|
clk_get_rate(fep->clk_ipg));
|
|
err = -EINVAL;
|
|
goto err_out;
|
|
}
|
|
|
|
/*
|
|
* The i.MX28 and i.MX6 types have another filed in the MSCR (aka
|
|
* MII_SPEED) register that defines the MDIO output hold time. Earlier
|
|
* versions are RAZ there, so just ignore the difference and write the
|
|
* register always.
|
|
* The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
|
|
* HOLDTIME + 1 is the number of clk cycles the fec is holding the
|
|
* output.
|
|
* The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
|
|
* Given that ceil(clkrate / 5000000) <= 64, the calculation for
|
|
* holdtime cannot result in a value greater than 3.
|
|
*/
|
|
holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
|
|
|
|
fep->phy_speed = mii_speed << 1 | holdtime << 8;
|
|
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
|
|
fep->mii_bus = mdiobus_alloc();
|
|
if (fep->mii_bus == NULL) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
fep->mii_bus->name = "fec_enet_mii_bus";
|
|
fep->mii_bus->read = fec_enet_mdio_read;
|
|
fep->mii_bus->write = fec_enet_mdio_write;
|
|
snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
|
|
pdev->name, fep->dev_id + 1);
|
|
fep->mii_bus->priv = fep;
|
|
fep->mii_bus->parent = &pdev->dev;
|
|
|
|
node = of_get_child_by_name(pdev->dev.of_node, "mdio");
|
|
if (node) {
|
|
err = of_mdiobus_register(fep->mii_bus, node);
|
|
of_node_put(node);
|
|
} else {
|
|
err = mdiobus_register(fep->mii_bus);
|
|
}
|
|
|
|
if (err)
|
|
goto err_out_free_mdiobus;
|
|
|
|
mii_cnt++;
|
|
|
|
/* save fec0 mii_bus */
|
|
if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
|
|
fec0_mii_bus = fep->mii_bus;
|
|
|
|
return 0;
|
|
|
|
err_out_free_mdiobus:
|
|
mdiobus_free(fep->mii_bus);
|
|
err_out:
|
|
return err;
|
|
}
|
|
|
|
static void fec_enet_mii_remove(struct fec_enet_private *fep)
|
|
{
|
|
if (--mii_cnt == 0) {
|
|
mdiobus_unregister(fep->mii_bus);
|
|
mdiobus_free(fep->mii_bus);
|
|
}
|
|
}
|
|
|
|
static int fec_enet_get_settings(struct net_device *ndev,
|
|
struct ethtool_cmd *cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return phy_ethtool_gset(phydev, cmd);
|
|
}
|
|
|
|
static int fec_enet_set_settings(struct net_device *ndev,
|
|
struct ethtool_cmd *cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return phy_ethtool_sset(phydev, cmd);
|
|
}
|
|
|
|
static void fec_enet_get_drvinfo(struct net_device *ndev,
|
|
struct ethtool_drvinfo *info)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
strlcpy(info->driver, fep->pdev->dev.driver->name,
|
|
sizeof(info->driver));
|
|
strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
|
|
strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
|
|
}
|
|
|
|
static int fec_enet_get_regs_len(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct resource *r;
|
|
int s = 0;
|
|
|
|
r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
|
|
if (r)
|
|
s = resource_size(r);
|
|
|
|
return s;
|
|
}
|
|
|
|
/* List of registers that can be safety be read to dump them with ethtool */
|
|
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
|
|
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
|
|
static u32 fec_enet_register_offset[] = {
|
|
FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
|
|
FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
|
|
FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
|
|
FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
|
|
FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
|
|
FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
|
|
FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
|
|
FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
|
|
FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
|
|
FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
|
|
FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
|
|
FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
|
|
RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
|
|
RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
|
|
RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
|
|
RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
|
|
RMON_T_P_GTE2048, RMON_T_OCTETS,
|
|
IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
|
|
IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
|
|
IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
|
|
RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
|
|
RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
|
|
RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
|
|
RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
|
|
RMON_R_P_GTE2048, RMON_R_OCTETS,
|
|
IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
|
|
IEEE_R_FDXFC, IEEE_R_OCTETS_OK
|
|
};
|
|
#else
|
|
static u32 fec_enet_register_offset[] = {
|
|
FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
|
|
FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
|
|
FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
|
|
FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
|
|
FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
|
|
FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
|
|
FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
|
|
FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
|
|
FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
|
|
};
|
|
#endif
|
|
|
|
static void fec_enet_get_regs(struct net_device *ndev,
|
|
struct ethtool_regs *regs, void *regbuf)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
|
|
u32 *buf = (u32 *)regbuf;
|
|
u32 i, off;
|
|
|
|
memset(buf, 0, regs->len);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
|
|
off = fec_enet_register_offset[i] / 4;
|
|
buf[off] = readl(&theregs[off]);
|
|
}
|
|
}
|
|
|
|
static int fec_enet_get_ts_info(struct net_device *ndev,
|
|
struct ethtool_ts_info *info)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
if (fep->bufdesc_ex) {
|
|
|
|
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
|
|
SOF_TIMESTAMPING_RX_SOFTWARE |
|
|
SOF_TIMESTAMPING_SOFTWARE |
|
|
SOF_TIMESTAMPING_TX_HARDWARE |
|
|
SOF_TIMESTAMPING_RX_HARDWARE |
|
|
SOF_TIMESTAMPING_RAW_HARDWARE;
|
|
if (fep->ptp_clock)
|
|
info->phc_index = ptp_clock_index(fep->ptp_clock);
|
|
else
|
|
info->phc_index = -1;
|
|
|
|
info->tx_types = (1 << HWTSTAMP_TX_OFF) |
|
|
(1 << HWTSTAMP_TX_ON);
|
|
|
|
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
|
|
(1 << HWTSTAMP_FILTER_ALL);
|
|
return 0;
|
|
} else {
|
|
return ethtool_op_get_ts_info(ndev, info);
|
|
}
|
|
}
|
|
|
|
#if !defined(CONFIG_M5272)
|
|
|
|
static void fec_enet_get_pauseparam(struct net_device *ndev,
|
|
struct ethtool_pauseparam *pause)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
|
|
pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
|
|
pause->rx_pause = pause->tx_pause;
|
|
}
|
|
|
|
static int fec_enet_set_pauseparam(struct net_device *ndev,
|
|
struct ethtool_pauseparam *pause)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
if (!fep->phy_dev)
|
|
return -ENODEV;
|
|
|
|
if (pause->tx_pause != pause->rx_pause) {
|
|
netdev_info(ndev,
|
|
"hardware only support enable/disable both tx and rx");
|
|
return -EINVAL;
|
|
}
|
|
|
|
fep->pause_flag = 0;
|
|
|
|
/* tx pause must be same as rx pause */
|
|
fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
|
|
fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
|
|
|
|
if (pause->rx_pause || pause->autoneg) {
|
|
fep->phy_dev->supported |= ADVERTISED_Pause;
|
|
fep->phy_dev->advertising |= ADVERTISED_Pause;
|
|
} else {
|
|
fep->phy_dev->supported &= ~ADVERTISED_Pause;
|
|
fep->phy_dev->advertising &= ~ADVERTISED_Pause;
|
|
}
|
|
|
|
if (pause->autoneg) {
|
|
if (netif_running(ndev))
|
|
fec_stop(ndev);
|
|
phy_start_aneg(fep->phy_dev);
|
|
}
|
|
if (netif_running(ndev)) {
|
|
napi_disable(&fep->napi);
|
|
netif_tx_lock_bh(ndev);
|
|
fec_restart(ndev);
|
|
netif_wake_queue(ndev);
|
|
netif_tx_unlock_bh(ndev);
|
|
napi_enable(&fep->napi);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct fec_stat {
|
|
char name[ETH_GSTRING_LEN];
|
|
u16 offset;
|
|
} fec_stats[] = {
|
|
/* RMON TX */
|
|
{ "tx_dropped", RMON_T_DROP },
|
|
{ "tx_packets", RMON_T_PACKETS },
|
|
{ "tx_broadcast", RMON_T_BC_PKT },
|
|
{ "tx_multicast", RMON_T_MC_PKT },
|
|
{ "tx_crc_errors", RMON_T_CRC_ALIGN },
|
|
{ "tx_undersize", RMON_T_UNDERSIZE },
|
|
{ "tx_oversize", RMON_T_OVERSIZE },
|
|
{ "tx_fragment", RMON_T_FRAG },
|
|
{ "tx_jabber", RMON_T_JAB },
|
|
{ "tx_collision", RMON_T_COL },
|
|
{ "tx_64byte", RMON_T_P64 },
|
|
{ "tx_65to127byte", RMON_T_P65TO127 },
|
|
{ "tx_128to255byte", RMON_T_P128TO255 },
|
|
{ "tx_256to511byte", RMON_T_P256TO511 },
|
|
{ "tx_512to1023byte", RMON_T_P512TO1023 },
|
|
{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
|
|
{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
|
|
{ "tx_octets", RMON_T_OCTETS },
|
|
|
|
/* IEEE TX */
|
|
{ "IEEE_tx_drop", IEEE_T_DROP },
|
|
{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
|
|
{ "IEEE_tx_1col", IEEE_T_1COL },
|
|
{ "IEEE_tx_mcol", IEEE_T_MCOL },
|
|
{ "IEEE_tx_def", IEEE_T_DEF },
|
|
{ "IEEE_tx_lcol", IEEE_T_LCOL },
|
|
{ "IEEE_tx_excol", IEEE_T_EXCOL },
|
|
{ "IEEE_tx_macerr", IEEE_T_MACERR },
|
|
{ "IEEE_tx_cserr", IEEE_T_CSERR },
|
|
{ "IEEE_tx_sqe", IEEE_T_SQE },
|
|
{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
|
|
{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
|
|
|
|
/* RMON RX */
|
|
{ "rx_packets", RMON_R_PACKETS },
|
|
{ "rx_broadcast", RMON_R_BC_PKT },
|
|
{ "rx_multicast", RMON_R_MC_PKT },
|
|
{ "rx_crc_errors", RMON_R_CRC_ALIGN },
|
|
{ "rx_undersize", RMON_R_UNDERSIZE },
|
|
{ "rx_oversize", RMON_R_OVERSIZE },
|
|
{ "rx_fragment", RMON_R_FRAG },
|
|
{ "rx_jabber", RMON_R_JAB },
|
|
{ "rx_64byte", RMON_R_P64 },
|
|
{ "rx_65to127byte", RMON_R_P65TO127 },
|
|
{ "rx_128to255byte", RMON_R_P128TO255 },
|
|
{ "rx_256to511byte", RMON_R_P256TO511 },
|
|
{ "rx_512to1023byte", RMON_R_P512TO1023 },
|
|
{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
|
|
{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
|
|
{ "rx_octets", RMON_R_OCTETS },
|
|
|
|
/* IEEE RX */
|
|
{ "IEEE_rx_drop", IEEE_R_DROP },
|
|
{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
|
|
{ "IEEE_rx_crc", IEEE_R_CRC },
|
|
{ "IEEE_rx_align", IEEE_R_ALIGN },
|
|
{ "IEEE_rx_macerr", IEEE_R_MACERR },
|
|
{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
|
|
{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
|
|
};
|
|
|
|
static void fec_enet_get_ethtool_stats(struct net_device *dev,
|
|
struct ethtool_stats *stats, u64 *data)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
|
|
data[i] = readl(fep->hwp + fec_stats[i].offset);
|
|
}
|
|
|
|
static void fec_enet_get_strings(struct net_device *netdev,
|
|
u32 stringset, u8 *data)
|
|
{
|
|
int i;
|
|
switch (stringset) {
|
|
case ETH_SS_STATS:
|
|
for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
|
|
memcpy(data + i * ETH_GSTRING_LEN,
|
|
fec_stats[i].name, ETH_GSTRING_LEN);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int fec_enet_get_sset_count(struct net_device *dev, int sset)
|
|
{
|
|
switch (sset) {
|
|
case ETH_SS_STATS:
|
|
return ARRAY_SIZE(fec_stats);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
#endif /* !defined(CONFIG_M5272) */
|
|
|
|
static int fec_enet_nway_reset(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return genphy_restart_aneg(phydev);
|
|
}
|
|
|
|
/* ITR clock source is enet system clock (clk_ahb).
|
|
* TCTT unit is cycle_ns * 64 cycle
|
|
* So, the ICTT value = X us / (cycle_ns * 64)
|
|
*/
|
|
static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
return us * (fep->itr_clk_rate / 64000) / 1000;
|
|
}
|
|
|
|
/* Set threshold for interrupt coalescing */
|
|
static void fec_enet_itr_coal_set(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int rx_itr, tx_itr;
|
|
|
|
if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
|
|
return;
|
|
|
|
/* Must be greater than zero to avoid unpredictable behavior */
|
|
if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
|
|
!fep->tx_time_itr || !fep->tx_pkts_itr)
|
|
return;
|
|
|
|
/* Select enet system clock as Interrupt Coalescing
|
|
* timer Clock Source
|
|
*/
|
|
rx_itr = FEC_ITR_CLK_SEL;
|
|
tx_itr = FEC_ITR_CLK_SEL;
|
|
|
|
/* set ICFT and ICTT */
|
|
rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
|
|
rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
|
|
tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
|
|
tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
|
|
|
|
rx_itr |= FEC_ITR_EN;
|
|
tx_itr |= FEC_ITR_EN;
|
|
|
|
writel(tx_itr, fep->hwp + FEC_TXIC0);
|
|
writel(rx_itr, fep->hwp + FEC_RXIC0);
|
|
writel(tx_itr, fep->hwp + FEC_TXIC1);
|
|
writel(rx_itr, fep->hwp + FEC_RXIC1);
|
|
writel(tx_itr, fep->hwp + FEC_TXIC2);
|
|
writel(rx_itr, fep->hwp + FEC_RXIC2);
|
|
}
|
|
|
|
static int
|
|
fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
|
|
return -EOPNOTSUPP;
|
|
|
|
ec->rx_coalesce_usecs = fep->rx_time_itr;
|
|
ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
|
|
|
|
ec->tx_coalesce_usecs = fep->tx_time_itr;
|
|
ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
unsigned int cycle;
|
|
|
|
if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (ec->rx_max_coalesced_frames > 255) {
|
|
pr_err("Rx coalesced frames exceed hardware limiation");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ec->tx_max_coalesced_frames > 255) {
|
|
pr_err("Tx coalesced frame exceed hardware limiation");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
|
|
if (cycle > 0xFFFF) {
|
|
pr_err("Rx coalesed usec exceeed hardware limiation");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
|
|
if (cycle > 0xFFFF) {
|
|
pr_err("Rx coalesed usec exceeed hardware limiation");
|
|
return -EINVAL;
|
|
}
|
|
|
|
fep->rx_time_itr = ec->rx_coalesce_usecs;
|
|
fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
|
|
|
|
fep->tx_time_itr = ec->tx_coalesce_usecs;
|
|
fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
|
|
|
|
fec_enet_itr_coal_set(ndev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fec_enet_itr_coal_init(struct net_device *ndev)
|
|
{
|
|
struct ethtool_coalesce ec;
|
|
|
|
ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
|
|
ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
|
|
|
|
ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
|
|
ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
|
|
|
|
fec_enet_set_coalesce(ndev, &ec);
|
|
}
|
|
|
|
static int fec_enet_get_tunable(struct net_device *netdev,
|
|
const struct ethtool_tunable *tuna,
|
|
void *data)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(netdev);
|
|
int ret = 0;
|
|
|
|
switch (tuna->id) {
|
|
case ETHTOOL_RX_COPYBREAK:
|
|
*(u32 *)data = fep->rx_copybreak;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fec_enet_set_tunable(struct net_device *netdev,
|
|
const struct ethtool_tunable *tuna,
|
|
const void *data)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(netdev);
|
|
int ret = 0;
|
|
|
|
switch (tuna->id) {
|
|
case ETHTOOL_RX_COPYBREAK:
|
|
fep->rx_copybreak = *(u32 *)data;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
|
|
wol->supported = WAKE_MAGIC;
|
|
wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
|
|
} else {
|
|
wol->supported = wol->wolopts = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
|
|
return -EINVAL;
|
|
|
|
if (wol->wolopts & ~WAKE_MAGIC)
|
|
return -EINVAL;
|
|
|
|
device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
|
|
if (device_may_wakeup(&ndev->dev)) {
|
|
fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
|
|
if (fep->irq[0] > 0)
|
|
enable_irq_wake(fep->irq[0]);
|
|
} else {
|
|
fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
|
|
if (fep->irq[0] > 0)
|
|
disable_irq_wake(fep->irq[0]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct ethtool_ops fec_enet_ethtool_ops = {
|
|
.get_settings = fec_enet_get_settings,
|
|
.set_settings = fec_enet_set_settings,
|
|
.get_drvinfo = fec_enet_get_drvinfo,
|
|
.get_regs_len = fec_enet_get_regs_len,
|
|
.get_regs = fec_enet_get_regs,
|
|
.nway_reset = fec_enet_nway_reset,
|
|
.get_link = ethtool_op_get_link,
|
|
.get_coalesce = fec_enet_get_coalesce,
|
|
.set_coalesce = fec_enet_set_coalesce,
|
|
#ifndef CONFIG_M5272
|
|
.get_pauseparam = fec_enet_get_pauseparam,
|
|
.set_pauseparam = fec_enet_set_pauseparam,
|
|
.get_strings = fec_enet_get_strings,
|
|
.get_ethtool_stats = fec_enet_get_ethtool_stats,
|
|
.get_sset_count = fec_enet_get_sset_count,
|
|
#endif
|
|
.get_ts_info = fec_enet_get_ts_info,
|
|
.get_tunable = fec_enet_get_tunable,
|
|
.set_tunable = fec_enet_set_tunable,
|
|
.get_wol = fec_enet_get_wol,
|
|
.set_wol = fec_enet_set_wol,
|
|
};
|
|
|
|
static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!netif_running(ndev))
|
|
return -EINVAL;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
if (fep->bufdesc_ex) {
|
|
if (cmd == SIOCSHWTSTAMP)
|
|
return fec_ptp_set(ndev, rq);
|
|
if (cmd == SIOCGHWTSTAMP)
|
|
return fec_ptp_get(ndev, rq);
|
|
}
|
|
|
|
return phy_mii_ioctl(phydev, rq, cmd);
|
|
}
|
|
|
|
static void fec_enet_free_buffers(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
unsigned int i;
|
|
struct sk_buff *skb;
|
|
struct bufdesc *bdp;
|
|
struct fec_enet_priv_tx_q *txq;
|
|
struct fec_enet_priv_rx_q *rxq;
|
|
unsigned int q;
|
|
|
|
for (q = 0; q < fep->num_rx_queues; q++) {
|
|
rxq = fep->rx_queue[q];
|
|
bdp = rxq->bd.base;
|
|
for (i = 0; i < rxq->bd.ring_size; i++) {
|
|
skb = rxq->rx_skbuff[i];
|
|
rxq->rx_skbuff[i] = NULL;
|
|
if (skb) {
|
|
dma_unmap_single(&fep->pdev->dev,
|
|
fec32_to_cpu(bdp->cbd_bufaddr),
|
|
FEC_ENET_RX_FRSIZE - fep->rx_align,
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
}
|
|
bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
|
|
}
|
|
}
|
|
|
|
for (q = 0; q < fep->num_tx_queues; q++) {
|
|
txq = fep->tx_queue[q];
|
|
bdp = txq->bd.base;
|
|
for (i = 0; i < txq->bd.ring_size; i++) {
|
|
kfree(txq->tx_bounce[i]);
|
|
txq->tx_bounce[i] = NULL;
|
|
skb = txq->tx_skbuff[i];
|
|
txq->tx_skbuff[i] = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void fec_enet_free_queue(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int i;
|
|
struct fec_enet_priv_tx_q *txq;
|
|
|
|
for (i = 0; i < fep->num_tx_queues; i++)
|
|
if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
|
|
txq = fep->tx_queue[i];
|
|
dma_free_coherent(NULL,
|
|
txq->bd.ring_size * TSO_HEADER_SIZE,
|
|
txq->tso_hdrs,
|
|
txq->tso_hdrs_dma);
|
|
}
|
|
|
|
for (i = 0; i < fep->num_rx_queues; i++)
|
|
kfree(fep->rx_queue[i]);
|
|
for (i = 0; i < fep->num_tx_queues; i++)
|
|
kfree(fep->tx_queue[i]);
|
|
}
|
|
|
|
static int fec_enet_alloc_queue(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int i;
|
|
int ret = 0;
|
|
struct fec_enet_priv_tx_q *txq;
|
|
|
|
for (i = 0; i < fep->num_tx_queues; i++) {
|
|
txq = kzalloc(sizeof(*txq), GFP_KERNEL);
|
|
if (!txq) {
|
|
ret = -ENOMEM;
|
|
goto alloc_failed;
|
|
}
|
|
|
|
fep->tx_queue[i] = txq;
|
|
txq->bd.ring_size = TX_RING_SIZE;
|
|
fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
|
|
|
|
txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
|
|
txq->tx_wake_threshold =
|
|
(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
|
|
|
|
txq->tso_hdrs = dma_alloc_coherent(NULL,
|
|
txq->bd.ring_size * TSO_HEADER_SIZE,
|
|
&txq->tso_hdrs_dma,
|
|
GFP_KERNEL);
|
|
if (!txq->tso_hdrs) {
|
|
ret = -ENOMEM;
|
|
goto alloc_failed;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < fep->num_rx_queues; i++) {
|
|
fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
|
|
GFP_KERNEL);
|
|
if (!fep->rx_queue[i]) {
|
|
ret = -ENOMEM;
|
|
goto alloc_failed;
|
|
}
|
|
|
|
fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
|
|
fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
|
|
}
|
|
return ret;
|
|
|
|
alloc_failed:
|
|
fec_enet_free_queue(ndev);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
unsigned int i;
|
|
struct sk_buff *skb;
|
|
struct bufdesc *bdp;
|
|
struct fec_enet_priv_rx_q *rxq;
|
|
|
|
rxq = fep->rx_queue[queue];
|
|
bdp = rxq->bd.base;
|
|
for (i = 0; i < rxq->bd.ring_size; i++) {
|
|
skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
|
|
if (!skb)
|
|
goto err_alloc;
|
|
|
|
if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
|
|
dev_kfree_skb(skb);
|
|
goto err_alloc;
|
|
}
|
|
|
|
rxq->rx_skbuff[i] = skb;
|
|
bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
|
|
|
|
if (fep->bufdesc_ex) {
|
|
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
|
|
ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
|
|
}
|
|
|
|
bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
|
|
}
|
|
|
|
/* Set the last buffer to wrap. */
|
|
bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
|
|
bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
|
|
return 0;
|
|
|
|
err_alloc:
|
|
fec_enet_free_buffers(ndev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int
|
|
fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
unsigned int i;
|
|
struct bufdesc *bdp;
|
|
struct fec_enet_priv_tx_q *txq;
|
|
|
|
txq = fep->tx_queue[queue];
|
|
bdp = txq->bd.base;
|
|
for (i = 0; i < txq->bd.ring_size; i++) {
|
|
txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
|
|
if (!txq->tx_bounce[i])
|
|
goto err_alloc;
|
|
|
|
bdp->cbd_sc = cpu_to_fec16(0);
|
|
bdp->cbd_bufaddr = cpu_to_fec32(0);
|
|
|
|
if (fep->bufdesc_ex) {
|
|
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
|
|
ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
|
|
}
|
|
|
|
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
|
|
}
|
|
|
|
/* Set the last buffer to wrap. */
|
|
bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
|
|
bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
|
|
|
|
return 0;
|
|
|
|
err_alloc:
|
|
fec_enet_free_buffers(ndev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int fec_enet_alloc_buffers(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < fep->num_rx_queues; i++)
|
|
if (fec_enet_alloc_rxq_buffers(ndev, i))
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < fep->num_tx_queues; i++)
|
|
if (fec_enet_alloc_txq_buffers(ndev, i))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_enet_open(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
int ret;
|
|
|
|
ret = pm_runtime_get_sync(&fep->pdev->dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pinctrl_pm_select_default_state(&fep->pdev->dev);
|
|
ret = fec_enet_clk_enable(ndev, true);
|
|
if (ret)
|
|
goto clk_enable;
|
|
|
|
/* I should reset the ring buffers here, but I don't yet know
|
|
* a simple way to do that.
|
|
*/
|
|
|
|
ret = fec_enet_alloc_buffers(ndev);
|
|
if (ret)
|
|
goto err_enet_alloc;
|
|
|
|
/* Init MAC prior to mii bus probe */
|
|
fec_restart(ndev);
|
|
|
|
/* Probe and connect to PHY when open the interface */
|
|
ret = fec_enet_mii_probe(ndev);
|
|
if (ret)
|
|
goto err_enet_mii_probe;
|
|
|
|
napi_enable(&fep->napi);
|
|
phy_start(fep->phy_dev);
|
|
netif_tx_start_all_queues(ndev);
|
|
|
|
device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
|
|
FEC_WOL_FLAG_ENABLE);
|
|
|
|
return 0;
|
|
|
|
err_enet_mii_probe:
|
|
fec_enet_free_buffers(ndev);
|
|
err_enet_alloc:
|
|
fec_enet_clk_enable(ndev, false);
|
|
clk_enable:
|
|
pm_runtime_mark_last_busy(&fep->pdev->dev);
|
|
pm_runtime_put_autosuspend(&fep->pdev->dev);
|
|
pinctrl_pm_select_sleep_state(&fep->pdev->dev);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
fec_enet_close(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
phy_stop(fep->phy_dev);
|
|
|
|
if (netif_device_present(ndev)) {
|
|
napi_disable(&fep->napi);
|
|
netif_tx_disable(ndev);
|
|
fec_stop(ndev);
|
|
}
|
|
|
|
phy_disconnect(fep->phy_dev);
|
|
fep->phy_dev = NULL;
|
|
|
|
fec_enet_clk_enable(ndev, false);
|
|
pinctrl_pm_select_sleep_state(&fep->pdev->dev);
|
|
pm_runtime_mark_last_busy(&fep->pdev->dev);
|
|
pm_runtime_put_autosuspend(&fep->pdev->dev);
|
|
|
|
fec_enet_free_buffers(ndev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
|
* Skeleton taken from sunlance driver.
|
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
|
* MAC address filtering. Some of the drivers check to make sure it is
|
|
* a group multicast address, and discard those that are not. I guess I
|
|
* will do the same for now, but just remove the test if you want
|
|
* individual filtering as well (do the upper net layers want or support
|
|
* this kind of feature?).
|
|
*/
|
|
|
|
#define HASH_BITS 6 /* #bits in hash */
|
|
#define CRC32_POLY 0xEDB88320
|
|
|
|
static void set_multicast_list(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct netdev_hw_addr *ha;
|
|
unsigned int i, bit, data, crc, tmp;
|
|
unsigned char hash;
|
|
|
|
if (ndev->flags & IFF_PROMISC) {
|
|
tmp = readl(fep->hwp + FEC_R_CNTRL);
|
|
tmp |= 0x8;
|
|
writel(tmp, fep->hwp + FEC_R_CNTRL);
|
|
return;
|
|
}
|
|
|
|
tmp = readl(fep->hwp + FEC_R_CNTRL);
|
|
tmp &= ~0x8;
|
|
writel(tmp, fep->hwp + FEC_R_CNTRL);
|
|
|
|
if (ndev->flags & IFF_ALLMULTI) {
|
|
/* Catch all multicast addresses, so set the
|
|
* filter to all 1's
|
|
*/
|
|
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Clear filter and add the addresses in hash register
|
|
*/
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
|
|
netdev_for_each_mc_addr(ha, ndev) {
|
|
/* calculate crc32 value of mac address */
|
|
crc = 0xffffffff;
|
|
|
|
for (i = 0; i < ndev->addr_len; i++) {
|
|
data = ha->addr[i];
|
|
for (bit = 0; bit < 8; bit++, data >>= 1) {
|
|
crc = (crc >> 1) ^
|
|
(((crc ^ data) & 1) ? CRC32_POLY : 0);
|
|
}
|
|
}
|
|
|
|
/* only upper 6 bits (HASH_BITS) are used
|
|
* which point to specific bit in he hash registers
|
|
*/
|
|
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
|
|
|
|
if (hash > 31) {
|
|
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
tmp |= 1 << (hash - 32);
|
|
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
} else {
|
|
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
tmp |= 1 << hash;
|
|
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set a MAC change in hardware. */
|
|
static int
|
|
fec_set_mac_address(struct net_device *ndev, void *p)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct sockaddr *addr = p;
|
|
|
|
if (addr) {
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
|
|
}
|
|
|
|
/* Add netif status check here to avoid system hang in below case:
|
|
* ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
|
|
* After ethx down, fec all clocks are gated off and then register
|
|
* access causes system hang.
|
|
*/
|
|
if (!netif_running(ndev))
|
|
return 0;
|
|
|
|
writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
|
|
(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
|
|
fep->hwp + FEC_ADDR_LOW);
|
|
writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
|
|
fep->hwp + FEC_ADDR_HIGH);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/**
|
|
* fec_poll_controller - FEC Poll controller function
|
|
* @dev: The FEC network adapter
|
|
*
|
|
* Polled functionality used by netconsole and others in non interrupt mode
|
|
*
|
|
*/
|
|
static void fec_poll_controller(struct net_device *dev)
|
|
{
|
|
int i;
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
for (i = 0; i < FEC_IRQ_NUM; i++) {
|
|
if (fep->irq[i] > 0) {
|
|
disable_irq(fep->irq[i]);
|
|
fec_enet_interrupt(fep->irq[i], dev);
|
|
enable_irq(fep->irq[i]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static inline void fec_enet_set_netdev_features(struct net_device *netdev,
|
|
netdev_features_t features)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(netdev);
|
|
netdev_features_t changed = features ^ netdev->features;
|
|
|
|
netdev->features = features;
|
|
|
|
/* Receive checksum has been changed */
|
|
if (changed & NETIF_F_RXCSUM) {
|
|
if (features & NETIF_F_RXCSUM)
|
|
fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
|
|
else
|
|
fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
|
|
}
|
|
}
|
|
|
|
static int fec_set_features(struct net_device *netdev,
|
|
netdev_features_t features)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(netdev);
|
|
netdev_features_t changed = features ^ netdev->features;
|
|
|
|
if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
|
|
napi_disable(&fep->napi);
|
|
netif_tx_lock_bh(netdev);
|
|
fec_stop(netdev);
|
|
fec_enet_set_netdev_features(netdev, features);
|
|
fec_restart(netdev);
|
|
netif_tx_wake_all_queues(netdev);
|
|
netif_tx_unlock_bh(netdev);
|
|
napi_enable(&fep->napi);
|
|
} else {
|
|
fec_enet_set_netdev_features(netdev, features);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct net_device_ops fec_netdev_ops = {
|
|
.ndo_open = fec_enet_open,
|
|
.ndo_stop = fec_enet_close,
|
|
.ndo_start_xmit = fec_enet_start_xmit,
|
|
.ndo_set_rx_mode = set_multicast_list,
|
|
.ndo_change_mtu = eth_change_mtu,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_tx_timeout = fec_timeout,
|
|
.ndo_set_mac_address = fec_set_mac_address,
|
|
.ndo_do_ioctl = fec_enet_ioctl,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = fec_poll_controller,
|
|
#endif
|
|
.ndo_set_features = fec_set_features,
|
|
};
|
|
|
|
static const unsigned short offset_des_active_rxq[] = {
|
|
FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
|
|
};
|
|
|
|
static const unsigned short offset_des_active_txq[] = {
|
|
FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
|
|
};
|
|
|
|
/*
|
|
* XXX: We need to clean up on failure exits here.
|
|
*
|
|
*/
|
|
static int fec_enet_init(struct net_device *ndev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct bufdesc *cbd_base;
|
|
dma_addr_t bd_dma;
|
|
int bd_size;
|
|
unsigned int i;
|
|
unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
|
|
sizeof(struct bufdesc);
|
|
unsigned dsize_log2 = __fls(dsize);
|
|
|
|
WARN_ON(dsize != (1 << dsize_log2));
|
|
#if defined(CONFIG_ARM)
|
|
fep->rx_align = 0xf;
|
|
fep->tx_align = 0xf;
|
|
#else
|
|
fep->rx_align = 0x3;
|
|
fep->tx_align = 0x3;
|
|
#endif
|
|
|
|
fec_enet_alloc_queue(ndev);
|
|
|
|
bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
|
|
|
|
/* Allocate memory for buffer descriptors. */
|
|
cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
|
|
GFP_KERNEL);
|
|
if (!cbd_base) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(cbd_base, 0, bd_size);
|
|
|
|
/* Get the Ethernet address */
|
|
fec_get_mac(ndev);
|
|
/* make sure MAC we just acquired is programmed into the hw */
|
|
fec_set_mac_address(ndev, NULL);
|
|
|
|
/* Set receive and transmit descriptor base. */
|
|
for (i = 0; i < fep->num_rx_queues; i++) {
|
|
struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
|
|
unsigned size = dsize * rxq->bd.ring_size;
|
|
|
|
rxq->bd.qid = i;
|
|
rxq->bd.base = cbd_base;
|
|
rxq->bd.cur = cbd_base;
|
|
rxq->bd.dma = bd_dma;
|
|
rxq->bd.dsize = dsize;
|
|
rxq->bd.dsize_log2 = dsize_log2;
|
|
rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
|
|
bd_dma += size;
|
|
cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
|
|
rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
|
|
}
|
|
|
|
for (i = 0; i < fep->num_tx_queues; i++) {
|
|
struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
|
|
unsigned size = dsize * txq->bd.ring_size;
|
|
|
|
txq->bd.qid = i;
|
|
txq->bd.base = cbd_base;
|
|
txq->bd.cur = cbd_base;
|
|
txq->bd.dma = bd_dma;
|
|
txq->bd.dsize = dsize;
|
|
txq->bd.dsize_log2 = dsize_log2;
|
|
txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
|
|
bd_dma += size;
|
|
cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
|
|
txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
|
|
}
|
|
|
|
|
|
/* The FEC Ethernet specific entries in the device structure */
|
|
ndev->watchdog_timeo = TX_TIMEOUT;
|
|
ndev->netdev_ops = &fec_netdev_ops;
|
|
ndev->ethtool_ops = &fec_enet_ethtool_ops;
|
|
|
|
writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
|
|
netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
|
|
|
|
if (fep->quirks & FEC_QUIRK_HAS_VLAN)
|
|
/* enable hw VLAN support */
|
|
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
|
|
|
|
if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
|
|
ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
|
|
|
|
/* enable hw accelerator */
|
|
ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
|
|
| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
|
|
fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
|
|
}
|
|
|
|
if (fep->quirks & FEC_QUIRK_HAS_AVB) {
|
|
fep->tx_align = 0;
|
|
fep->rx_align = 0x3f;
|
|
}
|
|
|
|
ndev->hw_features = ndev->features;
|
|
|
|
fec_restart(ndev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
static void fec_reset_phy(struct platform_device *pdev)
|
|
{
|
|
int err, phy_reset;
|
|
bool active_high = false;
|
|
int msec = 1;
|
|
struct device_node *np = pdev->dev.of_node;
|
|
|
|
if (!np)
|
|
return;
|
|
|
|
of_property_read_u32(np, "phy-reset-duration", &msec);
|
|
/* A sane reset duration should not be longer than 1s */
|
|
if (msec > 1000)
|
|
msec = 1;
|
|
|
|
phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
|
|
if (!gpio_is_valid(phy_reset))
|
|
return;
|
|
|
|
active_high = of_property_read_bool(np, "phy-reset-active-high");
|
|
|
|
err = devm_gpio_request_one(&pdev->dev, phy_reset,
|
|
active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
|
|
"phy-reset");
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
|
|
return;
|
|
}
|
|
msleep(msec);
|
|
gpio_set_value_cansleep(phy_reset, !active_high);
|
|
}
|
|
#else /* CONFIG_OF */
|
|
static void fec_reset_phy(struct platform_device *pdev)
|
|
{
|
|
/*
|
|
* In case of platform probe, the reset has been done
|
|
* by machine code.
|
|
*/
|
|
}
|
|
#endif /* CONFIG_OF */
|
|
|
|
static void
|
|
fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
|
|
*num_tx = *num_rx = 1;
|
|
|
|
if (!np || !of_device_is_available(np))
|
|
return;
|
|
|
|
/* parse the num of tx and rx queues */
|
|
of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
|
|
|
|
of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
|
|
|
|
if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
|
|
dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
|
|
*num_tx);
|
|
*num_tx = 1;
|
|
return;
|
|
}
|
|
|
|
if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
|
|
dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
|
|
*num_rx);
|
|
*num_rx = 1;
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
fec_probe(struct platform_device *pdev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
struct fec_platform_data *pdata;
|
|
struct net_device *ndev;
|
|
int i, irq, ret = 0;
|
|
struct resource *r;
|
|
const struct of_device_id *of_id;
|
|
static int dev_id;
|
|
struct device_node *np = pdev->dev.of_node, *phy_node;
|
|
int num_tx_qs;
|
|
int num_rx_qs;
|
|
|
|
fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
|
|
|
|
/* Init network device */
|
|
ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
|
|
num_tx_qs, num_rx_qs);
|
|
if (!ndev)
|
|
return -ENOMEM;
|
|
|
|
SET_NETDEV_DEV(ndev, &pdev->dev);
|
|
|
|
/* setup board info structure */
|
|
fep = netdev_priv(ndev);
|
|
|
|
of_id = of_match_device(fec_dt_ids, &pdev->dev);
|
|
if (of_id)
|
|
pdev->id_entry = of_id->data;
|
|
fep->quirks = pdev->id_entry->driver_data;
|
|
|
|
fep->netdev = ndev;
|
|
fep->num_rx_queues = num_rx_qs;
|
|
fep->num_tx_queues = num_tx_qs;
|
|
|
|
#if !defined(CONFIG_M5272)
|
|
/* default enable pause frame auto negotiation */
|
|
if (fep->quirks & FEC_QUIRK_HAS_GBIT)
|
|
fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
|
|
#endif
|
|
|
|
/* Select default pin state */
|
|
pinctrl_pm_select_default_state(&pdev->dev);
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
fep->hwp = devm_ioremap_resource(&pdev->dev, r);
|
|
if (IS_ERR(fep->hwp)) {
|
|
ret = PTR_ERR(fep->hwp);
|
|
goto failed_ioremap;
|
|
}
|
|
|
|
fep->pdev = pdev;
|
|
fep->dev_id = dev_id++;
|
|
|
|
platform_set_drvdata(pdev, ndev);
|
|
|
|
if (of_get_property(np, "fsl,magic-packet", NULL))
|
|
fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
|
|
|
|
phy_node = of_parse_phandle(np, "phy-handle", 0);
|
|
if (!phy_node && of_phy_is_fixed_link(np)) {
|
|
ret = of_phy_register_fixed_link(np);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev,
|
|
"broken fixed-link specification\n");
|
|
goto failed_phy;
|
|
}
|
|
phy_node = of_node_get(np);
|
|
}
|
|
fep->phy_node = phy_node;
|
|
|
|
ret = of_get_phy_mode(pdev->dev.of_node);
|
|
if (ret < 0) {
|
|
pdata = dev_get_platdata(&pdev->dev);
|
|
if (pdata)
|
|
fep->phy_interface = pdata->phy;
|
|
else
|
|
fep->phy_interface = PHY_INTERFACE_MODE_MII;
|
|
} else {
|
|
fep->phy_interface = ret;
|
|
}
|
|
|
|
fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
|
|
if (IS_ERR(fep->clk_ipg)) {
|
|
ret = PTR_ERR(fep->clk_ipg);
|
|
goto failed_clk;
|
|
}
|
|
|
|
fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
|
|
if (IS_ERR(fep->clk_ahb)) {
|
|
ret = PTR_ERR(fep->clk_ahb);
|
|
goto failed_clk;
|
|
}
|
|
|
|
fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
|
|
|
|
/* enet_out is optional, depends on board */
|
|
fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
|
|
if (IS_ERR(fep->clk_enet_out))
|
|
fep->clk_enet_out = NULL;
|
|
|
|
fep->ptp_clk_on = false;
|
|
mutex_init(&fep->ptp_clk_mutex);
|
|
|
|
/* clk_ref is optional, depends on board */
|
|
fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
|
|
if (IS_ERR(fep->clk_ref))
|
|
fep->clk_ref = NULL;
|
|
|
|
fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
|
|
fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
|
|
if (IS_ERR(fep->clk_ptp)) {
|
|
fep->clk_ptp = NULL;
|
|
fep->bufdesc_ex = false;
|
|
}
|
|
|
|
ret = fec_enet_clk_enable(ndev, true);
|
|
if (ret)
|
|
goto failed_clk;
|
|
|
|
ret = clk_prepare_enable(fep->clk_ipg);
|
|
if (ret)
|
|
goto failed_clk_ipg;
|
|
|
|
fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
|
|
if (!IS_ERR(fep->reg_phy)) {
|
|
ret = regulator_enable(fep->reg_phy);
|
|
if (ret) {
|
|
dev_err(&pdev->dev,
|
|
"Failed to enable phy regulator: %d\n", ret);
|
|
goto failed_regulator;
|
|
}
|
|
} else {
|
|
fep->reg_phy = NULL;
|
|
}
|
|
|
|
pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
|
|
pm_runtime_use_autosuspend(&pdev->dev);
|
|
pm_runtime_get_noresume(&pdev->dev);
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
|
|
fec_reset_phy(pdev);
|
|
|
|
if (fep->bufdesc_ex)
|
|
fec_ptp_init(pdev);
|
|
|
|
ret = fec_enet_init(ndev);
|
|
if (ret)
|
|
goto failed_init;
|
|
|
|
for (i = 0; i < FEC_IRQ_NUM; i++) {
|
|
irq = platform_get_irq(pdev, i);
|
|
if (irq < 0) {
|
|
if (i)
|
|
break;
|
|
ret = irq;
|
|
goto failed_irq;
|
|
}
|
|
ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
|
|
0, pdev->name, ndev);
|
|
if (ret)
|
|
goto failed_irq;
|
|
|
|
fep->irq[i] = irq;
|
|
}
|
|
|
|
init_completion(&fep->mdio_done);
|
|
ret = fec_enet_mii_init(pdev);
|
|
if (ret)
|
|
goto failed_mii_init;
|
|
|
|
/* Carrier starts down, phylib will bring it up */
|
|
netif_carrier_off(ndev);
|
|
fec_enet_clk_enable(ndev, false);
|
|
pinctrl_pm_select_sleep_state(&pdev->dev);
|
|
|
|
ret = register_netdev(ndev);
|
|
if (ret)
|
|
goto failed_register;
|
|
|
|
device_init_wakeup(&ndev->dev, fep->wol_flag &
|
|
FEC_WOL_HAS_MAGIC_PACKET);
|
|
|
|
if (fep->bufdesc_ex && fep->ptp_clock)
|
|
netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
|
|
|
|
fep->rx_copybreak = COPYBREAK_DEFAULT;
|
|
INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
|
|
|
|
pm_runtime_mark_last_busy(&pdev->dev);
|
|
pm_runtime_put_autosuspend(&pdev->dev);
|
|
|
|
return 0;
|
|
|
|
failed_register:
|
|
fec_enet_mii_remove(fep);
|
|
failed_mii_init:
|
|
failed_irq:
|
|
failed_init:
|
|
fec_ptp_stop(pdev);
|
|
if (fep->reg_phy)
|
|
regulator_disable(fep->reg_phy);
|
|
failed_regulator:
|
|
clk_disable_unprepare(fep->clk_ipg);
|
|
failed_clk_ipg:
|
|
fec_enet_clk_enable(ndev, false);
|
|
failed_clk:
|
|
failed_phy:
|
|
of_node_put(phy_node);
|
|
failed_ioremap:
|
|
free_netdev(ndev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
fec_drv_remove(struct platform_device *pdev)
|
|
{
|
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
cancel_work_sync(&fep->tx_timeout_work);
|
|
fec_ptp_stop(pdev);
|
|
unregister_netdev(ndev);
|
|
fec_enet_mii_remove(fep);
|
|
if (fep->reg_phy)
|
|
regulator_disable(fep->reg_phy);
|
|
of_node_put(fep->phy_node);
|
|
free_netdev(ndev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused fec_suspend(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
rtnl_lock();
|
|
if (netif_running(ndev)) {
|
|
if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
|
|
fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
|
|
phy_stop(fep->phy_dev);
|
|
napi_disable(&fep->napi);
|
|
netif_tx_lock_bh(ndev);
|
|
netif_device_detach(ndev);
|
|
netif_tx_unlock_bh(ndev);
|
|
fec_stop(ndev);
|
|
fec_enet_clk_enable(ndev, false);
|
|
if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
|
|
pinctrl_pm_select_sleep_state(&fep->pdev->dev);
|
|
}
|
|
rtnl_unlock();
|
|
|
|
if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
|
|
regulator_disable(fep->reg_phy);
|
|
|
|
/* SOC supply clock to phy, when clock is disabled, phy link down
|
|
* SOC control phy regulator, when regulator is disabled, phy link down
|
|
*/
|
|
if (fep->clk_enet_out || fep->reg_phy)
|
|
fep->link = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused fec_resume(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
|
|
int ret;
|
|
int val;
|
|
|
|
if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
|
|
ret = regulator_enable(fep->reg_phy);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
rtnl_lock();
|
|
if (netif_running(ndev)) {
|
|
ret = fec_enet_clk_enable(ndev, true);
|
|
if (ret) {
|
|
rtnl_unlock();
|
|
goto failed_clk;
|
|
}
|
|
if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
|
|
if (pdata && pdata->sleep_mode_enable)
|
|
pdata->sleep_mode_enable(false);
|
|
val = readl(fep->hwp + FEC_ECNTRL);
|
|
val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
|
|
writel(val, fep->hwp + FEC_ECNTRL);
|
|
fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
|
|
} else {
|
|
pinctrl_pm_select_default_state(&fep->pdev->dev);
|
|
}
|
|
fec_restart(ndev);
|
|
netif_tx_lock_bh(ndev);
|
|
netif_device_attach(ndev);
|
|
netif_tx_unlock_bh(ndev);
|
|
napi_enable(&fep->napi);
|
|
phy_start(fep->phy_dev);
|
|
}
|
|
rtnl_unlock();
|
|
|
|
return 0;
|
|
|
|
failed_clk:
|
|
if (fep->reg_phy)
|
|
regulator_disable(fep->reg_phy);
|
|
return ret;
|
|
}
|
|
|
|
static int __maybe_unused fec_runtime_suspend(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
clk_disable_unprepare(fep->clk_ipg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused fec_runtime_resume(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
return clk_prepare_enable(fep->clk_ipg);
|
|
}
|
|
|
|
static const struct dev_pm_ops fec_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
|
|
SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct platform_driver fec_driver = {
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
.pm = &fec_pm_ops,
|
|
.of_match_table = fec_dt_ids,
|
|
},
|
|
.id_table = fec_devtype,
|
|
.probe = fec_probe,
|
|
.remove = fec_drv_remove,
|
|
};
|
|
|
|
module_platform_driver(fec_driver);
|
|
|
|
MODULE_ALIAS("platform:"DRIVER_NAME);
|
|
MODULE_LICENSE("GPL");
|