linux/drivers/gpu/drm/msm/adreno/a6xx_gmu.c
Douglas Anderson a3c5e2cd79 drm/msm: Fix A6XX support for opp-level
The bindings for Qualcomm opp levels changed after being Acked but
before landing.  Thus the code in the GPU driver that was relying on
the old bindings is now broken.

Let's change the code to match the new bindings by adjusting the old
string 'qcom,level' to the new string 'opp-level'.  See the patch
("dt-bindings: opp: Introduce opp-level bindings").

NOTE: we will do additional cleanup to totally remove the string from
the code and use the new dev_pm_opp_get_level() but we'll do it in a
future patch.  This will facilitate getting the important code fix in
sooner without having to deal with cross-maintainer dependencies.

This patch needs to land before the patch ("arm64: dts: sdm845: Add
gpu and gmu device nodes") since if a tree contains the device tree
patch but not this one you'll get a crash at bootup.

Fixes: 4b565ca5a2 ("drm/msm: Add A6XX device support")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Jordan Crouse <jcrouse@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
2019-01-24 15:36:33 -05:00

1269 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
#include <linux/clk.h>
#include <linux/pm_opp.h>
#include <soc/qcom/cmd-db.h>
#include "a6xx_gpu.h"
#include "a6xx_gmu.xml.h"
static irqreturn_t a6xx_gmu_irq(int irq, void *data)
{
struct a6xx_gmu *gmu = data;
u32 status;
status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS);
gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status);
if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) {
dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n");
/* Temporary until we can recover safely */
BUG();
}
if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR)
dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n");
if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n",
gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS));
return IRQ_HANDLED;
}
static irqreturn_t a6xx_hfi_irq(int irq, void *data)
{
struct a6xx_gmu *gmu = data;
u32 status;
status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO);
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status);
if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) {
dev_err_ratelimited(gmu->dev, "GMU firmware fault\n");
/* Temporary until we can recover safely */
BUG();
}
return IRQ_HANDLED;
}
bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu)
{
u32 val;
/* This can be called from gpu state code so make sure GMU is valid */
if (IS_ERR_OR_NULL(gmu->mmio))
return false;
val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
return !(val &
(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SPTPRAC_GDSC_POWER_OFF |
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SP_CLOCK_OFF));
}
/* Check to see if the GX rail is still powered */
bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu)
{
u32 val;
/* This can be called from gpu state code so make sure GMU is valid */
if (IS_ERR_OR_NULL(gmu->mmio))
return false;
val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
return !(val &
(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF |
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF));
}
static void __a6xx_gmu_set_freq(struct a6xx_gmu *gmu, int index)
{
int ret;
gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0);
gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING,
((3 & 0xf) << 28) | index);
/*
* Send an invalid index as a vote for the bus bandwidth and let the
* firmware decide on the right vote
*/
gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff);
/* Set and clear the OOB for DCVS to trigger the GMU */
a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET);
a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET);
ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN);
if (ret)
dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret);
gmu->freq = gmu->gpu_freqs[index];
}
void a6xx_gmu_set_freq(struct msm_gpu *gpu, unsigned long freq)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
u32 perf_index = 0;
if (freq == gmu->freq)
return;
for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++)
if (freq == gmu->gpu_freqs[perf_index])
break;
__a6xx_gmu_set_freq(gmu, perf_index);
}
unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
return gmu->freq;
}
static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu)
{
u32 val;
int local = gmu->idle_level;
/* SPTP and IFPC both report as IFPC */
if (gmu->idle_level == GMU_IDLE_STATE_SPTP)
local = GMU_IDLE_STATE_IFPC;
val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
if (val == local) {
if (gmu->idle_level != GMU_IDLE_STATE_IFPC ||
!a6xx_gmu_gx_is_on(gmu))
return true;
}
return false;
}
/* Wait for the GMU to get to its most idle state */
int a6xx_gmu_wait_for_idle(struct a6xx_gpu *a6xx_gpu)
{
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
return spin_until(a6xx_gmu_check_idle_level(gmu));
}
static int a6xx_gmu_start(struct a6xx_gmu *gmu)
{
int ret;
u32 val;
gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0);
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val,
val == 0xbabeface, 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev, "GMU firmware initialization timed out\n");
return ret;
}
static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu)
{
u32 val;
int ret;
gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1);
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val,
val & 1, 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev, "Unable to start the HFI queues\n");
return ret;
}
/* Trigger a OOB (out of band) request to the GMU */
int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
{
int ret;
u32 val;
int request, ack;
const char *name;
switch (state) {
case GMU_OOB_GPU_SET:
request = GMU_OOB_GPU_SET_REQUEST;
ack = GMU_OOB_GPU_SET_ACK;
name = "GPU_SET";
break;
case GMU_OOB_BOOT_SLUMBER:
request = GMU_OOB_BOOT_SLUMBER_REQUEST;
ack = GMU_OOB_BOOT_SLUMBER_ACK;
name = "BOOT_SLUMBER";
break;
case GMU_OOB_DCVS_SET:
request = GMU_OOB_DCVS_REQUEST;
ack = GMU_OOB_DCVS_ACK;
name = "GPU_DCVS";
break;
default:
return -EINVAL;
}
/* Trigger the equested OOB operation */
gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request);
/* Wait for the acknowledge interrupt */
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
val & (1 << ack), 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev,
"Timeout waiting for GMU OOB set %s: 0x%x\n",
name,
gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO));
/* Clear the acknowledge interrupt */
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack);
return ret;
}
/* Clear a pending OOB state in the GMU */
void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
{
switch (state) {
case GMU_OOB_GPU_SET:
gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
1 << GMU_OOB_GPU_SET_CLEAR);
break;
case GMU_OOB_BOOT_SLUMBER:
gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
1 << GMU_OOB_BOOT_SLUMBER_CLEAR);
break;
case GMU_OOB_DCVS_SET:
gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
1 << GMU_OOB_DCVS_CLEAR);
break;
}
}
/* Enable CPU control of SPTP power power collapse */
static int a6xx_sptprac_enable(struct a6xx_gmu *gmu)
{
int ret;
u32 val;
gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000);
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
(val & 0x38) == 0x28, 1, 100);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n",
gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
}
return 0;
}
/* Disable CPU control of SPTP power power collapse */
static void a6xx_sptprac_disable(struct a6xx_gmu *gmu)
{
u32 val;
int ret;
/* Make sure retention is on */
gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11));
gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001);
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
(val & 0x04), 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev, "failed to power off SPTPRAC: 0x%x\n",
gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
}
/* Let the GMU know we are starting a boot sequence */
static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu)
{
u32 vote;
/* Let the GMU know we are getting ready for boot */
gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0);
/* Choose the "default" power level as the highest available */
vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1];
gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff);
gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff);
/* Let the GMU know the boot sequence has started */
return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
}
/* Let the GMU know that we are about to go into slumber */
static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu)
{
int ret;
/* Disable the power counter so the GMU isn't busy */
gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
/* Disable SPTP_PC if the CPU is responsible for it */
if (gmu->idle_level < GMU_IDLE_STATE_SPTP)
a6xx_sptprac_disable(gmu);
/* Tell the GMU to get ready to slumber */
gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1);
ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
if (!ret) {
/* Check to see if the GMU really did slumber */
if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE)
!= 0x0f) {
DRM_DEV_ERROR(gmu->dev, "The GMU did not go into slumber\n");
ret = -ETIMEDOUT;
}
}
/* Put fence into allow mode */
gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
return ret;
}
static int a6xx_rpmh_start(struct a6xx_gmu *gmu)
{
int ret;
u32 val;
gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1);
/* Wait for the register to finish posting */
wmb();
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val,
val & (1 << 1), 100, 10000);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "Unable to power on the GPU RSC\n");
return ret;
}
ret = gmu_poll_timeout(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val,
!val, 100, 10000);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n");
return ret;
}
gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
/* Set up CX GMU counter 0 to count busy ticks */
gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, 0x20);
/* Enable the power counter */
gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
return 0;
}
static void a6xx_rpmh_stop(struct a6xx_gmu *gmu)
{
int ret;
u32 val;
gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1);
ret = gmu_poll_timeout(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0,
val, val & (1 << 16), 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev, "Unable to power off the GPU RSC\n");
gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
}
static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value)
{
return msm_writel(value, ptr + (offset << 2));
}
static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
const char *name);
static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu)
{
struct platform_device *pdev = to_platform_device(gmu->dev);
void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc");
void __iomem *seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq");
if (!pdcptr || !seqptr)
goto err;
/* Disable SDE clock gating */
gmu_write(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24));
/* Setup RSC PDC handshake for sleep and wakeup */
gmu_write(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1);
gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0);
gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0);
gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0);
gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0);
gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000);
gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0);
gmu_write(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0);
gmu_write(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520);
gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510);
gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514);
/* Load RSC sequencer uCode for sleep and wakeup */
gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0);
gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7);
gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1);
gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2);
gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8);
/* Load PDC sequencer uCode for power up and power down sequence */
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1);
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2);
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0);
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284);
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc);
/* Set TCS commands used by PDC sequence for low power modes */
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, 0x30080);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, 0x30080);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3);
/* Setup GPU PDC */
pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001);
/* ensure no writes happen before the uCode is fully written */
wmb();
err:
devm_iounmap(gmu->dev, pdcptr);
devm_iounmap(gmu->dev, seqptr);
}
/*
* The lowest 16 bits of this value are the number of XO clock cycles for main
* hysteresis which is set at 0x1680 cycles (300 us). The higher 16 bits are
* for the shorter hysteresis that happens after main - this is 0xa (.5 us)
*/
#define GMU_PWR_COL_HYST 0x000a1680
/* Set up the idle state for the GMU */
static void a6xx_gmu_power_config(struct a6xx_gmu *gmu)
{
/* Disable GMU WB/RB buffer */
gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1);
gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400);
switch (gmu->idle_level) {
case GMU_IDLE_STATE_IFPC:
gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
GMU_PWR_COL_HYST);
gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE);
/* Fall through */
case GMU_IDLE_STATE_SPTP:
gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST,
GMU_PWR_COL_HYST);
gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE);
}
/* Enable RPMh GPU client */
gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0,
A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE |
A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE |
A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE |
A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE |
A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE |
A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE);
}
static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state)
{
static bool rpmh_init;
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
int i, ret;
u32 chipid;
u32 *image;
if (state == GMU_WARM_BOOT) {
ret = a6xx_rpmh_start(gmu);
if (ret)
return ret;
} else {
if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU],
"GMU firmware is not loaded\n"))
return -ENOENT;
/* Sanity check the size of the firmware that was loaded */
if (adreno_gpu->fw[ADRENO_FW_GMU]->size > 0x8000) {
DRM_DEV_ERROR(gmu->dev,
"GMU firmware is bigger than the available region\n");
return -EINVAL;
}
/* Turn on register retention */
gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1);
/* We only need to load the RPMh microcode once */
if (!rpmh_init) {
a6xx_gmu_rpmh_init(gmu);
rpmh_init = true;
} else if (state != GMU_RESET) {
ret = a6xx_rpmh_start(gmu);
if (ret)
return ret;
}
image = (u32 *) adreno_gpu->fw[ADRENO_FW_GMU]->data;
for (i = 0; i < adreno_gpu->fw[ADRENO_FW_GMU]->size >> 2; i++)
gmu_write(gmu, REG_A6XX_GMU_CM3_ITCM_START + i,
image[i]);
}
gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0);
gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02);
/* Write the iova of the HFI table */
gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi->iova);
gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1);
gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0,
(1 << 31) | (0xa << 18) | (0xa0));
chipid = adreno_gpu->rev.core << 24;
chipid |= adreno_gpu->rev.major << 16;
chipid |= adreno_gpu->rev.minor << 12;
chipid |= adreno_gpu->rev.patchid << 8;
gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid);
/* Set up the lowest idle level on the GMU */
a6xx_gmu_power_config(gmu);
ret = a6xx_gmu_start(gmu);
if (ret)
return ret;
ret = a6xx_gmu_gfx_rail_on(gmu);
if (ret)
return ret;
/* Enable SPTP_PC if the CPU is responsible for it */
if (gmu->idle_level < GMU_IDLE_STATE_SPTP) {
ret = a6xx_sptprac_enable(gmu);
if (ret)
return ret;
}
ret = a6xx_gmu_hfi_start(gmu);
if (ret)
return ret;
/* FIXME: Do we need this wmb() here? */
wmb();
return 0;
}
#define A6XX_HFI_IRQ_MASK \
(A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT)
#define A6XX_GMU_IRQ_MASK \
(A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \
A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \
A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
static void a6xx_gmu_irq_enable(struct a6xx_gmu *gmu)
{
gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0);
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0);
gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK,
~A6XX_GMU_IRQ_MASK);
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK,
~A6XX_HFI_IRQ_MASK);
enable_irq(gmu->gmu_irq);
enable_irq(gmu->hfi_irq);
}
static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu)
{
disable_irq(gmu->gmu_irq);
disable_irq(gmu->hfi_irq);
gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0);
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0);
}
int a6xx_gmu_reset(struct a6xx_gpu *a6xx_gpu)
{
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
int ret;
u32 val;
/* Flush all the queues */
a6xx_hfi_stop(gmu);
/* Stop the interrupts */
a6xx_gmu_irq_disable(gmu);
/* Force off SPTP in case the GMU is managing it */
a6xx_sptprac_disable(gmu);
/* Make sure there are no outstanding RPMh votes */
gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val,
(val & 1), 100, 10000);
gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val,
(val & 1), 100, 10000);
gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val,
(val & 1), 100, 10000);
gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val,
(val & 1), 100, 1000);
/* Force off the GX GSDC */
regulator_force_disable(gmu->gx);
/* Disable the resources */
clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
pm_runtime_put_sync(gmu->dev);
/* Re-enable the resources */
pm_runtime_get_sync(gmu->dev);
/* Use a known rate to bring up the GMU */
clk_set_rate(gmu->core_clk, 200000000);
ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
if (ret)
goto out;
a6xx_gmu_irq_enable(gmu);
ret = a6xx_gmu_fw_start(gmu, GMU_RESET);
if (!ret)
ret = a6xx_hfi_start(gmu, GMU_COLD_BOOT);
/* Set the GPU back to the highest power frequency */
__a6xx_gmu_set_freq(gmu, gmu->nr_gpu_freqs - 1);
out:
if (ret)
a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
return ret;
}
int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu)
{
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
int status, ret;
if (WARN(!gmu->mmio, "The GMU is not set up yet\n"))
return 0;
/* Turn on the resources */
pm_runtime_get_sync(gmu->dev);
/* Use a known rate to bring up the GMU */
clk_set_rate(gmu->core_clk, 200000000);
ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
if (ret)
goto out;
a6xx_gmu_irq_enable(gmu);
/* Check to see if we are doing a cold or warm boot */
status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ?
GMU_WARM_BOOT : GMU_COLD_BOOT;
ret = a6xx_gmu_fw_start(gmu, status);
if (ret)
goto out;
ret = a6xx_hfi_start(gmu, status);
/* Set the GPU to the highest power frequency */
__a6xx_gmu_set_freq(gmu, gmu->nr_gpu_freqs - 1);
out:
/* Make sure to turn off the boot OOB request on error */
if (ret)
a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
return ret;
}
bool a6xx_gmu_isidle(struct a6xx_gmu *gmu)
{
u32 reg;
if (!gmu->mmio)
return true;
reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS);
if (reg & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB)
return false;
return true;
}
int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu)
{
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
u32 val;
/*
* The GMU may still be in slumber unless the GPU started so check and
* skip putting it back into slumber if so
*/
val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
if (val != 0xf) {
int ret = a6xx_gmu_wait_for_idle(a6xx_gpu);
/* Temporary until we can recover safely */
BUG_ON(ret);
/* tell the GMU we want to slumber */
a6xx_gmu_notify_slumber(gmu);
ret = gmu_poll_timeout(gmu,
REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val,
!(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB),
100, 10000);
/*
* Let the user know we failed to slumber but don't worry too
* much because we are powering down anyway
*/
if (ret)
DRM_DEV_ERROR(gmu->dev,
"Unable to slumber GMU: status = 0%x/0%x\n",
gmu_read(gmu,
REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS),
gmu_read(gmu,
REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2));
}
/* Turn off HFI */
a6xx_hfi_stop(gmu);
/* Stop the interrupts and mask the hardware */
a6xx_gmu_irq_disable(gmu);
/* Tell RPMh to power off the GPU */
a6xx_rpmh_stop(gmu);
clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
pm_runtime_put_sync(gmu->dev);
return 0;
}
static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo)
{
int count, i;
u64 iova;
if (IS_ERR_OR_NULL(bo))
return;
count = bo->size >> PAGE_SHIFT;
iova = bo->iova;
for (i = 0; i < count; i++, iova += PAGE_SIZE) {
iommu_unmap(gmu->domain, iova, PAGE_SIZE);
__free_pages(bo->pages[i], 0);
}
kfree(bo->pages);
kfree(bo);
}
static struct a6xx_gmu_bo *a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu,
size_t size)
{
struct a6xx_gmu_bo *bo;
int ret, count, i;
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (!bo)
return ERR_PTR(-ENOMEM);
bo->size = PAGE_ALIGN(size);
count = bo->size >> PAGE_SHIFT;
bo->pages = kcalloc(count, sizeof(struct page *), GFP_KERNEL);
if (!bo->pages) {
kfree(bo);
return ERR_PTR(-ENOMEM);
}
for (i = 0; i < count; i++) {
bo->pages[i] = alloc_page(GFP_KERNEL);
if (!bo->pages[i])
goto err;
}
bo->iova = gmu->uncached_iova_base;
for (i = 0; i < count; i++) {
ret = iommu_map(gmu->domain,
bo->iova + (PAGE_SIZE * i),
page_to_phys(bo->pages[i]), PAGE_SIZE,
IOMMU_READ | IOMMU_WRITE);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "Unable to map GMU buffer object\n");
for (i = i - 1 ; i >= 0; i--)
iommu_unmap(gmu->domain,
bo->iova + (PAGE_SIZE * i),
PAGE_SIZE);
goto err;
}
}
bo->virt = vmap(bo->pages, count, VM_IOREMAP,
pgprot_writecombine(PAGE_KERNEL));
if (!bo->virt)
goto err;
/* Align future IOVA addresses on 1MB boundaries */
gmu->uncached_iova_base += ALIGN(size, SZ_1M);
return bo;
err:
for (i = 0; i < count; i++) {
if (bo->pages[i])
__free_pages(bo->pages[i], 0);
}
kfree(bo->pages);
kfree(bo);
return ERR_PTR(-ENOMEM);
}
static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu)
{
int ret;
/*
* The GMU address space is hardcoded to treat the range
* 0x60000000 - 0x80000000 as un-cached memory. All buffers shared
* between the GMU and the CPU will live in this space
*/
gmu->uncached_iova_base = 0x60000000;
gmu->domain = iommu_domain_alloc(&platform_bus_type);
if (!gmu->domain)
return -ENODEV;
ret = iommu_attach_device(gmu->domain, gmu->dev);
if (ret) {
iommu_domain_free(gmu->domain);
gmu->domain = NULL;
}
return ret;
}
/* Get the list of RPMh voltage levels from cmd-db */
static int a6xx_gmu_rpmh_arc_cmds(const char *id, void *vals, int size)
{
u32 len = cmd_db_read_aux_data_len(id);
if (!len)
return 0;
if (WARN_ON(len > size))
return -EINVAL;
cmd_db_read_aux_data(id, vals, len);
/*
* The data comes back as an array of unsigned shorts so adjust the
* count accordingly
*/
return len >> 1;
}
/* Return the 'arc-level' for the given frequency */
static u32 a6xx_gmu_get_arc_level(struct device *dev, unsigned long freq)
{
struct dev_pm_opp *opp;
struct device_node *np;
u32 val = 0;
if (!freq)
return 0;
opp = dev_pm_opp_find_freq_exact(dev, freq, true);
if (IS_ERR(opp))
return 0;
np = dev_pm_opp_get_of_node(opp);
if (np) {
of_property_read_u32(np, "opp-level", &val);
of_node_put(np);
}
dev_pm_opp_put(opp);
return val;
}
static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes,
unsigned long *freqs, int freqs_count,
u16 *pri, int pri_count,
u16 *sec, int sec_count)
{
int i, j;
/* Construct a vote for each frequency */
for (i = 0; i < freqs_count; i++) {
u8 pindex = 0, sindex = 0;
u32 level = a6xx_gmu_get_arc_level(dev, freqs[i]);
/* Get the primary index that matches the arc level */
for (j = 0; j < pri_count; j++) {
if (pri[j] >= level) {
pindex = j;
break;
}
}
if (j == pri_count) {
DRM_DEV_ERROR(dev,
"Level %u not found in in the RPMh list\n",
level);
DRM_DEV_ERROR(dev, "Available levels:\n");
for (j = 0; j < pri_count; j++)
DRM_DEV_ERROR(dev, " %u\n", pri[j]);
return -EINVAL;
}
/*
* Look for a level in in the secondary list that matches. If
* nothing fits, use the maximum non zero vote
*/
for (j = 0; j < sec_count; j++) {
if (sec[j] >= level) {
sindex = j;
break;
} else if (sec[j]) {
sindex = j;
}
}
/* Construct the vote */
votes[i] = ((pri[pindex] & 0xffff) << 16) |
(sindex << 8) | pindex;
}
return 0;
}
/*
* The GMU votes with the RPMh for itself and on behalf of the GPU but we need
* to construct the list of votes on the CPU and send it over. Query the RPMh
* voltage levels and build the votes
*/
static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
u16 gx[16], cx[16], mx[16];
u32 gxcount, cxcount, mxcount;
int ret;
/* Get the list of available voltage levels for each component */
gxcount = a6xx_gmu_rpmh_arc_cmds("gfx.lvl", gx, sizeof(gx));
cxcount = a6xx_gmu_rpmh_arc_cmds("cx.lvl", cx, sizeof(cx));
mxcount = a6xx_gmu_rpmh_arc_cmds("mx.lvl", mx, sizeof(mx));
/* Build the GX votes */
ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes,
gmu->gpu_freqs, gmu->nr_gpu_freqs,
gx, gxcount, mx, mxcount);
/* Build the CX votes */
ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes,
gmu->gmu_freqs, gmu->nr_gmu_freqs,
cx, cxcount, mx, mxcount);
return ret;
}
static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs,
u32 size)
{
int count = dev_pm_opp_get_opp_count(dev);
struct dev_pm_opp *opp;
int i, index = 0;
unsigned long freq = 1;
/*
* The OPP table doesn't contain the "off" frequency level so we need to
* add 1 to the table size to account for it
*/
if (WARN(count + 1 > size,
"The GMU frequency table is being truncated\n"))
count = size - 1;
/* Set the "off" frequency */
freqs[index++] = 0;
for (i = 0; i < count; i++) {
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
if (IS_ERR(opp))
break;
dev_pm_opp_put(opp);
freqs[index++] = freq++;
}
return index;
}
static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
int ret = 0;
/*
* The GMU handles its own frequency switching so build a list of
* available frequencies to send during initialization
*/
ret = dev_pm_opp_of_add_table(gmu->dev);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "Unable to set the OPP table for the GMU\n");
return ret;
}
gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev,
gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs));
/*
* The GMU also handles GPU frequency switching so build a list
* from the GPU OPP table
*/
gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev,
gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs));
/* Build the list of RPMh votes that we'll send to the GMU */
return a6xx_gmu_rpmh_votes_init(gmu);
}
static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu)
{
int ret = msm_clk_bulk_get(gmu->dev, &gmu->clocks);
if (ret < 1)
return ret;
gmu->nr_clocks = ret;
gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks,
gmu->nr_clocks, "gmu");
return 0;
}
static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
const char *name)
{
void __iomem *ret;
struct resource *res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, name);
if (!res) {
DRM_DEV_ERROR(&pdev->dev, "Unable to find the %s registers\n", name);
return ERR_PTR(-EINVAL);
}
ret = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!ret) {
DRM_DEV_ERROR(&pdev->dev, "Unable to map the %s registers\n", name);
return ERR_PTR(-EINVAL);
}
return ret;
}
static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev,
const char *name, irq_handler_t handler)
{
int irq, ret;
irq = platform_get_irq_byname(pdev, name);
ret = devm_request_irq(&pdev->dev, irq, handler, IRQF_TRIGGER_HIGH,
name, gmu);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "Unable to get interrupt %s\n", name);
return ret;
}
disable_irq(irq);
return irq;
}
void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu)
{
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
if (IS_ERR_OR_NULL(gmu->mmio))
return;
pm_runtime_disable(gmu->dev);
a6xx_gmu_stop(a6xx_gpu);
a6xx_gmu_irq_disable(gmu);
a6xx_gmu_memory_free(gmu, gmu->hfi);
iommu_detach_device(gmu->domain, gmu->dev);
iommu_domain_free(gmu->domain);
}
int a6xx_gmu_probe(struct a6xx_gpu *a6xx_gpu, struct device_node *node)
{
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
struct platform_device *pdev = of_find_device_by_node(node);
int ret;
if (!pdev)
return -ENODEV;
gmu->dev = &pdev->dev;
of_dma_configure(gmu->dev, node, true);
/* Fow now, don't do anything fancy until we get our feet under us */
gmu->idle_level = GMU_IDLE_STATE_ACTIVE;
pm_runtime_enable(gmu->dev);
gmu->gx = devm_regulator_get(gmu->dev, "vdd");
/* Get the list of clocks */
ret = a6xx_gmu_clocks_probe(gmu);
if (ret)
return ret;
/* Set up the IOMMU context bank */
ret = a6xx_gmu_memory_probe(gmu);
if (ret)
return ret;
/* Allocate memory for for the HFI queues */
gmu->hfi = a6xx_gmu_memory_alloc(gmu, SZ_16K);
if (IS_ERR(gmu->hfi))
goto err;
/* Allocate memory for the GMU debug region */
gmu->debug = a6xx_gmu_memory_alloc(gmu, SZ_16K);
if (IS_ERR(gmu->debug))
goto err;
/* Map the GMU registers */
gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu");
if (IS_ERR(gmu->mmio))
goto err;
/* Get the HFI and GMU interrupts */
gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq);
gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq);
if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0)
goto err;
/* Get the power levels for the GMU and GPU */
a6xx_gmu_pwrlevels_probe(gmu);
/* Set up the HFI queues */
a6xx_hfi_init(gmu);
return 0;
err:
a6xx_gmu_memory_free(gmu, gmu->hfi);
if (gmu->domain) {
iommu_detach_device(gmu->domain, gmu->dev);
iommu_domain_free(gmu->domain);
}
return -ENODEV;
}