linux/drivers/infiniband/core/addr.c
Parav Pandit a362ea1d9e RDMA/core: Introduce and use rdma_set_src_addr() between IPv4 and IPv6
rdma_translate_ip() is done while resolving address for the loopback
addresses. The current flow is convoluted with resolve neighbor being
optional.

This patch simplifies the code in following ways.

(a) Use common code between IPv4 and IPv6 for address translation,
    loopback checks and acquiring netdevice.
(b) During neigh resolve in addr_resolve_neigh(), only copy destination
    address.
(c) Always resolve the source address before the destination address,
    because it doesn't depend on resolving neigh being requested or not.

This helps to reduce 3 calls of rdma_copy_addr and rdma_translate_ip to
one and makes it easier to follow the code flow.

Now that ib_nl_fetch_ha() doesn't depend on dst, drop dst argument from
ib_nl_fetch_ha().

Signed-off-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Daniel Jurgens <danielj@mellanox.com>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-09-12 15:48:08 -06:00

776 lines
19 KiB
C

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <net/arp.h>
#include <net/neighbour.h>
#include <net/route.h>
#include <net/netevent.h>
#include <net/addrconf.h>
#include <net/ip6_route.h>
#include <rdma/ib_addr.h>
#include <rdma/ib.h>
#include <rdma/rdma_netlink.h>
#include <net/netlink.h>
#include "core_priv.h"
struct addr_req {
struct list_head list;
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
struct rdma_dev_addr *addr;
void *context;
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context);
unsigned long timeout;
struct delayed_work work;
int status;
u32 seq;
};
static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
static DEFINE_SPINLOCK(lock);
static LIST_HEAD(req_list);
static struct workqueue_struct *addr_wq;
static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
.len = sizeof(struct rdma_nla_ls_gid)},
};
static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
{
struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
int ret;
if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
return false;
ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
nlmsg_len(nlh), ib_nl_addr_policy, NULL);
if (ret)
return false;
return true;
}
static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
{
const struct nlattr *head, *curr;
union ib_gid gid;
struct addr_req *req;
int len, rem;
int found = 0;
head = (const struct nlattr *)nlmsg_data(nlh);
len = nlmsg_len(nlh);
nla_for_each_attr(curr, head, len, rem) {
if (curr->nla_type == LS_NLA_TYPE_DGID)
memcpy(&gid, nla_data(curr), nla_len(curr));
}
spin_lock_bh(&lock);
list_for_each_entry(req, &req_list, list) {
if (nlh->nlmsg_seq != req->seq)
continue;
/* We set the DGID part, the rest was set earlier */
rdma_addr_set_dgid(req->addr, &gid);
req->status = 0;
found = 1;
break;
}
spin_unlock_bh(&lock);
if (!found)
pr_info("Couldn't find request waiting for DGID: %pI6\n",
&gid);
}
int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
!(NETLINK_CB(skb).sk))
return -EPERM;
if (ib_nl_is_good_ip_resp(nlh))
ib_nl_process_good_ip_rsep(nlh);
return skb->len;
}
static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
const void *daddr,
u32 seq, u16 family)
{
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
struct rdma_ls_ip_resolve_header *header;
void *data;
size_t size;
int attrtype;
int len;
if (family == AF_INET) {
size = sizeof(struct in_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
} else {
size = sizeof(struct in6_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
}
len = nla_total_size(sizeof(size));
len += NLMSG_ALIGN(sizeof(*header));
skb = nlmsg_new(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
if (!data) {
nlmsg_free(skb);
return -ENODATA;
}
/* Construct the family header first */
header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
header->ifindex = dev_addr->bound_dev_if;
nla_put(skb, attrtype, size, daddr);
/* Repair the nlmsg header length */
nlmsg_end(skb, nlh);
rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
/* Make the request retry, so when we get the response from userspace
* we will have something.
*/
return -ENODATA;
}
int rdma_addr_size(const struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return sizeof(struct sockaddr_in);
case AF_INET6:
return sizeof(struct sockaddr_in6);
case AF_IB:
return sizeof(struct sockaddr_ib);
default:
return 0;
}
}
EXPORT_SYMBOL(rdma_addr_size);
int rdma_addr_size_in6(struct sockaddr_in6 *addr)
{
int ret = rdma_addr_size((struct sockaddr *) addr);
return ret <= sizeof(*addr) ? ret : 0;
}
EXPORT_SYMBOL(rdma_addr_size_in6);
int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
{
int ret = rdma_addr_size((struct sockaddr *) addr);
return ret <= sizeof(*addr) ? ret : 0;
}
EXPORT_SYMBOL(rdma_addr_size_kss);
void rdma_copy_addr(struct rdma_dev_addr *dev_addr,
const struct net_device *dev,
const unsigned char *dst_dev_addr)
{
dev_addr->dev_type = dev->type;
memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
if (dst_dev_addr)
memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
dev_addr->bound_dev_if = dev->ifindex;
}
EXPORT_SYMBOL(rdma_copy_addr);
static struct net_device *
rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
{
struct net_device *dev = NULL;
int ret = -EADDRNOTAVAIL;
switch (src_in->sa_family) {
case AF_INET:
dev = __ip_dev_find(net,
((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
false);
if (dev)
ret = 0;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
for_each_netdev_rcu(net, dev) {
if (ipv6_chk_addr(net,
&((const struct sockaddr_in6 *)src_in)->sin6_addr,
dev, 1)) {
ret = 0;
break;
}
}
break;
#endif
}
return ret ? ERR_PTR(ret) : dev;
}
int rdma_translate_ip(const struct sockaddr *addr,
struct rdma_dev_addr *dev_addr)
{
struct net_device *dev;
if (dev_addr->bound_dev_if) {
dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
if (!dev)
return -ENODEV;
rdma_copy_addr(dev_addr, dev, NULL);
dev_put(dev);
return 0;
}
rcu_read_lock();
dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
if (!IS_ERR(dev))
rdma_copy_addr(dev_addr, dev, NULL);
rcu_read_unlock();
return PTR_ERR_OR_ZERO(dev);
}
EXPORT_SYMBOL(rdma_translate_ip);
static void set_timeout(struct addr_req *req, unsigned long time)
{
unsigned long delay;
delay = time - jiffies;
if ((long)delay < 0)
delay = 0;
mod_delayed_work(addr_wq, &req->work, delay);
}
static void queue_req(struct addr_req *req)
{
spin_lock_bh(&lock);
list_add_tail(&req->list, &req_list);
set_timeout(req, req->timeout);
spin_unlock_bh(&lock);
}
static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
const void *daddr, u32 seq, u16 family)
{
if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
return -EADDRNOTAVAIL;
return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
}
static int dst_fetch_ha(const struct dst_entry *dst,
struct rdma_dev_addr *dev_addr,
const void *daddr)
{
struct neighbour *n;
int ret = 0;
n = dst_neigh_lookup(dst, daddr);
if (!n)
return -ENODATA;
if (!(n->nud_state & NUD_VALID)) {
neigh_event_send(n, NULL);
ret = -ENODATA;
} else {
memcpy(dev_addr->dst_dev_addr, n->ha, MAX_ADDR_LEN);
}
neigh_release(n);
return ret;
}
static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
{
struct rtable *rt;
struct rt6_info *rt6;
if (family == AF_INET) {
rt = container_of(dst, struct rtable, dst);
return rt->rt_uses_gateway;
}
rt6 = container_of(dst, struct rt6_info, dst);
return rt6->rt6i_flags & RTF_GATEWAY;
}
static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const struct sockaddr *dst_in, u32 seq)
{
const struct sockaddr_in *dst_in4 =
(const struct sockaddr_in *)dst_in;
const struct sockaddr_in6 *dst_in6 =
(const struct sockaddr_in6 *)dst_in;
const void *daddr = (dst_in->sa_family == AF_INET) ?
(const void *)&dst_in4->sin_addr.s_addr :
(const void *)&dst_in6->sin6_addr;
sa_family_t family = dst_in->sa_family;
/* Gateway + ARPHRD_INFINIBAND -> IB router */
if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
else
return dst_fetch_ha(dst, dev_addr, daddr);
}
static int addr4_resolve(struct sockaddr *src_sock,
const struct sockaddr *dst_sock,
struct rdma_dev_addr *addr,
struct rtable **prt)
{
struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
const struct sockaddr_in *dst_in =
(const struct sockaddr_in *)dst_sock;
__be32 src_ip = src_in->sin_addr.s_addr;
__be32 dst_ip = dst_in->sin_addr.s_addr;
struct rtable *rt;
struct flowi4 fl4;
int ret;
memset(&fl4, 0, sizeof(fl4));
fl4.daddr = dst_ip;
fl4.saddr = src_ip;
fl4.flowi4_oif = addr->bound_dev_if;
rt = ip_route_output_key(addr->net, &fl4);
ret = PTR_ERR_OR_ZERO(rt);
if (ret)
return ret;
src_in->sin_addr.s_addr = fl4.saddr;
/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
* definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
* type accordingly.
*/
if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
addr->network = RDMA_NETWORK_IPV4;
addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
*prt = rt;
return 0;
}
#if IS_ENABLED(CONFIG_IPV6)
static int addr6_resolve(struct sockaddr *src_sock,
const struct sockaddr *dst_sock,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
const struct sockaddr_in6 *dst_in =
(const struct sockaddr_in6 *)dst_sock;
struct flowi6 fl6;
struct dst_entry *dst;
struct rt6_info *rt;
int ret;
memset(&fl6, 0, sizeof fl6);
fl6.daddr = dst_in->sin6_addr;
fl6.saddr = src_in->sin6_addr;
fl6.flowi6_oif = addr->bound_dev_if;
ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
if (ret < 0)
return ret;
rt = (struct rt6_info *)dst;
if (ipv6_addr_any(&src_in->sin6_addr))
src_in->sin6_addr = fl6.saddr;
/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
* definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
* type accordingly.
*/
if (rt->rt6i_flags & RTF_GATEWAY &&
ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
addr->network = RDMA_NETWORK_IPV6;
addr->hoplimit = ip6_dst_hoplimit(dst);
*pdst = dst;
return 0;
}
#else
static int addr6_resolve(struct sockaddr *src_sock,
const struct sockaddr *dst_sock,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
return -EADDRNOTAVAIL;
}
#endif
static int addr_resolve_neigh(const struct dst_entry *dst,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
u32 seq)
{
if (dst->dev->flags & IFF_LOOPBACK) {
memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
return 0;
}
/* If the device doesn't do ARP internally */
if (!(dst->dev->flags & IFF_NOARP))
return fetch_ha(dst, addr, dst_in, seq);
return 0;
}
static int rdma_set_src_addr(const struct dst_entry *dst,
const struct sockaddr *dst_in,
struct rdma_dev_addr *dev_addr)
{
int ret = 0;
if (dst->dev->flags & IFF_LOOPBACK)
ret = rdma_translate_ip(dst_in, dev_addr);
else
rdma_copy_addr(dev_addr, dst->dev, NULL);
return ret;
}
static int addr_resolve(struct sockaddr *src_in,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
bool resolve_neigh,
u32 seq)
{
struct rtable *rt = NULL;
struct dst_entry *dst;
int ret;
if (!addr->net) {
pr_warn_ratelimited("%s: missing namespace\n", __func__);
return -EINVAL;
}
if (src_in->sa_family == AF_INET) {
ret = addr4_resolve(src_in, dst_in, addr, &rt);
if (ret)
return ret;
ret = rdma_set_src_addr(&rt->dst, dst_in, addr);
if (!ret && resolve_neigh)
ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
ip_rt_put(rt);
} else {
ret = addr6_resolve(src_in, dst_in, addr, &dst);
if (ret)
return ret;
ret = rdma_set_src_addr(dst, dst_in, addr);
if (!ret && resolve_neigh)
ret = addr_resolve_neigh(dst, dst_in, addr, seq);
dst_release(dst);
}
return ret;
}
static void process_one_req(struct work_struct *_work)
{
struct addr_req *req;
struct sockaddr *src_in, *dst_in;
req = container_of(_work, struct addr_req, work.work);
if (req->status == -ENODATA) {
src_in = (struct sockaddr *)&req->src_addr;
dst_in = (struct sockaddr *)&req->dst_addr;
req->status = addr_resolve(src_in, dst_in, req->addr,
true, req->seq);
if (req->status && time_after_eq(jiffies, req->timeout)) {
req->status = -ETIMEDOUT;
} else if (req->status == -ENODATA) {
/* requeue the work for retrying again */
spin_lock_bh(&lock);
if (!list_empty(&req->list))
set_timeout(req, req->timeout);
spin_unlock_bh(&lock);
return;
}
}
req->callback(req->status, (struct sockaddr *)&req->src_addr,
req->addr, req->context);
req->callback = NULL;
spin_lock_bh(&lock);
if (!list_empty(&req->list)) {
/*
* Although the work will normally have been canceled by the
* workqueue, it can still be requeued as long as it is on the
* req_list.
*/
cancel_delayed_work(&req->work);
list_del_init(&req->list);
kfree(req);
}
spin_unlock_bh(&lock);
}
int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
struct rdma_dev_addr *addr, int timeout_ms,
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context),
void *context)
{
struct sockaddr *src_in, *dst_in;
struct addr_req *req;
int ret = 0;
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family) {
ret = -EINVAL;
goto err;
}
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
req->addr = addr;
req->callback = callback;
req->context = context;
INIT_DELAYED_WORK(&req->work, process_one_req);
req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
switch (req->status) {
case 0:
req->timeout = jiffies;
queue_req(req);
break;
case -ENODATA:
req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
queue_req(req);
break;
default:
ret = req->status;
goto err;
}
return ret;
err:
kfree(req);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_ip);
int rdma_resolve_ip_route(struct sockaddr *src_addr,
const struct sockaddr *dst_addr,
struct rdma_dev_addr *addr)
{
struct sockaddr_storage ssrc_addr = {};
struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family)
return -EINVAL;
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
return addr_resolve(src_in, dst_addr, addr, false, 0);
}
/**
* rdma_addr_cancel - Cancel resolve ip request
* @addr: Pointer to address structure given previously
* during rdma_resolve_ip().
* rdma_addr_cancel() is synchronous function which cancels any pending
* request if there is any.
*/
void rdma_addr_cancel(struct rdma_dev_addr *addr)
{
struct addr_req *req, *temp_req;
struct addr_req *found = NULL;
spin_lock_bh(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->addr == addr) {
/*
* Removing from the list means we take ownership of
* the req
*/
list_del_init(&req->list);
found = req;
break;
}
}
spin_unlock_bh(&lock);
if (!found)
return;
/*
* sync canceling the work after removing it from the req_list
* guarentees no work is running and none will be started.
*/
cancel_delayed_work_sync(&found->work);
kfree(found);
}
EXPORT_SYMBOL(rdma_addr_cancel);
struct resolve_cb_context {
struct completion comp;
int status;
};
static void resolve_cb(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context)
{
((struct resolve_cb_context *)context)->status = status;
complete(&((struct resolve_cb_context *)context)->comp);
}
int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
const union ib_gid *dgid,
u8 *dmac, const struct net_device *ndev,
int *hoplimit)
{
struct rdma_dev_addr dev_addr;
struct resolve_cb_context ctx;
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} sgid_addr, dgid_addr;
int ret;
rdma_gid2ip(&sgid_addr._sockaddr, sgid);
rdma_gid2ip(&dgid_addr._sockaddr, dgid);
memset(&dev_addr, 0, sizeof(dev_addr));
dev_addr.bound_dev_if = ndev->ifindex;
dev_addr.net = &init_net;
init_completion(&ctx.comp);
ret = rdma_resolve_ip(&sgid_addr._sockaddr, &dgid_addr._sockaddr,
&dev_addr, 1000, resolve_cb, &ctx);
if (ret)
return ret;
wait_for_completion(&ctx.comp);
ret = ctx.status;
if (ret)
return ret;
memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
*hoplimit = dev_addr.hoplimit;
return 0;
}
static int netevent_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
struct addr_req *req;
if (event == NETEVENT_NEIGH_UPDATE) {
struct neighbour *neigh = ctx;
if (neigh->nud_state & NUD_VALID) {
spin_lock_bh(&lock);
list_for_each_entry(req, &req_list, list)
set_timeout(req, jiffies);
spin_unlock_bh(&lock);
}
}
return 0;
}
static struct notifier_block nb = {
.notifier_call = netevent_callback
};
int addr_init(void)
{
addr_wq = alloc_ordered_workqueue("ib_addr", 0);
if (!addr_wq)
return -ENOMEM;
register_netevent_notifier(&nb);
return 0;
}
void addr_cleanup(void)
{
unregister_netevent_notifier(&nb);
destroy_workqueue(addr_wq);
WARN_ON(!list_empty(&req_list));
}