linux/drivers/nvdimm/dimm_devs.c
Dan Williams a1facc1fff ACPI: NFIT: Add runtime firmware activate support
Plumb the platform specific backend for the generic libnvdimm firmware
activate interface. Register dimm level operations to arm/disarm
activation, and register bus level operations to report the dynamic
platform-quiesce time relative to the number of dimms armed for firmware
activation.

A new nfit-specific bus attribute "firmware_activate_noidle" is added to
allow the activation to switch between platform enforced, and OS
opportunistic device quiesce. In other words, let the hibernate cycle
handle in-flight device-dma rather than the platform attempting to
increase PCI-E timeouts and the like.

Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
2020-07-28 19:29:22 -06:00

1013 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/moduleparam.h>
#include <linux/vmalloc.h>
#include <linux/device.h>
#include <linux/ndctl.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include "nd-core.h"
#include "label.h"
#include "pmem.h"
#include "nd.h"
static DEFINE_IDA(dimm_ida);
static bool noblk;
module_param(noblk, bool, 0444);
MODULE_PARM_DESC(noblk, "force disable BLK / local alias support");
/*
* Retrieve bus and dimm handle and return if this bus supports
* get_config_data commands
*/
int nvdimm_check_config_data(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
if (!nvdimm->cmd_mask ||
!test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) {
if (test_bit(NDD_LABELING, &nvdimm->flags))
return -ENXIO;
else
return -ENOTTY;
}
return 0;
}
static int validate_dimm(struct nvdimm_drvdata *ndd)
{
int rc;
if (!ndd)
return -EINVAL;
rc = nvdimm_check_config_data(ndd->dev);
if (rc)
dev_dbg(ndd->dev, "%ps: %s error: %d\n",
__builtin_return_address(0), __func__, rc);
return rc;
}
/**
* nvdimm_init_nsarea - determine the geometry of a dimm's namespace area
* @nvdimm: dimm to initialize
*/
int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd)
{
struct nd_cmd_get_config_size *cmd = &ndd->nsarea;
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
struct nvdimm_bus_descriptor *nd_desc;
int rc = validate_dimm(ndd);
int cmd_rc = 0;
if (rc)
return rc;
if (cmd->config_size)
return 0; /* already valid */
memset(cmd, 0, sizeof(*cmd));
nd_desc = nvdimm_bus->nd_desc;
rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc);
if (rc < 0)
return rc;
return cmd_rc;
}
int nvdimm_get_config_data(struct nvdimm_drvdata *ndd, void *buf,
size_t offset, size_t len)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
int rc = validate_dimm(ndd), cmd_rc = 0;
struct nd_cmd_get_config_data_hdr *cmd;
size_t max_cmd_size, buf_offset;
if (rc)
return rc;
if (offset + len > ndd->nsarea.config_size)
return -ENXIO;
max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer);
cmd = kvzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
for (buf_offset = 0; len;
len -= cmd->in_length, buf_offset += cmd->in_length) {
size_t cmd_size;
cmd->in_offset = offset + buf_offset;
cmd->in_length = min(max_cmd_size, len);
cmd_size = sizeof(*cmd) + cmd->in_length;
rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
ND_CMD_GET_CONFIG_DATA, cmd, cmd_size, &cmd_rc);
if (rc < 0)
break;
if (cmd_rc < 0) {
rc = cmd_rc;
break;
}
/* out_buf should be valid, copy it into our output buffer */
memcpy(buf + buf_offset, cmd->out_buf, cmd->in_length);
}
kvfree(cmd);
return rc;
}
int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset,
void *buf, size_t len)
{
size_t max_cmd_size, buf_offset;
struct nd_cmd_set_config_hdr *cmd;
int rc = validate_dimm(ndd), cmd_rc = 0;
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
if (rc)
return rc;
if (offset + len > ndd->nsarea.config_size)
return -ENXIO;
max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer);
cmd = kvzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
for (buf_offset = 0; len; len -= cmd->in_length,
buf_offset += cmd->in_length) {
size_t cmd_size;
cmd->in_offset = offset + buf_offset;
cmd->in_length = min(max_cmd_size, len);
memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length);
/* status is output in the last 4-bytes of the command buffer */
cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32);
rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, &cmd_rc);
if (rc < 0)
break;
if (cmd_rc < 0) {
rc = cmd_rc;
break;
}
}
kvfree(cmd);
return rc;
}
void nvdimm_set_labeling(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
set_bit(NDD_LABELING, &nvdimm->flags);
}
void nvdimm_set_locked(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
set_bit(NDD_LOCKED, &nvdimm->flags);
}
void nvdimm_clear_locked(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
clear_bit(NDD_LOCKED, &nvdimm->flags);
}
static void nvdimm_release(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
ida_simple_remove(&dimm_ida, nvdimm->id);
kfree(nvdimm);
}
struct nvdimm *to_nvdimm(struct device *dev)
{
struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev);
WARN_ON(!is_nvdimm(dev));
return nvdimm;
}
EXPORT_SYMBOL_GPL(to_nvdimm);
struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr)
{
struct nd_region *nd_region = &ndbr->nd_region;
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
return nd_mapping->nvdimm;
}
EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm);
unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr)
{
/* pmem mapping properties are private to libnvdimm */
return ARCH_MEMREMAP_PMEM;
}
EXPORT_SYMBOL_GPL(nd_blk_memremap_flags);
struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping)
{
struct nvdimm *nvdimm = nd_mapping->nvdimm;
WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));
return dev_get_drvdata(&nvdimm->dev);
}
EXPORT_SYMBOL(to_ndd);
void nvdimm_drvdata_release(struct kref *kref)
{
struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref);
struct device *dev = ndd->dev;
struct resource *res, *_r;
dev_dbg(dev, "trace\n");
nvdimm_bus_lock(dev);
for_each_dpa_resource_safe(ndd, res, _r)
nvdimm_free_dpa(ndd, res);
nvdimm_bus_unlock(dev);
kvfree(ndd->data);
kfree(ndd);
put_device(dev);
}
void get_ndd(struct nvdimm_drvdata *ndd)
{
kref_get(&ndd->kref);
}
void put_ndd(struct nvdimm_drvdata *ndd)
{
if (ndd)
kref_put(&ndd->kref, nvdimm_drvdata_release);
}
const char *nvdimm_name(struct nvdimm *nvdimm)
{
return dev_name(&nvdimm->dev);
}
EXPORT_SYMBOL_GPL(nvdimm_name);
struct kobject *nvdimm_kobj(struct nvdimm *nvdimm)
{
return &nvdimm->dev.kobj;
}
EXPORT_SYMBOL_GPL(nvdimm_kobj);
unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm)
{
return nvdimm->cmd_mask;
}
EXPORT_SYMBOL_GPL(nvdimm_cmd_mask);
void *nvdimm_provider_data(struct nvdimm *nvdimm)
{
if (nvdimm)
return nvdimm->provider_data;
return NULL;
}
EXPORT_SYMBOL_GPL(nvdimm_provider_data);
static ssize_t commands_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
int cmd, len = 0;
if (!nvdimm->cmd_mask)
return sprintf(buf, "\n");
for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG)
len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd));
len += sprintf(buf + len, "\n");
return len;
}
static DEVICE_ATTR_RO(commands);
static ssize_t flags_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
return sprintf(buf, "%s%s%s\n",
test_bit(NDD_ALIASING, &nvdimm->flags) ? "alias " : "",
test_bit(NDD_LABELING, &nvdimm->flags) ? "label " : "",
test_bit(NDD_LOCKED, &nvdimm->flags) ? "lock " : "");
}
static DEVICE_ATTR_RO(flags);
static ssize_t state_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
/*
* The state may be in the process of changing, userspace should
* quiesce probing if it wants a static answer
*/
nvdimm_bus_lock(dev);
nvdimm_bus_unlock(dev);
return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy)
? "active" : "idle");
}
static DEVICE_ATTR_RO(state);
static ssize_t available_slots_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm_drvdata *ndd = dev_get_drvdata(dev);
ssize_t rc;
u32 nfree;
if (!ndd)
return -ENXIO;
nvdimm_bus_lock(dev);
nfree = nd_label_nfree(ndd);
if (nfree - 1 > nfree) {
dev_WARN_ONCE(dev, 1, "we ate our last label?\n");
nfree = 0;
} else
nfree--;
rc = sprintf(buf, "%d\n", nfree);
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(available_slots);
__weak ssize_t security_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
if (test_bit(NVDIMM_SECURITY_DISABLED, &nvdimm->sec.flags))
return sprintf(buf, "disabled\n");
if (test_bit(NVDIMM_SECURITY_UNLOCKED, &nvdimm->sec.flags))
return sprintf(buf, "unlocked\n");
if (test_bit(NVDIMM_SECURITY_LOCKED, &nvdimm->sec.flags))
return sprintf(buf, "locked\n");
if (test_bit(NVDIMM_SECURITY_OVERWRITE, &nvdimm->sec.flags))
return sprintf(buf, "overwrite\n");
return -ENOTTY;
}
static ssize_t frozen_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
return sprintf(buf, "%d\n", test_bit(NVDIMM_SECURITY_FROZEN,
&nvdimm->sec.flags));
}
static DEVICE_ATTR_RO(frozen);
static ssize_t security_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
ssize_t rc;
/*
* Require all userspace triggered security management to be
* done while probing is idle and the DIMM is not in active use
* in any region.
*/
nd_device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
rc = nvdimm_security_store(dev, buf, len);
nvdimm_bus_unlock(dev);
nd_device_unlock(dev);
return rc;
}
static DEVICE_ATTR_RW(security);
static struct attribute *nvdimm_attributes[] = {
&dev_attr_state.attr,
&dev_attr_flags.attr,
&dev_attr_commands.attr,
&dev_attr_available_slots.attr,
&dev_attr_security.attr,
&dev_attr_frozen.attr,
NULL,
};
static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct nvdimm *nvdimm = to_nvdimm(dev);
if (a != &dev_attr_security.attr && a != &dev_attr_frozen.attr)
return a->mode;
if (!nvdimm->sec.flags)
return 0;
if (a == &dev_attr_security.attr) {
/* Are there any state mutation ops (make writable)? */
if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable
|| nvdimm->sec.ops->change_key
|| nvdimm->sec.ops->erase
|| nvdimm->sec.ops->overwrite)
return a->mode;
return 0444;
}
if (nvdimm->sec.ops->freeze)
return a->mode;
return 0;
}
static const struct attribute_group nvdimm_attribute_group = {
.attrs = nvdimm_attributes,
.is_visible = nvdimm_visible,
};
static ssize_t result_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
enum nvdimm_fwa_result result;
if (!nvdimm->fw_ops)
return -EOPNOTSUPP;
nvdimm_bus_lock(dev);
result = nvdimm->fw_ops->activate_result(nvdimm);
nvdimm_bus_unlock(dev);
switch (result) {
case NVDIMM_FWA_RESULT_NONE:
return sprintf(buf, "none\n");
case NVDIMM_FWA_RESULT_SUCCESS:
return sprintf(buf, "success\n");
case NVDIMM_FWA_RESULT_FAIL:
return sprintf(buf, "fail\n");
case NVDIMM_FWA_RESULT_NOTSTAGED:
return sprintf(buf, "not_staged\n");
case NVDIMM_FWA_RESULT_NEEDRESET:
return sprintf(buf, "need_reset\n");
default:
return -ENXIO;
}
}
static DEVICE_ATTR_ADMIN_RO(result);
static ssize_t activate_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
enum nvdimm_fwa_state state;
if (!nvdimm->fw_ops)
return -EOPNOTSUPP;
nvdimm_bus_lock(dev);
state = nvdimm->fw_ops->activate_state(nvdimm);
nvdimm_bus_unlock(dev);
switch (state) {
case NVDIMM_FWA_IDLE:
return sprintf(buf, "idle\n");
case NVDIMM_FWA_BUSY:
return sprintf(buf, "busy\n");
case NVDIMM_FWA_ARMED:
return sprintf(buf, "armed\n");
default:
return -ENXIO;
}
}
static ssize_t activate_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
enum nvdimm_fwa_trigger arg;
int rc;
if (!nvdimm->fw_ops)
return -EOPNOTSUPP;
if (sysfs_streq(buf, "arm"))
arg = NVDIMM_FWA_ARM;
else if (sysfs_streq(buf, "disarm"))
arg = NVDIMM_FWA_DISARM;
else
return -EINVAL;
nvdimm_bus_lock(dev);
rc = nvdimm->fw_ops->arm(nvdimm, arg);
nvdimm_bus_unlock(dev);
if (rc < 0)
return rc;
return len;
}
static DEVICE_ATTR_ADMIN_RW(activate);
static struct attribute *nvdimm_firmware_attributes[] = {
&dev_attr_activate.attr,
&dev_attr_result.attr,
};
static umode_t nvdimm_firmware_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
struct nvdimm *nvdimm = to_nvdimm(dev);
enum nvdimm_fwa_capability cap;
if (!nd_desc->fw_ops)
return 0;
if (!nvdimm->fw_ops)
return 0;
nvdimm_bus_lock(dev);
cap = nd_desc->fw_ops->capability(nd_desc);
nvdimm_bus_unlock(dev);
if (cap < NVDIMM_FWA_CAP_QUIESCE)
return 0;
return a->mode;
}
static const struct attribute_group nvdimm_firmware_attribute_group = {
.name = "firmware",
.attrs = nvdimm_firmware_attributes,
.is_visible = nvdimm_firmware_visible,
};
static const struct attribute_group *nvdimm_attribute_groups[] = {
&nd_device_attribute_group,
&nvdimm_attribute_group,
&nvdimm_firmware_attribute_group,
NULL,
};
static const struct device_type nvdimm_device_type = {
.name = "nvdimm",
.release = nvdimm_release,
.groups = nvdimm_attribute_groups,
};
bool is_nvdimm(struct device *dev)
{
return dev->type == &nvdimm_device_type;
}
struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus,
void *provider_data, const struct attribute_group **groups,
unsigned long flags, unsigned long cmd_mask, int num_flush,
struct resource *flush_wpq, const char *dimm_id,
const struct nvdimm_security_ops *sec_ops,
const struct nvdimm_fw_ops *fw_ops)
{
struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL);
struct device *dev;
if (!nvdimm)
return NULL;
nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL);
if (nvdimm->id < 0) {
kfree(nvdimm);
return NULL;
}
nvdimm->dimm_id = dimm_id;
nvdimm->provider_data = provider_data;
if (noblk)
flags |= 1 << NDD_NOBLK;
nvdimm->flags = flags;
nvdimm->cmd_mask = cmd_mask;
nvdimm->num_flush = num_flush;
nvdimm->flush_wpq = flush_wpq;
atomic_set(&nvdimm->busy, 0);
dev = &nvdimm->dev;
dev_set_name(dev, "nmem%d", nvdimm->id);
dev->parent = &nvdimm_bus->dev;
dev->type = &nvdimm_device_type;
dev->devt = MKDEV(nvdimm_major, nvdimm->id);
dev->groups = groups;
nvdimm->sec.ops = sec_ops;
nvdimm->fw_ops = fw_ops;
nvdimm->sec.overwrite_tmo = 0;
INIT_DELAYED_WORK(&nvdimm->dwork, nvdimm_security_overwrite_query);
/*
* Security state must be initialized before device_add() for
* attribute visibility.
*/
/* get security state and extended (master) state */
nvdimm->sec.flags = nvdimm_security_flags(nvdimm, NVDIMM_USER);
nvdimm->sec.ext_flags = nvdimm_security_flags(nvdimm, NVDIMM_MASTER);
nd_device_register(dev);
return nvdimm;
}
EXPORT_SYMBOL_GPL(__nvdimm_create);
static void shutdown_security_notify(void *data)
{
struct nvdimm *nvdimm = data;
sysfs_put(nvdimm->sec.overwrite_state);
}
int nvdimm_security_setup_events(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
if (!nvdimm->sec.flags || !nvdimm->sec.ops
|| !nvdimm->sec.ops->overwrite)
return 0;
nvdimm->sec.overwrite_state = sysfs_get_dirent(dev->kobj.sd, "security");
if (!nvdimm->sec.overwrite_state)
return -ENOMEM;
return devm_add_action_or_reset(dev, shutdown_security_notify, nvdimm);
}
EXPORT_SYMBOL_GPL(nvdimm_security_setup_events);
int nvdimm_in_overwrite(struct nvdimm *nvdimm)
{
return test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags);
}
EXPORT_SYMBOL_GPL(nvdimm_in_overwrite);
int nvdimm_security_freeze(struct nvdimm *nvdimm)
{
int rc;
WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));
if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze)
return -EOPNOTSUPP;
if (!nvdimm->sec.flags)
return -EIO;
if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
dev_warn(&nvdimm->dev, "Overwrite operation in progress.\n");
return -EBUSY;
}
rc = nvdimm->sec.ops->freeze(nvdimm);
nvdimm->sec.flags = nvdimm_security_flags(nvdimm, NVDIMM_USER);
return rc;
}
static unsigned long dpa_align(struct nd_region *nd_region)
{
struct device *dev = &nd_region->dev;
if (dev_WARN_ONCE(dev, !is_nvdimm_bus_locked(dev),
"bus lock required for capacity provision\n"))
return 0;
if (dev_WARN_ONCE(dev, !nd_region->ndr_mappings || nd_region->align
% nd_region->ndr_mappings,
"invalid region align %#lx mappings: %d\n",
nd_region->align, nd_region->ndr_mappings))
return 0;
return nd_region->align / nd_region->ndr_mappings;
}
int alias_dpa_busy(struct device *dev, void *data)
{
resource_size_t map_end, blk_start, new;
struct blk_alloc_info *info = data;
struct nd_mapping *nd_mapping;
struct nd_region *nd_region;
struct nvdimm_drvdata *ndd;
struct resource *res;
unsigned long align;
int i;
if (!is_memory(dev))
return 0;
nd_region = to_nd_region(dev);
for (i = 0; i < nd_region->ndr_mappings; i++) {
nd_mapping = &nd_region->mapping[i];
if (nd_mapping->nvdimm == info->nd_mapping->nvdimm)
break;
}
if (i >= nd_region->ndr_mappings)
return 0;
ndd = to_ndd(nd_mapping);
map_end = nd_mapping->start + nd_mapping->size - 1;
blk_start = nd_mapping->start;
/*
* In the allocation case ->res is set to free space that we are
* looking to validate against PMEM aliasing collision rules
* (i.e. BLK is allocated after all aliased PMEM).
*/
if (info->res) {
if (info->res->start >= nd_mapping->start
&& info->res->start < map_end)
/* pass */;
else
return 0;
}
retry:
/*
* Find the free dpa from the end of the last pmem allocation to
* the end of the interleave-set mapping.
*/
align = dpa_align(nd_region);
if (!align)
return 0;
for_each_dpa_resource(ndd, res) {
resource_size_t start, end;
if (strncmp(res->name, "pmem", 4) != 0)
continue;
start = ALIGN_DOWN(res->start, align);
end = ALIGN(res->end + 1, align) - 1;
if ((start >= blk_start && start < map_end)
|| (end >= blk_start && end <= map_end)) {
new = max(blk_start, min(map_end, end) + 1);
if (new != blk_start) {
blk_start = new;
goto retry;
}
}
}
/* update the free space range with the probed blk_start */
if (info->res && blk_start > info->res->start) {
info->res->start = max(info->res->start, blk_start);
if (info->res->start > info->res->end)
info->res->end = info->res->start - 1;
return 1;
}
info->available -= blk_start - nd_mapping->start;
return 0;
}
/**
* nd_blk_available_dpa - account the unused dpa of BLK region
* @nd_mapping: container of dpa-resource-root + labels
*
* Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but
* we arrange for them to never start at an lower dpa than the last
* PMEM allocation in an aliased region.
*/
resource_size_t nd_blk_available_dpa(struct nd_region *nd_region)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct blk_alloc_info info = {
.nd_mapping = nd_mapping,
.available = nd_mapping->size,
.res = NULL,
};
struct resource *res;
unsigned long align;
if (!ndd)
return 0;
device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy);
/* now account for busy blk allocations in unaliased dpa */
align = dpa_align(nd_region);
if (!align)
return 0;
for_each_dpa_resource(ndd, res) {
resource_size_t start, end, size;
if (strncmp(res->name, "blk", 3) != 0)
continue;
start = ALIGN_DOWN(res->start, align);
end = ALIGN(res->end + 1, align) - 1;
size = end - start + 1;
if (size >= info.available)
return 0;
info.available -= size;
}
return info.available;
}
/**
* nd_pmem_max_contiguous_dpa - For the given dimm+region, return the max
* contiguous unallocated dpa range.
* @nd_region: constrain available space check to this reference region
* @nd_mapping: container of dpa-resource-root + labels
*/
resource_size_t nd_pmem_max_contiguous_dpa(struct nd_region *nd_region,
struct nd_mapping *nd_mapping)
{
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct nvdimm_bus *nvdimm_bus;
resource_size_t max = 0;
struct resource *res;
unsigned long align;
/* if a dimm is disabled the available capacity is zero */
if (!ndd)
return 0;
align = dpa_align(nd_region);
if (!align)
return 0;
nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
if (__reserve_free_pmem(&nd_region->dev, nd_mapping->nvdimm))
return 0;
for_each_dpa_resource(ndd, res) {
resource_size_t start, end;
if (strcmp(res->name, "pmem-reserve") != 0)
continue;
/* trim free space relative to current alignment setting */
start = ALIGN(res->start, align);
end = ALIGN_DOWN(res->end + 1, align) - 1;
if (end < start)
continue;
if (end - start + 1 > max)
max = end - start + 1;
}
release_free_pmem(nvdimm_bus, nd_mapping);
return max;
}
/**
* nd_pmem_available_dpa - for the given dimm+region account unallocated dpa
* @nd_mapping: container of dpa-resource-root + labels
* @nd_region: constrain available space check to this reference region
* @overlap: calculate available space assuming this level of overlap
*
* Validate that a PMEM label, if present, aligns with the start of an
* interleave set and truncate the available size at the lowest BLK
* overlap point.
*
* The expectation is that this routine is called multiple times as it
* probes for the largest BLK encroachment for any single member DIMM of
* the interleave set. Once that value is determined the PMEM-limit for
* the set can be established.
*/
resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region,
struct nd_mapping *nd_mapping, resource_size_t *overlap)
{
resource_size_t map_start, map_end, busy = 0, available, blk_start;
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct resource *res;
const char *reason;
unsigned long align;
if (!ndd)
return 0;
align = dpa_align(nd_region);
if (!align)
return 0;
map_start = nd_mapping->start;
map_end = map_start + nd_mapping->size - 1;
blk_start = max(map_start, map_end + 1 - *overlap);
for_each_dpa_resource(ndd, res) {
resource_size_t start, end;
start = ALIGN_DOWN(res->start, align);
end = ALIGN(res->end + 1, align) - 1;
if (start >= map_start && start < map_end) {
if (strncmp(res->name, "blk", 3) == 0)
blk_start = min(blk_start,
max(map_start, start));
else if (end > map_end) {
reason = "misaligned to iset";
goto err;
} else
busy += end - start + 1;
} else if (end >= map_start && end <= map_end) {
if (strncmp(res->name, "blk", 3) == 0) {
/*
* If a BLK allocation overlaps the start of
* PMEM the entire interleave set may now only
* be used for BLK.
*/
blk_start = map_start;
} else
busy += end - start + 1;
} else if (map_start > start && map_start < end) {
/* total eclipse of the mapping */
busy += nd_mapping->size;
blk_start = map_start;
}
}
*overlap = map_end + 1 - blk_start;
available = blk_start - map_start;
if (busy < available)
return ALIGN_DOWN(available - busy, align);
return 0;
err:
nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason);
return 0;
}
void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res)
{
WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
kfree(res->name);
__release_region(&ndd->dpa, res->start, resource_size(res));
}
struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd,
struct nd_label_id *label_id, resource_size_t start,
resource_size_t n)
{
char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL);
struct resource *res;
if (!name)
return NULL;
WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
res = __request_region(&ndd->dpa, start, n, name, 0);
if (!res)
kfree(name);
return res;
}
/**
* nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id
* @nvdimm: container of dpa-resource-root + labels
* @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid>
*/
resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd,
struct nd_label_id *label_id)
{
resource_size_t allocated = 0;
struct resource *res;
for_each_dpa_resource(ndd, res)
if (strcmp(res->name, label_id->id) == 0)
allocated += resource_size(res);
return allocated;
}
static int count_dimms(struct device *dev, void *c)
{
int *count = c;
if (is_nvdimm(dev))
(*count)++;
return 0;
}
int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count)
{
int count = 0;
/* Flush any possible dimm registration failures */
nd_synchronize();
device_for_each_child(&nvdimm_bus->dev, &count, count_dimms);
dev_dbg(&nvdimm_bus->dev, "count: %d\n", count);
if (count != dimm_count)
return -ENXIO;
return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count);
void __exit nvdimm_devs_exit(void)
{
ida_destroy(&dimm_ida);
}