linux/arch/mips/kvm/trap_emul.c
James Hogan a2c046e40f KVM: MIPS: Add vcpu_run() & vcpu_reenter() callbacks
Add implementation callbacks for entering the guest (vcpu_run()) and
reentering the guest (vcpu_reenter()), allowing implementation specific
operations to be performed before entering the guest or after returning
to the host without cluttering kvm_arch_vcpu_ioctl_run().

This allows the T&E specific lazy user GVA flush to be moved into
trap_emul.c, along with disabling of the HTW. We also move
kvm_mips_deliver_interrupts() as VZ will need to restore the guest timer
state prior to delivering interrupts.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:46 +00:00

782 lines
21 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS: Deliver/Emulate exceptions to the guest kernel
*
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
#include <asm/mmu_context.h>
#include "interrupt.h"
static gpa_t kvm_trap_emul_gva_to_gpa_cb(gva_t gva)
{
gpa_t gpa;
gva_t kseg = KSEGX(gva);
if ((kseg == CKSEG0) || (kseg == CKSEG1))
gpa = CPHYSADDR(gva);
else {
kvm_err("%s: cannot find GPA for GVA: %#lx\n", __func__, gva);
kvm_mips_dump_host_tlbs();
gpa = KVM_INVALID_ADDR;
}
kvm_debug("%s: gva %#lx, gpa: %#llx\n", __func__, gva, gpa);
return gpa;
}
static int kvm_trap_emul_handle_cop_unusable(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
/* FPU Unusable */
if (!kvm_mips_guest_has_fpu(&vcpu->arch) ||
(kvm_read_c0_guest_status(cop0) & ST0_CU1) == 0) {
/*
* Unusable/no FPU in guest:
* deliver guest COP1 Unusable Exception
*/
er = kvm_mips_emulate_fpu_exc(cause, opc, run, vcpu);
} else {
/* Restore FPU state */
kvm_own_fpu(vcpu);
er = EMULATE_DONE;
}
} else {
er = kvm_mips_emulate_inst(cause, opc, run, vcpu);
}
switch (er) {
case EMULATE_DONE:
ret = RESUME_GUEST;
break;
case EMULATE_FAIL:
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
break;
case EMULATE_WAIT:
run->exit_reason = KVM_EXIT_INTR;
ret = RESUME_HOST;
break;
default:
BUG();
}
return ret;
}
static int kvm_trap_emul_handle_tlb_mod(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0
|| KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) {
kvm_debug("USER/KSEG23 ADDR TLB MOD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
cause, opc, badvaddr);
er = kvm_mips_handle_tlbmod(cause, opc, run, vcpu);
if (er == EMULATE_DONE)
ret = RESUME_GUEST;
else {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
} else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) {
/*
* XXXKYMA: The guest kernel does not expect to get this fault
* when we are not using HIGHMEM. Need to address this in a
* HIGHMEM kernel
*/
kvm_err("TLB MOD fault not handled, cause %#x, PC: %p, BadVaddr: %#lx\n",
cause, opc, badvaddr);
kvm_mips_dump_host_tlbs();
kvm_arch_vcpu_dump_regs(vcpu);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
} else {
kvm_err("Illegal TLB Mod fault address , cause %#x, PC: %p, BadVaddr: %#lx\n",
cause, opc, badvaddr);
kvm_mips_dump_host_tlbs();
kvm_arch_vcpu_dump_regs(vcpu);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
static int kvm_trap_emul_handle_tlb_miss(struct kvm_vcpu *vcpu, bool store)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
if (((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR)
&& KVM_GUEST_KERNEL_MODE(vcpu)) {
if (kvm_mips_handle_commpage_tlb_fault(badvaddr, vcpu) < 0) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
} else if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0
|| KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) {
kvm_debug("USER ADDR TLB %s fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
store ? "ST" : "LD", cause, opc, badvaddr);
/*
* User Address (UA) fault, this could happen if
* (1) TLB entry not present/valid in both Guest and shadow host
* TLBs, in this case we pass on the fault to the guest
* kernel and let it handle it.
* (2) TLB entry is present in the Guest TLB but not in the
* shadow, in this case we inject the TLB from the Guest TLB
* into the shadow host TLB
*/
er = kvm_mips_handle_tlbmiss(cause, opc, run, vcpu);
if (er == EMULATE_DONE)
ret = RESUME_GUEST;
else {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
} else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) {
/*
* All KSEG0 faults are handled by KVM, as the guest kernel does
* not expect to ever get them
*/
if (kvm_mips_handle_kseg0_tlb_fault
(vcpu->arch.host_cp0_badvaddr, vcpu) < 0) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
} else if (KVM_GUEST_KERNEL_MODE(vcpu)
&& (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) {
/*
* With EVA we may get a TLB exception instead of an address
* error when the guest performs MMIO to KSeg1 addresses.
*/
kvm_debug("Emulate %s MMIO space\n",
store ? "Store to" : "Load from");
er = kvm_mips_emulate_inst(cause, opc, run, vcpu);
if (er == EMULATE_FAIL) {
kvm_err("Emulate %s MMIO space failed\n",
store ? "Store to" : "Load from");
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
} else {
run->exit_reason = KVM_EXIT_MMIO;
ret = RESUME_HOST;
}
} else {
kvm_err("Illegal TLB %s fault address , cause %#x, PC: %p, BadVaddr: %#lx\n",
store ? "ST" : "LD", cause, opc, badvaddr);
kvm_mips_dump_host_tlbs();
kvm_arch_vcpu_dump_regs(vcpu);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
static int kvm_trap_emul_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
{
return kvm_trap_emul_handle_tlb_miss(vcpu, true);
}
static int kvm_trap_emul_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
{
return kvm_trap_emul_handle_tlb_miss(vcpu, false);
}
static int kvm_trap_emul_handle_addr_err_st(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
if (KVM_GUEST_KERNEL_MODE(vcpu)
&& (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) {
kvm_debug("Emulate Store to MMIO space\n");
er = kvm_mips_emulate_inst(cause, opc, run, vcpu);
if (er == EMULATE_FAIL) {
kvm_err("Emulate Store to MMIO space failed\n");
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
} else {
run->exit_reason = KVM_EXIT_MMIO;
ret = RESUME_HOST;
}
} else {
kvm_err("Address Error (STORE): cause %#x, PC: %p, BadVaddr: %#lx\n",
cause, opc, badvaddr);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
static int kvm_trap_emul_handle_addr_err_ld(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
if (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1) {
kvm_debug("Emulate Load from MMIO space @ %#lx\n", badvaddr);
er = kvm_mips_emulate_inst(cause, opc, run, vcpu);
if (er == EMULATE_FAIL) {
kvm_err("Emulate Load from MMIO space failed\n");
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
} else {
run->exit_reason = KVM_EXIT_MMIO;
ret = RESUME_HOST;
}
} else {
kvm_err("Address Error (LOAD): cause %#x, PC: %p, BadVaddr: %#lx\n",
cause, opc, badvaddr);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
er = EMULATE_FAIL;
}
return ret;
}
static int kvm_trap_emul_handle_syscall(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
er = kvm_mips_emulate_syscall(cause, opc, run, vcpu);
if (er == EMULATE_DONE)
ret = RESUME_GUEST;
else {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
static int kvm_trap_emul_handle_res_inst(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
er = kvm_mips_handle_ri(cause, opc, run, vcpu);
if (er == EMULATE_DONE)
ret = RESUME_GUEST;
else {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
static int kvm_trap_emul_handle_break(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
er = kvm_mips_emulate_bp_exc(cause, opc, run, vcpu);
if (er == EMULATE_DONE)
ret = RESUME_GUEST;
else {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
static int kvm_trap_emul_handle_trap(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *)vcpu->arch.pc;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
er = kvm_mips_emulate_trap_exc(cause, opc, run, vcpu);
if (er == EMULATE_DONE) {
ret = RESUME_GUEST;
} else {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
static int kvm_trap_emul_handle_msa_fpe(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *)vcpu->arch.pc;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
er = kvm_mips_emulate_msafpe_exc(cause, opc, run, vcpu);
if (er == EMULATE_DONE) {
ret = RESUME_GUEST;
} else {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
static int kvm_trap_emul_handle_fpe(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *)vcpu->arch.pc;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
er = kvm_mips_emulate_fpe_exc(cause, opc, run, vcpu);
if (er == EMULATE_DONE) {
ret = RESUME_GUEST;
} else {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
}
return ret;
}
/**
* kvm_trap_emul_handle_msa_disabled() - Guest used MSA while disabled in root.
* @vcpu: Virtual CPU context.
*
* Handle when the guest attempts to use MSA when it is disabled.
*/
static int kvm_trap_emul_handle_msa_disabled(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
struct kvm_run *run = vcpu->run;
u32 __user *opc = (u32 __user *) vcpu->arch.pc;
u32 cause = vcpu->arch.host_cp0_cause;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
(kvm_read_c0_guest_status(cop0) & (ST0_CU1 | ST0_FR)) == ST0_CU1) {
/*
* No MSA in guest, or FPU enabled and not in FR=1 mode,
* guest reserved instruction exception
*/
er = kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
} else if (!(kvm_read_c0_guest_config5(cop0) & MIPS_CONF5_MSAEN)) {
/* MSA disabled by guest, guest MSA disabled exception */
er = kvm_mips_emulate_msadis_exc(cause, opc, run, vcpu);
} else {
/* Restore MSA/FPU state */
kvm_own_msa(vcpu);
er = EMULATE_DONE;
}
switch (er) {
case EMULATE_DONE:
ret = RESUME_GUEST;
break;
case EMULATE_FAIL:
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
break;
default:
BUG();
}
return ret;
}
static int kvm_trap_emul_vm_init(struct kvm *kvm)
{
return 0;
}
static int kvm_trap_emul_vcpu_init(struct kvm_vcpu *vcpu)
{
vcpu->arch.kscratch_enabled = 0xfc;
return 0;
}
static int kvm_trap_emul_vcpu_setup(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
u32 config, config1;
int vcpu_id = vcpu->vcpu_id;
/*
* Arch specific stuff, set up config registers properly so that the
* guest will come up as expected
*/
#ifndef CONFIG_CPU_MIPSR6
/* r2-r5, simulate a MIPS 24kc */
kvm_write_c0_guest_prid(cop0, 0x00019300);
#else
/* r6+, simulate a generic QEMU machine */
kvm_write_c0_guest_prid(cop0, 0x00010000);
#endif
/*
* Have config1, Cacheable, noncoherent, write-back, write allocate.
* Endianness, arch revision & virtually tagged icache should match
* host.
*/
config = read_c0_config() & MIPS_CONF_AR;
config |= MIPS_CONF_M | CONF_CM_CACHABLE_NONCOHERENT | MIPS_CONF_MT_TLB;
#ifdef CONFIG_CPU_BIG_ENDIAN
config |= CONF_BE;
#endif
if (cpu_has_vtag_icache)
config |= MIPS_CONF_VI;
kvm_write_c0_guest_config(cop0, config);
/* Read the cache characteristics from the host Config1 Register */
config1 = (read_c0_config1() & ~0x7f);
/* Set up MMU size */
config1 &= ~(0x3f << 25);
config1 |= ((KVM_MIPS_GUEST_TLB_SIZE - 1) << 25);
/* We unset some bits that we aren't emulating */
config1 &= ~(MIPS_CONF1_C2 | MIPS_CONF1_MD | MIPS_CONF1_PC |
MIPS_CONF1_WR | MIPS_CONF1_CA);
kvm_write_c0_guest_config1(cop0, config1);
/* Have config3, no tertiary/secondary caches implemented */
kvm_write_c0_guest_config2(cop0, MIPS_CONF_M);
/* MIPS_CONF_M | (read_c0_config2() & 0xfff) */
/* Have config4, UserLocal */
kvm_write_c0_guest_config3(cop0, MIPS_CONF_M | MIPS_CONF3_ULRI);
/* Have config5 */
kvm_write_c0_guest_config4(cop0, MIPS_CONF_M);
/* No config6 */
kvm_write_c0_guest_config5(cop0, 0);
/* Set Wait IE/IXMT Ignore in Config7, IAR, AR */
kvm_write_c0_guest_config7(cop0, (MIPS_CONF7_WII) | (1 << 10));
/*
* Setup IntCtl defaults, compatibility mode for timer interrupts (HW5)
*/
kvm_write_c0_guest_intctl(cop0, 0xFC000000);
/* Put in vcpu id as CPUNum into Ebase Reg to handle SMP Guests */
kvm_write_c0_guest_ebase(cop0, KVM_GUEST_KSEG0 |
(vcpu_id & MIPS_EBASE_CPUNUM));
return 0;
}
static unsigned long kvm_trap_emul_num_regs(struct kvm_vcpu *vcpu)
{
return 0;
}
static int kvm_trap_emul_copy_reg_indices(struct kvm_vcpu *vcpu,
u64 __user *indices)
{
return 0;
}
static int kvm_trap_emul_get_one_reg(struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg,
s64 *v)
{
switch (reg->id) {
case KVM_REG_MIPS_CP0_COUNT:
*v = kvm_mips_read_count(vcpu);
break;
case KVM_REG_MIPS_COUNT_CTL:
*v = vcpu->arch.count_ctl;
break;
case KVM_REG_MIPS_COUNT_RESUME:
*v = ktime_to_ns(vcpu->arch.count_resume);
break;
case KVM_REG_MIPS_COUNT_HZ:
*v = vcpu->arch.count_hz;
break;
default:
return -EINVAL;
}
return 0;
}
static int kvm_trap_emul_set_one_reg(struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg,
s64 v)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
int ret = 0;
unsigned int cur, change;
switch (reg->id) {
case KVM_REG_MIPS_CP0_COUNT:
kvm_mips_write_count(vcpu, v);
break;
case KVM_REG_MIPS_CP0_COMPARE:
kvm_mips_write_compare(vcpu, v, false);
break;
case KVM_REG_MIPS_CP0_CAUSE:
/*
* If the timer is stopped or started (DC bit) it must look
* atomic with changes to the interrupt pending bits (TI, IRQ5).
* A timer interrupt should not happen in between.
*/
if ((kvm_read_c0_guest_cause(cop0) ^ v) & CAUSEF_DC) {
if (v & CAUSEF_DC) {
/* disable timer first */
kvm_mips_count_disable_cause(vcpu);
kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v);
} else {
/* enable timer last */
kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v);
kvm_mips_count_enable_cause(vcpu);
}
} else {
kvm_write_c0_guest_cause(cop0, v);
}
break;
case KVM_REG_MIPS_CP0_CONFIG:
/* read-only for now */
break;
case KVM_REG_MIPS_CP0_CONFIG1:
cur = kvm_read_c0_guest_config1(cop0);
change = (cur ^ v) & kvm_mips_config1_wrmask(vcpu);
if (change) {
v = cur ^ change;
kvm_write_c0_guest_config1(cop0, v);
}
break;
case KVM_REG_MIPS_CP0_CONFIG2:
/* read-only for now */
break;
case KVM_REG_MIPS_CP0_CONFIG3:
cur = kvm_read_c0_guest_config3(cop0);
change = (cur ^ v) & kvm_mips_config3_wrmask(vcpu);
if (change) {
v = cur ^ change;
kvm_write_c0_guest_config3(cop0, v);
}
break;
case KVM_REG_MIPS_CP0_CONFIG4:
cur = kvm_read_c0_guest_config4(cop0);
change = (cur ^ v) & kvm_mips_config4_wrmask(vcpu);
if (change) {
v = cur ^ change;
kvm_write_c0_guest_config4(cop0, v);
}
break;
case KVM_REG_MIPS_CP0_CONFIG5:
cur = kvm_read_c0_guest_config5(cop0);
change = (cur ^ v) & kvm_mips_config5_wrmask(vcpu);
if (change) {
v = cur ^ change;
kvm_write_c0_guest_config5(cop0, v);
}
break;
case KVM_REG_MIPS_COUNT_CTL:
ret = kvm_mips_set_count_ctl(vcpu, v);
break;
case KVM_REG_MIPS_COUNT_RESUME:
ret = kvm_mips_set_count_resume(vcpu, v);
break;
case KVM_REG_MIPS_COUNT_HZ:
ret = kvm_mips_set_count_hz(vcpu, v);
break;
default:
return -EINVAL;
}
return ret;
}
static int kvm_trap_emul_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
/* Allocate new kernel and user ASIDs if needed */
if ((cpu_context(cpu, kern_mm) ^ asid_cache(cpu)) &
asid_version_mask(cpu)) {
kvm_get_new_mmu_context(kern_mm, cpu, vcpu);
kvm_debug("[%d]: cpu_context: %#lx\n", cpu,
cpu_context(cpu, current->mm));
kvm_debug("[%d]: Allocated new ASID for Guest Kernel: %#lx\n",
cpu, cpu_context(cpu, kern_mm));
}
if ((cpu_context(cpu, user_mm) ^ asid_cache(cpu)) &
asid_version_mask(cpu)) {
kvm_get_new_mmu_context(user_mm, cpu, vcpu);
kvm_debug("[%d]: cpu_context: %#lx\n", cpu,
cpu_context(cpu, current->mm));
kvm_debug("[%d]: Allocated new ASID for Guest User: %#lx\n",
cpu, cpu_context(cpu, user_mm));
}
/*
* Were we in guest context? If so then the pre-empted ASID is
* no longer valid, we need to set it to what it should be based
* on the mode of the Guest (Kernel/User)
*/
if (current->flags & PF_VCPU) {
if (KVM_GUEST_KERNEL_MODE(vcpu))
write_c0_entryhi(cpu_asid(cpu, kern_mm));
else
write_c0_entryhi(cpu_asid(cpu, user_mm));
ehb();
}
return 0;
}
static int kvm_trap_emul_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
{
kvm_lose_fpu(vcpu);
if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) &
asid_version_mask(cpu))) {
kvm_debug("%s: Dropping MMU Context: %#lx\n", __func__,
cpu_context(cpu, current->mm));
drop_mmu_context(current->mm, cpu);
}
write_c0_entryhi(cpu_asid(cpu, current->mm));
ehb();
return 0;
}
static void kvm_trap_emul_vcpu_reenter(struct kvm_run *run,
struct kvm_vcpu *vcpu)
{
struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
struct mips_coproc *cop0 = vcpu->arch.cop0;
int i, cpu = smp_processor_id();
unsigned int gasid;
/*
* Lazy host ASID regeneration for guest user mode.
* If the guest ASID has changed since the last guest usermode
* execution, regenerate the host ASID so as to invalidate stale TLB
* entries.
*/
if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
if (gasid != vcpu->arch.last_user_gasid) {
kvm_get_new_mmu_context(user_mm, cpu, vcpu);
for_each_possible_cpu(i)
if (i != cpu)
cpu_context(i, user_mm) = 0;
vcpu->arch.last_user_gasid = gasid;
}
}
}
static int kvm_trap_emul_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
int r;
/* Check if we have any exceptions/interrupts pending */
kvm_mips_deliver_interrupts(vcpu,
kvm_read_c0_guest_cause(vcpu->arch.cop0));
kvm_trap_emul_vcpu_reenter(run, vcpu);
/* Disable hardware page table walking while in guest */
htw_stop();
r = vcpu->arch.vcpu_run(run, vcpu);
htw_start();
return r;
}
static struct kvm_mips_callbacks kvm_trap_emul_callbacks = {
/* exit handlers */
.handle_cop_unusable = kvm_trap_emul_handle_cop_unusable,
.handle_tlb_mod = kvm_trap_emul_handle_tlb_mod,
.handle_tlb_st_miss = kvm_trap_emul_handle_tlb_st_miss,
.handle_tlb_ld_miss = kvm_trap_emul_handle_tlb_ld_miss,
.handle_addr_err_st = kvm_trap_emul_handle_addr_err_st,
.handle_addr_err_ld = kvm_trap_emul_handle_addr_err_ld,
.handle_syscall = kvm_trap_emul_handle_syscall,
.handle_res_inst = kvm_trap_emul_handle_res_inst,
.handle_break = kvm_trap_emul_handle_break,
.handle_trap = kvm_trap_emul_handle_trap,
.handle_msa_fpe = kvm_trap_emul_handle_msa_fpe,
.handle_fpe = kvm_trap_emul_handle_fpe,
.handle_msa_disabled = kvm_trap_emul_handle_msa_disabled,
.vm_init = kvm_trap_emul_vm_init,
.vcpu_init = kvm_trap_emul_vcpu_init,
.vcpu_setup = kvm_trap_emul_vcpu_setup,
.gva_to_gpa = kvm_trap_emul_gva_to_gpa_cb,
.queue_timer_int = kvm_mips_queue_timer_int_cb,
.dequeue_timer_int = kvm_mips_dequeue_timer_int_cb,
.queue_io_int = kvm_mips_queue_io_int_cb,
.dequeue_io_int = kvm_mips_dequeue_io_int_cb,
.irq_deliver = kvm_mips_irq_deliver_cb,
.irq_clear = kvm_mips_irq_clear_cb,
.num_regs = kvm_trap_emul_num_regs,
.copy_reg_indices = kvm_trap_emul_copy_reg_indices,
.get_one_reg = kvm_trap_emul_get_one_reg,
.set_one_reg = kvm_trap_emul_set_one_reg,
.vcpu_load = kvm_trap_emul_vcpu_load,
.vcpu_put = kvm_trap_emul_vcpu_put,
.vcpu_run = kvm_trap_emul_vcpu_run,
.vcpu_reenter = kvm_trap_emul_vcpu_reenter,
};
int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
{
*install_callbacks = &kvm_trap_emul_callbacks;
return 0;
}