linux/drivers/media/usb/uvc/uvc_video.c
Laurent Pinchart b83bba24a2 [media] uvcvideo: Separate video and queue enable/disable operations
In order to make use of the vb2 queue start/stop_streaming operations
the video and queue enable/disable operations need to be split, as the
vb2 queue will need to enable and disable video instead of the other way
around.

Also move buffer queue disable outside of uvc_video_resume() to remove
all queue disable operations out of uvc_video.c.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-11-25 08:39:14 -02:00

1908 lines
54 KiB
C

/*
* uvc_video.c -- USB Video Class driver - Video handling
*
* Copyright (C) 2005-2010
* Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/videodev2.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include <linux/atomic.h>
#include <asm/unaligned.h>
#include <media/v4l2-common.h>
#include "uvcvideo.h"
/* ------------------------------------------------------------------------
* UVC Controls
*/
static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
__u8 intfnum, __u8 cs, void *data, __u16 size,
int timeout)
{
__u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
unsigned int pipe;
pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
: usb_sndctrlpipe(dev->udev, 0);
type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
unit << 8 | intfnum, data, size, timeout);
}
static const char *uvc_query_name(__u8 query)
{
switch (query) {
case UVC_SET_CUR:
return "SET_CUR";
case UVC_GET_CUR:
return "GET_CUR";
case UVC_GET_MIN:
return "GET_MIN";
case UVC_GET_MAX:
return "GET_MAX";
case UVC_GET_RES:
return "GET_RES";
case UVC_GET_LEN:
return "GET_LEN";
case UVC_GET_INFO:
return "GET_INFO";
case UVC_GET_DEF:
return "GET_DEF";
default:
return "<invalid>";
}
}
int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
__u8 intfnum, __u8 cs, void *data, __u16 size)
{
int ret;
ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
UVC_CTRL_CONTROL_TIMEOUT);
if (ret != size) {
uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on "
"unit %u: %d (exp. %u).\n", uvc_query_name(query), cs,
unit, ret, size);
return -EIO;
}
return 0;
}
static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
struct uvc_streaming_control *ctrl)
{
struct uvc_format *format = NULL;
struct uvc_frame *frame = NULL;
unsigned int i;
for (i = 0; i < stream->nformats; ++i) {
if (stream->format[i].index == ctrl->bFormatIndex) {
format = &stream->format[i];
break;
}
}
if (format == NULL)
return;
for (i = 0; i < format->nframes; ++i) {
if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
frame = &format->frame[i];
break;
}
}
if (frame == NULL)
return;
if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
(ctrl->dwMaxVideoFrameSize == 0 &&
stream->dev->uvc_version < 0x0110))
ctrl->dwMaxVideoFrameSize =
frame->dwMaxVideoFrameBufferSize;
if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
stream->intf->num_altsetting > 1) {
u32 interval;
u32 bandwidth;
interval = (ctrl->dwFrameInterval > 100000)
? ctrl->dwFrameInterval
: frame->dwFrameInterval[0];
/* Compute a bandwidth estimation by multiplying the frame
* size by the number of video frames per second, divide the
* result by the number of USB frames (or micro-frames for
* high-speed devices) per second and add the UVC header size
* (assumed to be 12 bytes long).
*/
bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
bandwidth *= 10000000 / interval + 1;
bandwidth /= 1000;
if (stream->dev->udev->speed == USB_SPEED_HIGH)
bandwidth /= 8;
bandwidth += 12;
/* The bandwidth estimate is too low for many cameras. Don't use
* maximum packet sizes lower than 1024 bytes to try and work
* around the problem. According to measurements done on two
* different camera models, the value is high enough to get most
* resolutions working while not preventing two simultaneous
* VGA streams at 15 fps.
*/
bandwidth = max_t(u32, bandwidth, 1024);
ctrl->dwMaxPayloadTransferSize = bandwidth;
}
}
static int uvc_get_video_ctrl(struct uvc_streaming *stream,
struct uvc_streaming_control *ctrl, int probe, __u8 query)
{
__u8 *data;
__u16 size;
int ret;
size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
query == UVC_GET_DEF)
return -EIO;
data = kmalloc(size, GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
size, uvc_timeout_param);
if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
/* Some cameras, mostly based on Bison Electronics chipsets,
* answer a GET_MIN or GET_MAX request with the wCompQuality
* field only.
*/
uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
"compliance - GET_MIN/MAX(PROBE) incorrectly "
"supported. Enabling workaround.\n");
memset(ctrl, 0, sizeof *ctrl);
ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
ret = 0;
goto out;
} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
/* Many cameras don't support the GET_DEF request on their
* video probe control. Warn once and return, the caller will
* fall back to GET_CUR.
*/
uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
"compliance - GET_DEF(PROBE) not supported. "
"Enabling workaround.\n");
ret = -EIO;
goto out;
} else if (ret != size) {
uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
"%d (exp. %u).\n", query, probe ? "probe" : "commit",
ret, size);
ret = -EIO;
goto out;
}
ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
ctrl->bFormatIndex = data[2];
ctrl->bFrameIndex = data[3];
ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
if (size == 34) {
ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
ctrl->bmFramingInfo = data[30];
ctrl->bPreferedVersion = data[31];
ctrl->bMinVersion = data[32];
ctrl->bMaxVersion = data[33];
} else {
ctrl->dwClockFrequency = stream->dev->clock_frequency;
ctrl->bmFramingInfo = 0;
ctrl->bPreferedVersion = 0;
ctrl->bMinVersion = 0;
ctrl->bMaxVersion = 0;
}
/* Some broken devices return null or wrong dwMaxVideoFrameSize and
* dwMaxPayloadTransferSize fields. Try to get the value from the
* format and frame descriptors.
*/
uvc_fixup_video_ctrl(stream, ctrl);
ret = 0;
out:
kfree(data);
return ret;
}
static int uvc_set_video_ctrl(struct uvc_streaming *stream,
struct uvc_streaming_control *ctrl, int probe)
{
__u8 *data;
__u16 size;
int ret;
size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
data = kzalloc(size, GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
data[2] = ctrl->bFormatIndex;
data[3] = ctrl->bFrameIndex;
*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
if (size == 34) {
put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
data[30] = ctrl->bmFramingInfo;
data[31] = ctrl->bPreferedVersion;
data[32] = ctrl->bMinVersion;
data[33] = ctrl->bMaxVersion;
}
ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
size, uvc_timeout_param);
if (ret != size) {
uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
"%d (exp. %u).\n", probe ? "probe" : "commit",
ret, size);
ret = -EIO;
}
kfree(data);
return ret;
}
int uvc_probe_video(struct uvc_streaming *stream,
struct uvc_streaming_control *probe)
{
struct uvc_streaming_control probe_min, probe_max;
__u16 bandwidth;
unsigned int i;
int ret;
/* Perform probing. The device should adjust the requested values
* according to its capabilities. However, some devices, namely the
* first generation UVC Logitech webcams, don't implement the Video
* Probe control properly, and just return the needed bandwidth. For
* that reason, if the needed bandwidth exceeds the maximum available
* bandwidth, try to lower the quality.
*/
ret = uvc_set_video_ctrl(stream, probe, 1);
if (ret < 0)
goto done;
/* Get the minimum and maximum values for compression settings. */
if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
if (ret < 0)
goto done;
ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
if (ret < 0)
goto done;
probe->wCompQuality = probe_max.wCompQuality;
}
for (i = 0; i < 2; ++i) {
ret = uvc_set_video_ctrl(stream, probe, 1);
if (ret < 0)
goto done;
ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
if (ret < 0)
goto done;
if (stream->intf->num_altsetting == 1)
break;
bandwidth = probe->dwMaxPayloadTransferSize;
if (bandwidth <= stream->maxpsize)
break;
if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
ret = -ENOSPC;
goto done;
}
/* TODO: negotiate compression parameters */
probe->wKeyFrameRate = probe_min.wKeyFrameRate;
probe->wPFrameRate = probe_min.wPFrameRate;
probe->wCompQuality = probe_max.wCompQuality;
probe->wCompWindowSize = probe_min.wCompWindowSize;
}
done:
return ret;
}
static int uvc_commit_video(struct uvc_streaming *stream,
struct uvc_streaming_control *probe)
{
return uvc_set_video_ctrl(stream, probe, 0);
}
/* -----------------------------------------------------------------------------
* Clocks and timestamps
*/
static inline void uvc_video_get_ts(struct timespec *ts)
{
if (uvc_clock_param == CLOCK_MONOTONIC)
ktime_get_ts(ts);
else
ktime_get_real_ts(ts);
}
static void
uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
const __u8 *data, int len)
{
struct uvc_clock_sample *sample;
unsigned int header_size;
bool has_pts = false;
bool has_scr = false;
unsigned long flags;
struct timespec ts;
u16 host_sof;
u16 dev_sof;
switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
case UVC_STREAM_PTS | UVC_STREAM_SCR:
header_size = 12;
has_pts = true;
has_scr = true;
break;
case UVC_STREAM_PTS:
header_size = 6;
has_pts = true;
break;
case UVC_STREAM_SCR:
header_size = 8;
has_scr = true;
break;
default:
header_size = 2;
break;
}
/* Check for invalid headers. */
if (len < header_size)
return;
/* Extract the timestamps:
*
* - store the frame PTS in the buffer structure
* - if the SCR field is present, retrieve the host SOF counter and
* kernel timestamps and store them with the SCR STC and SOF fields
* in the ring buffer
*/
if (has_pts && buf != NULL)
buf->pts = get_unaligned_le32(&data[2]);
if (!has_scr)
return;
/* To limit the amount of data, drop SCRs with an SOF identical to the
* previous one.
*/
dev_sof = get_unaligned_le16(&data[header_size - 2]);
if (dev_sof == stream->clock.last_sof)
return;
stream->clock.last_sof = dev_sof;
host_sof = usb_get_current_frame_number(stream->dev->udev);
uvc_video_get_ts(&ts);
/* The UVC specification allows device implementations that can't obtain
* the USB frame number to keep their own frame counters as long as they
* match the size and frequency of the frame number associated with USB
* SOF tokens. The SOF values sent by such devices differ from the USB
* SOF tokens by a fixed offset that needs to be estimated and accounted
* for to make timestamp recovery as accurate as possible.
*
* The offset is estimated the first time a device SOF value is received
* as the difference between the host and device SOF values. As the two
* SOF values can differ slightly due to transmission delays, consider
* that the offset is null if the difference is not higher than 10 ms
* (negative differences can not happen and are thus considered as an
* offset). The video commit control wDelay field should be used to
* compute a dynamic threshold instead of using a fixed 10 ms value, but
* devices don't report reliable wDelay values.
*
* See uvc_video_clock_host_sof() for an explanation regarding why only
* the 8 LSBs of the delta are kept.
*/
if (stream->clock.sof_offset == (u16)-1) {
u16 delta_sof = (host_sof - dev_sof) & 255;
if (delta_sof >= 10)
stream->clock.sof_offset = delta_sof;
else
stream->clock.sof_offset = 0;
}
dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
spin_lock_irqsave(&stream->clock.lock, flags);
sample = &stream->clock.samples[stream->clock.head];
sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
sample->dev_sof = dev_sof;
sample->host_sof = host_sof;
sample->host_ts = ts;
/* Update the sliding window head and count. */
stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
if (stream->clock.count < stream->clock.size)
stream->clock.count++;
spin_unlock_irqrestore(&stream->clock.lock, flags);
}
static void uvc_video_clock_reset(struct uvc_streaming *stream)
{
struct uvc_clock *clock = &stream->clock;
clock->head = 0;
clock->count = 0;
clock->last_sof = -1;
clock->sof_offset = -1;
}
static int uvc_video_clock_init(struct uvc_streaming *stream)
{
struct uvc_clock *clock = &stream->clock;
spin_lock_init(&clock->lock);
clock->size = 32;
clock->samples = kmalloc(clock->size * sizeof(*clock->samples),
GFP_KERNEL);
if (clock->samples == NULL)
return -ENOMEM;
uvc_video_clock_reset(stream);
return 0;
}
static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
{
kfree(stream->clock.samples);
stream->clock.samples = NULL;
}
/*
* uvc_video_clock_host_sof - Return the host SOF value for a clock sample
*
* Host SOF counters reported by usb_get_current_frame_number() usually don't
* cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
* schedule window. They can be limited to 8, 9 or 10 bits depending on the host
* controller and its configuration.
*
* We thus need to recover the SOF value corresponding to the host frame number.
* As the device and host frame numbers are sampled in a short interval, the
* difference between their values should be equal to a small delta plus an
* integer multiple of 256 caused by the host frame number limited precision.
*
* To obtain the recovered host SOF value, compute the small delta by masking
* the high bits of the host frame counter and device SOF difference and add it
* to the device SOF value.
*/
static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
{
/* The delta value can be negative. */
s8 delta_sof;
delta_sof = (sample->host_sof - sample->dev_sof) & 255;
return (sample->dev_sof + delta_sof) & 2047;
}
/*
* uvc_video_clock_update - Update the buffer timestamp
*
* This function converts the buffer PTS timestamp to the host clock domain by
* going through the USB SOF clock domain and stores the result in the V4L2
* buffer timestamp field.
*
* The relationship between the device clock and the host clock isn't known.
* However, the device and the host share the common USB SOF clock which can be
* used to recover that relationship.
*
* The relationship between the device clock and the USB SOF clock is considered
* to be linear over the clock samples sliding window and is given by
*
* SOF = m * PTS + p
*
* Several methods to compute the slope (m) and intercept (p) can be used. As
* the clock drift should be small compared to the sliding window size, we
* assume that the line that goes through the points at both ends of the window
* is a good approximation. Naming those points P1 and P2, we get
*
* SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
* + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
*
* or
*
* SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
*
* to avoid losing precision in the division. Similarly, the host timestamp is
* computed with
*
* TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
*
* SOF values are coded on 11 bits by USB. We extend their precision with 16
* decimal bits, leading to a 11.16 coding.
*
* TODO: To avoid surprises with device clock values, PTS/STC timestamps should
* be normalized using the nominal device clock frequency reported through the
* UVC descriptors.
*
* Both the PTS/STC and SOF counters roll over, after a fixed but device
* specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
* sliding window size is smaller than the rollover period, differences computed
* on unsigned integers will produce the correct result. However, the p term in
* the linear relations will be miscomputed.
*
* To fix the issue, we subtract a constant from the PTS and STC values to bring
* PTS to half the 32 bit STC range. The sliding window STC values then fit into
* the 32 bit range without any rollover.
*
* Similarly, we add 2048 to the device SOF values to make sure that the SOF
* computed by (1) will never be smaller than 0. This offset is then compensated
* by adding 2048 to the SOF values used in (2). However, this doesn't prevent
* rollovers between (1) and (2): the SOF value computed by (1) can be slightly
* lower than 4096, and the host SOF counters can have rolled over to 2048. This
* case is handled by subtracting 2048 from the SOF value if it exceeds the host
* SOF value at the end of the sliding window.
*
* Finally we subtract a constant from the host timestamps to bring the first
* timestamp of the sliding window to 1s.
*/
void uvc_video_clock_update(struct uvc_streaming *stream,
struct v4l2_buffer *v4l2_buf,
struct uvc_buffer *buf)
{
struct uvc_clock *clock = &stream->clock;
struct uvc_clock_sample *first;
struct uvc_clock_sample *last;
unsigned long flags;
struct timespec ts;
u32 delta_stc;
u32 y1, y2;
u32 x1, x2;
u32 mean;
u32 sof;
u32 div;
u32 rem;
u64 y;
spin_lock_irqsave(&clock->lock, flags);
if (clock->count < clock->size)
goto done;
first = &clock->samples[clock->head];
last = &clock->samples[(clock->head - 1) % clock->size];
/* First step, PTS to SOF conversion. */
delta_stc = buf->pts - (1UL << 31);
x1 = first->dev_stc - delta_stc;
x2 = last->dev_stc - delta_stc;
if (x1 == x2)
goto done;
y1 = (first->dev_sof + 2048) << 16;
y2 = (last->dev_sof + 2048) << 16;
if (y2 < y1)
y2 += 2048 << 16;
y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
- (u64)y2 * (u64)x1;
y = div_u64(y, x2 - x1);
sof = y;
uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
"(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
stream->dev->name, buf->pts,
y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
x1, x2, y1, y2, clock->sof_offset);
/* Second step, SOF to host clock conversion. */
x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
if (x2 < x1)
x2 += 2048 << 16;
if (x1 == x2)
goto done;
ts = timespec_sub(last->host_ts, first->host_ts);
y1 = NSEC_PER_SEC;
y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec;
/* Interpolated and host SOF timestamps can wrap around at slightly
* different times. Handle this by adding or removing 2048 to or from
* the computed SOF value to keep it close to the SOF samples mean
* value.
*/
mean = (x1 + x2) / 2;
if (mean - (1024 << 16) > sof)
sof += 2048 << 16;
else if (sof > mean + (1024 << 16))
sof -= 2048 << 16;
y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
- (u64)y2 * (u64)x1;
y = div_u64(y, x2 - x1);
div = div_u64_rem(y, NSEC_PER_SEC, &rem);
ts.tv_sec = first->host_ts.tv_sec - 1 + div;
ts.tv_nsec = first->host_ts.tv_nsec + rem;
if (ts.tv_nsec >= NSEC_PER_SEC) {
ts.tv_sec++;
ts.tv_nsec -= NSEC_PER_SEC;
}
uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu "
"buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
stream->dev->name,
sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC,
v4l2_buf->timestamp.tv_sec,
(unsigned long)v4l2_buf->timestamp.tv_usec,
x1, first->host_sof, first->dev_sof,
x2, last->host_sof, last->dev_sof, y1, y2);
/* Update the V4L2 buffer. */
v4l2_buf->timestamp.tv_sec = ts.tv_sec;
v4l2_buf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
done:
spin_unlock_irqrestore(&stream->clock.lock, flags);
}
/* ------------------------------------------------------------------------
* Stream statistics
*/
static void uvc_video_stats_decode(struct uvc_streaming *stream,
const __u8 *data, int len)
{
unsigned int header_size;
bool has_pts = false;
bool has_scr = false;
u16 uninitialized_var(scr_sof);
u32 uninitialized_var(scr_stc);
u32 uninitialized_var(pts);
if (stream->stats.stream.nb_frames == 0 &&
stream->stats.frame.nb_packets == 0)
ktime_get_ts(&stream->stats.stream.start_ts);
switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
case UVC_STREAM_PTS | UVC_STREAM_SCR:
header_size = 12;
has_pts = true;
has_scr = true;
break;
case UVC_STREAM_PTS:
header_size = 6;
has_pts = true;
break;
case UVC_STREAM_SCR:
header_size = 8;
has_scr = true;
break;
default:
header_size = 2;
break;
}
/* Check for invalid headers. */
if (len < header_size || data[0] < header_size) {
stream->stats.frame.nb_invalid++;
return;
}
/* Extract the timestamps. */
if (has_pts)
pts = get_unaligned_le32(&data[2]);
if (has_scr) {
scr_stc = get_unaligned_le32(&data[header_size - 6]);
scr_sof = get_unaligned_le16(&data[header_size - 2]);
}
/* Is PTS constant through the whole frame ? */
if (has_pts && stream->stats.frame.nb_pts) {
if (stream->stats.frame.pts != pts) {
stream->stats.frame.nb_pts_diffs++;
stream->stats.frame.last_pts_diff =
stream->stats.frame.nb_packets;
}
}
if (has_pts) {
stream->stats.frame.nb_pts++;
stream->stats.frame.pts = pts;
}
/* Do all frames have a PTS in their first non-empty packet, or before
* their first empty packet ?
*/
if (stream->stats.frame.size == 0) {
if (len > header_size)
stream->stats.frame.has_initial_pts = has_pts;
if (len == header_size && has_pts)
stream->stats.frame.has_early_pts = true;
}
/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
if (has_scr && stream->stats.frame.nb_scr) {
if (stream->stats.frame.scr_stc != scr_stc)
stream->stats.frame.nb_scr_diffs++;
}
if (has_scr) {
/* Expand the SOF counter to 32 bits and store its value. */
if (stream->stats.stream.nb_frames > 0 ||
stream->stats.frame.nb_scr > 0)
stream->stats.stream.scr_sof_count +=
(scr_sof - stream->stats.stream.scr_sof) % 2048;
stream->stats.stream.scr_sof = scr_sof;
stream->stats.frame.nb_scr++;
stream->stats.frame.scr_stc = scr_stc;
stream->stats.frame.scr_sof = scr_sof;
if (scr_sof < stream->stats.stream.min_sof)
stream->stats.stream.min_sof = scr_sof;
if (scr_sof > stream->stats.stream.max_sof)
stream->stats.stream.max_sof = scr_sof;
}
/* Record the first non-empty packet number. */
if (stream->stats.frame.size == 0 && len > header_size)
stream->stats.frame.first_data = stream->stats.frame.nb_packets;
/* Update the frame size. */
stream->stats.frame.size += len - header_size;
/* Update the packets counters. */
stream->stats.frame.nb_packets++;
if (len > header_size)
stream->stats.frame.nb_empty++;
if (data[1] & UVC_STREAM_ERR)
stream->stats.frame.nb_errors++;
}
static void uvc_video_stats_update(struct uvc_streaming *stream)
{
struct uvc_stats_frame *frame = &stream->stats.frame;
uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
"%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
"last pts/stc/sof %u/%u/%u\n",
stream->sequence, frame->first_data,
frame->nb_packets - frame->nb_empty, frame->nb_packets,
frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
frame->has_early_pts ? "" : "!",
frame->has_initial_pts ? "" : "!",
frame->nb_scr_diffs, frame->nb_scr,
frame->pts, frame->scr_stc, frame->scr_sof);
stream->stats.stream.nb_frames++;
stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
if (frame->has_early_pts)
stream->stats.stream.nb_pts_early++;
if (frame->has_initial_pts)
stream->stats.stream.nb_pts_initial++;
if (frame->last_pts_diff <= frame->first_data)
stream->stats.stream.nb_pts_constant++;
if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
stream->stats.stream.nb_scr_count_ok++;
if (frame->nb_scr_diffs + 1 == frame->nb_scr)
stream->stats.stream.nb_scr_diffs_ok++;
memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
}
size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
size_t size)
{
unsigned int scr_sof_freq;
unsigned int duration;
struct timespec ts;
size_t count = 0;
ts.tv_sec = stream->stats.stream.stop_ts.tv_sec
- stream->stats.stream.start_ts.tv_sec;
ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec
- stream->stats.stream.start_ts.tv_nsec;
if (ts.tv_nsec < 0) {
ts.tv_sec--;
ts.tv_nsec += 1000000000;
}
/* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
* frequency this will not overflow before more than 1h.
*/
duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000;
if (duration != 0)
scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
/ duration;
else
scr_sof_freq = 0;
count += scnprintf(buf + count, size - count,
"frames: %u\npackets: %u\nempty: %u\n"
"errors: %u\ninvalid: %u\n",
stream->stats.stream.nb_frames,
stream->stats.stream.nb_packets,
stream->stats.stream.nb_empty,
stream->stats.stream.nb_errors,
stream->stats.stream.nb_invalid);
count += scnprintf(buf + count, size - count,
"pts: %u early, %u initial, %u ok\n",
stream->stats.stream.nb_pts_early,
stream->stats.stream.nb_pts_initial,
stream->stats.stream.nb_pts_constant);
count += scnprintf(buf + count, size - count,
"scr: %u count ok, %u diff ok\n",
stream->stats.stream.nb_scr_count_ok,
stream->stats.stream.nb_scr_diffs_ok);
count += scnprintf(buf + count, size - count,
"sof: %u <= sof <= %u, freq %u.%03u kHz\n",
stream->stats.stream.min_sof,
stream->stats.stream.max_sof,
scr_sof_freq / 1000, scr_sof_freq % 1000);
return count;
}
static void uvc_video_stats_start(struct uvc_streaming *stream)
{
memset(&stream->stats, 0, sizeof(stream->stats));
stream->stats.stream.min_sof = 2048;
}
static void uvc_video_stats_stop(struct uvc_streaming *stream)
{
ktime_get_ts(&stream->stats.stream.stop_ts);
}
/* ------------------------------------------------------------------------
* Video codecs
*/
/* Video payload decoding is handled by uvc_video_decode_start(),
* uvc_video_decode_data() and uvc_video_decode_end().
*
* uvc_video_decode_start is called with URB data at the start of a bulk or
* isochronous payload. It processes header data and returns the header size
* in bytes if successful. If an error occurs, it returns a negative error
* code. The following error codes have special meanings.
*
* - EAGAIN informs the caller that the current video buffer should be marked
* as done, and that the function should be called again with the same data
* and a new video buffer. This is used when end of frame conditions can be
* reliably detected at the beginning of the next frame only.
*
* If an error other than -EAGAIN is returned, the caller will drop the current
* payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
* made until the next payload. -ENODATA can be used to drop the current
* payload if no other error code is appropriate.
*
* uvc_video_decode_data is called for every URB with URB data. It copies the
* data to the video buffer.
*
* uvc_video_decode_end is called with header data at the end of a bulk or
* isochronous payload. It performs any additional header data processing and
* returns 0 or a negative error code if an error occurred. As header data have
* already been processed by uvc_video_decode_start, this functions isn't
* required to perform sanity checks a second time.
*
* For isochronous transfers where a payload is always transferred in a single
* URB, the three functions will be called in a row.
*
* To let the decoder process header data and update its internal state even
* when no video buffer is available, uvc_video_decode_start must be prepared
* to be called with a NULL buf parameter. uvc_video_decode_data and
* uvc_video_decode_end will never be called with a NULL buffer.
*/
static int uvc_video_decode_start(struct uvc_streaming *stream,
struct uvc_buffer *buf, const __u8 *data, int len)
{
__u8 fid;
/* Sanity checks:
* - packet must be at least 2 bytes long
* - bHeaderLength value must be at least 2 bytes (see above)
* - bHeaderLength value can't be larger than the packet size.
*/
if (len < 2 || data[0] < 2 || data[0] > len) {
stream->stats.frame.nb_invalid++;
return -EINVAL;
}
fid = data[1] & UVC_STREAM_FID;
/* Increase the sequence number regardless of any buffer states, so
* that discontinuous sequence numbers always indicate lost frames.
*/
if (stream->last_fid != fid) {
stream->sequence++;
if (stream->sequence)
uvc_video_stats_update(stream);
}
uvc_video_clock_decode(stream, buf, data, len);
uvc_video_stats_decode(stream, data, len);
/* Store the payload FID bit and return immediately when the buffer is
* NULL.
*/
if (buf == NULL) {
stream->last_fid = fid;
return -ENODATA;
}
/* Mark the buffer as bad if the error bit is set. */
if (data[1] & UVC_STREAM_ERR) {
uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
"set).\n");
buf->error = 1;
}
/* Synchronize to the input stream by waiting for the FID bit to be
* toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
* stream->last_fid is initialized to -1, so the first isochronous
* frame will always be in sync.
*
* If the device doesn't toggle the FID bit, invert stream->last_fid
* when the EOF bit is set to force synchronisation on the next packet.
*/
if (buf->state != UVC_BUF_STATE_ACTIVE) {
struct timespec ts;
if (fid == stream->last_fid) {
uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
"sync).\n");
if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
(data[1] & UVC_STREAM_EOF))
stream->last_fid ^= UVC_STREAM_FID;
return -ENODATA;
}
uvc_video_get_ts(&ts);
buf->buf.v4l2_buf.field = V4L2_FIELD_NONE;
buf->buf.v4l2_buf.sequence = stream->sequence;
buf->buf.v4l2_buf.timestamp.tv_sec = ts.tv_sec;
buf->buf.v4l2_buf.timestamp.tv_usec =
ts.tv_nsec / NSEC_PER_USEC;
/* TODO: Handle PTS and SCR. */
buf->state = UVC_BUF_STATE_ACTIVE;
}
/* Mark the buffer as done if we're at the beginning of a new frame.
* End of frame detection is better implemented by checking the EOF
* bit (FID bit toggling is delayed by one frame compared to the EOF
* bit), but some devices don't set the bit at end of frame (and the
* last payload can be lost anyway). We thus must check if the FID has
* been toggled.
*
* stream->last_fid is initialized to -1, so the first isochronous
* frame will never trigger an end of frame detection.
*
* Empty buffers (bytesused == 0) don't trigger end of frame detection
* as it doesn't make sense to return an empty buffer. This also
* avoids detecting end of frame conditions at FID toggling if the
* previous payload had the EOF bit set.
*/
if (fid != stream->last_fid && buf->bytesused != 0) {
uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
"toggled).\n");
buf->state = UVC_BUF_STATE_READY;
return -EAGAIN;
}
stream->last_fid = fid;
return data[0];
}
static void uvc_video_decode_data(struct uvc_streaming *stream,
struct uvc_buffer *buf, const __u8 *data, int len)
{
unsigned int maxlen, nbytes;
void *mem;
if (len <= 0)
return;
/* Copy the video data to the buffer. */
maxlen = buf->length - buf->bytesused;
mem = buf->mem + buf->bytesused;
nbytes = min((unsigned int)len, maxlen);
memcpy(mem, data, nbytes);
buf->bytesused += nbytes;
/* Complete the current frame if the buffer size was exceeded. */
if (len > maxlen) {
uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
buf->state = UVC_BUF_STATE_READY;
}
}
static void uvc_video_decode_end(struct uvc_streaming *stream,
struct uvc_buffer *buf, const __u8 *data, int len)
{
/* Mark the buffer as done if the EOF marker is set. */
if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
if (data[0] == len)
uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
buf->state = UVC_BUF_STATE_READY;
if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
stream->last_fid ^= UVC_STREAM_FID;
}
}
/* Video payload encoding is handled by uvc_video_encode_header() and
* uvc_video_encode_data(). Only bulk transfers are currently supported.
*
* uvc_video_encode_header is called at the start of a payload. It adds header
* data to the transfer buffer and returns the header size. As the only known
* UVC output device transfers a whole frame in a single payload, the EOF bit
* is always set in the header.
*
* uvc_video_encode_data is called for every URB and copies the data from the
* video buffer to the transfer buffer.
*/
static int uvc_video_encode_header(struct uvc_streaming *stream,
struct uvc_buffer *buf, __u8 *data, int len)
{
data[0] = 2; /* Header length */
data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
| (stream->last_fid & UVC_STREAM_FID);
return 2;
}
static int uvc_video_encode_data(struct uvc_streaming *stream,
struct uvc_buffer *buf, __u8 *data, int len)
{
struct uvc_video_queue *queue = &stream->queue;
unsigned int nbytes;
void *mem;
/* Copy video data to the URB buffer. */
mem = buf->mem + queue->buf_used;
nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
nbytes);
memcpy(data, mem, nbytes);
queue->buf_used += nbytes;
return nbytes;
}
/* ------------------------------------------------------------------------
* URB handling
*/
/*
* Set error flag for incomplete buffer.
*/
static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
struct uvc_buffer *buf)
{
if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
!(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
buf->error = 1;
}
/*
* Completion handler for video URBs.
*/
static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream,
struct uvc_buffer *buf)
{
u8 *mem;
int ret, i;
for (i = 0; i < urb->number_of_packets; ++i) {
if (urb->iso_frame_desc[i].status < 0) {
uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
"lost (%d).\n", urb->iso_frame_desc[i].status);
/* Mark the buffer as faulty. */
if (buf != NULL)
buf->error = 1;
continue;
}
/* Decode the payload header. */
mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
do {
ret = uvc_video_decode_start(stream, buf, mem,
urb->iso_frame_desc[i].actual_length);
if (ret == -EAGAIN) {
uvc_video_validate_buffer(stream, buf);
buf = uvc_queue_next_buffer(&stream->queue,
buf);
}
} while (ret == -EAGAIN);
if (ret < 0)
continue;
/* Decode the payload data. */
uvc_video_decode_data(stream, buf, mem + ret,
urb->iso_frame_desc[i].actual_length - ret);
/* Process the header again. */
uvc_video_decode_end(stream, buf, mem,
urb->iso_frame_desc[i].actual_length);
if (buf->state == UVC_BUF_STATE_READY) {
uvc_video_validate_buffer(stream, buf);
buf = uvc_queue_next_buffer(&stream->queue, buf);
}
}
}
static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream,
struct uvc_buffer *buf)
{
u8 *mem;
int len, ret;
/*
* Ignore ZLPs if they're not part of a frame, otherwise process them
* to trigger the end of payload detection.
*/
if (urb->actual_length == 0 && stream->bulk.header_size == 0)
return;
mem = urb->transfer_buffer;
len = urb->actual_length;
stream->bulk.payload_size += len;
/* If the URB is the first of its payload, decode and save the
* header.
*/
if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
do {
ret = uvc_video_decode_start(stream, buf, mem, len);
if (ret == -EAGAIN)
buf = uvc_queue_next_buffer(&stream->queue,
buf);
} while (ret == -EAGAIN);
/* If an error occurred skip the rest of the payload. */
if (ret < 0 || buf == NULL) {
stream->bulk.skip_payload = 1;
} else {
memcpy(stream->bulk.header, mem, ret);
stream->bulk.header_size = ret;
mem += ret;
len -= ret;
}
}
/* The buffer queue might have been cancelled while a bulk transfer
* was in progress, so we can reach here with buf equal to NULL. Make
* sure buf is never dereferenced if NULL.
*/
/* Process video data. */
if (!stream->bulk.skip_payload && buf != NULL)
uvc_video_decode_data(stream, buf, mem, len);
/* Detect the payload end by a URB smaller than the maximum size (or
* a payload size equal to the maximum) and process the header again.
*/
if (urb->actual_length < urb->transfer_buffer_length ||
stream->bulk.payload_size >= stream->bulk.max_payload_size) {
if (!stream->bulk.skip_payload && buf != NULL) {
uvc_video_decode_end(stream, buf, stream->bulk.header,
stream->bulk.payload_size);
if (buf->state == UVC_BUF_STATE_READY)
buf = uvc_queue_next_buffer(&stream->queue,
buf);
}
stream->bulk.header_size = 0;
stream->bulk.skip_payload = 0;
stream->bulk.payload_size = 0;
}
}
static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream,
struct uvc_buffer *buf)
{
u8 *mem = urb->transfer_buffer;
int len = stream->urb_size, ret;
if (buf == NULL) {
urb->transfer_buffer_length = 0;
return;
}
/* If the URB is the first of its payload, add the header. */
if (stream->bulk.header_size == 0) {
ret = uvc_video_encode_header(stream, buf, mem, len);
stream->bulk.header_size = ret;
stream->bulk.payload_size += ret;
mem += ret;
len -= ret;
}
/* Process video data. */
ret = uvc_video_encode_data(stream, buf, mem, len);
stream->bulk.payload_size += ret;
len -= ret;
if (buf->bytesused == stream->queue.buf_used ||
stream->bulk.payload_size == stream->bulk.max_payload_size) {
if (buf->bytesused == stream->queue.buf_used) {
stream->queue.buf_used = 0;
buf->state = UVC_BUF_STATE_READY;
buf->buf.v4l2_buf.sequence = ++stream->sequence;
uvc_queue_next_buffer(&stream->queue, buf);
stream->last_fid ^= UVC_STREAM_FID;
}
stream->bulk.header_size = 0;
stream->bulk.payload_size = 0;
}
urb->transfer_buffer_length = stream->urb_size - len;
}
static void uvc_video_complete(struct urb *urb)
{
struct uvc_streaming *stream = urb->context;
struct uvc_video_queue *queue = &stream->queue;
struct uvc_buffer *buf = NULL;
unsigned long flags;
int ret;
switch (urb->status) {
case 0:
break;
default:
uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
"completion handler.\n", urb->status);
case -ENOENT: /* usb_kill_urb() called. */
if (stream->frozen)
return;
case -ECONNRESET: /* usb_unlink_urb() called. */
case -ESHUTDOWN: /* The endpoint is being disabled. */
uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
return;
}
spin_lock_irqsave(&queue->irqlock, flags);
if (!list_empty(&queue->irqqueue))
buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
queue);
spin_unlock_irqrestore(&queue->irqlock, flags);
stream->decode(urb, stream, buf);
if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
ret);
}
}
/*
* Free transfer buffers.
*/
static void uvc_free_urb_buffers(struct uvc_streaming *stream)
{
unsigned int i;
for (i = 0; i < UVC_URBS; ++i) {
if (stream->urb_buffer[i]) {
#ifndef CONFIG_DMA_NONCOHERENT
usb_free_coherent(stream->dev->udev, stream->urb_size,
stream->urb_buffer[i], stream->urb_dma[i]);
#else
kfree(stream->urb_buffer[i]);
#endif
stream->urb_buffer[i] = NULL;
}
}
stream->urb_size = 0;
}
/*
* Allocate transfer buffers. This function can be called with buffers
* already allocated when resuming from suspend, in which case it will
* return without touching the buffers.
*
* Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
* system is too low on memory try successively smaller numbers of packets
* until allocation succeeds.
*
* Return the number of allocated packets on success or 0 when out of memory.
*/
static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
unsigned int size, unsigned int psize, gfp_t gfp_flags)
{
unsigned int npackets;
unsigned int i;
/* Buffers are already allocated, bail out. */
if (stream->urb_size)
return stream->urb_size / psize;
/* Compute the number of packets. Bulk endpoints might transfer UVC
* payloads across multiple URBs.
*/
npackets = DIV_ROUND_UP(size, psize);
if (npackets > UVC_MAX_PACKETS)
npackets = UVC_MAX_PACKETS;
/* Retry allocations until one succeed. */
for (; npackets > 1; npackets /= 2) {
for (i = 0; i < UVC_URBS; ++i) {
stream->urb_size = psize * npackets;
#ifndef CONFIG_DMA_NONCOHERENT
stream->urb_buffer[i] = usb_alloc_coherent(
stream->dev->udev, stream->urb_size,
gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]);
#else
stream->urb_buffer[i] =
kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
#endif
if (!stream->urb_buffer[i]) {
uvc_free_urb_buffers(stream);
break;
}
}
if (i == UVC_URBS) {
uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
"of %ux%u bytes each.\n", UVC_URBS, npackets,
psize);
return npackets;
}
}
uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
"per packet).\n", psize);
return 0;
}
/*
* Uninitialize isochronous/bulk URBs and free transfer buffers.
*/
static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers)
{
struct urb *urb;
unsigned int i;
uvc_video_stats_stop(stream);
for (i = 0; i < UVC_URBS; ++i) {
urb = stream->urb[i];
if (urb == NULL)
continue;
usb_kill_urb(urb);
usb_free_urb(urb);
stream->urb[i] = NULL;
}
if (free_buffers)
uvc_free_urb_buffers(stream);
}
/*
* Compute the maximum number of bytes per interval for an endpoint.
*/
static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
struct usb_host_endpoint *ep)
{
u16 psize;
switch (dev->speed) {
case USB_SPEED_SUPER:
return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
case USB_SPEED_HIGH:
psize = usb_endpoint_maxp(&ep->desc);
return (psize & 0x07ff) * (1 + ((psize >> 11) & 3));
case USB_SPEED_WIRELESS:
psize = usb_endpoint_maxp(&ep->desc);
return psize;
default:
psize = usb_endpoint_maxp(&ep->desc);
return psize & 0x07ff;
}
}
/*
* Initialize isochronous URBs and allocate transfer buffers. The packet size
* is given by the endpoint.
*/
static int uvc_init_video_isoc(struct uvc_streaming *stream,
struct usb_host_endpoint *ep, gfp_t gfp_flags)
{
struct urb *urb;
unsigned int npackets, i, j;
u16 psize;
u32 size;
psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
size = stream->ctrl.dwMaxVideoFrameSize;
npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
if (npackets == 0)
return -ENOMEM;
size = npackets * psize;
for (i = 0; i < UVC_URBS; ++i) {
urb = usb_alloc_urb(npackets, gfp_flags);
if (urb == NULL) {
uvc_uninit_video(stream, 1);
return -ENOMEM;
}
urb->dev = stream->dev->udev;
urb->context = stream;
urb->pipe = usb_rcvisocpipe(stream->dev->udev,
ep->desc.bEndpointAddress);
#ifndef CONFIG_DMA_NONCOHERENT
urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
urb->transfer_dma = stream->urb_dma[i];
#else
urb->transfer_flags = URB_ISO_ASAP;
#endif
urb->interval = ep->desc.bInterval;
urb->transfer_buffer = stream->urb_buffer[i];
urb->complete = uvc_video_complete;
urb->number_of_packets = npackets;
urb->transfer_buffer_length = size;
for (j = 0; j < npackets; ++j) {
urb->iso_frame_desc[j].offset = j * psize;
urb->iso_frame_desc[j].length = psize;
}
stream->urb[i] = urb;
}
return 0;
}
/*
* Initialize bulk URBs and allocate transfer buffers. The packet size is
* given by the endpoint.
*/
static int uvc_init_video_bulk(struct uvc_streaming *stream,
struct usb_host_endpoint *ep, gfp_t gfp_flags)
{
struct urb *urb;
unsigned int npackets, pipe, i;
u16 psize;
u32 size;
psize = usb_endpoint_maxp(&ep->desc) & 0x7ff;
size = stream->ctrl.dwMaxPayloadTransferSize;
stream->bulk.max_payload_size = size;
npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
if (npackets == 0)
return -ENOMEM;
size = npackets * psize;
if (usb_endpoint_dir_in(&ep->desc))
pipe = usb_rcvbulkpipe(stream->dev->udev,
ep->desc.bEndpointAddress);
else
pipe = usb_sndbulkpipe(stream->dev->udev,
ep->desc.bEndpointAddress);
if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
size = 0;
for (i = 0; i < UVC_URBS; ++i) {
urb = usb_alloc_urb(0, gfp_flags);
if (urb == NULL) {
uvc_uninit_video(stream, 1);
return -ENOMEM;
}
usb_fill_bulk_urb(urb, stream->dev->udev, pipe,
stream->urb_buffer[i], size, uvc_video_complete,
stream);
#ifndef CONFIG_DMA_NONCOHERENT
urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
urb->transfer_dma = stream->urb_dma[i];
#endif
stream->urb[i] = urb;
}
return 0;
}
/*
* Initialize isochronous/bulk URBs and allocate transfer buffers.
*/
static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags)
{
struct usb_interface *intf = stream->intf;
struct usb_host_endpoint *ep;
unsigned int i;
int ret;
stream->sequence = -1;
stream->last_fid = -1;
stream->bulk.header_size = 0;
stream->bulk.skip_payload = 0;
stream->bulk.payload_size = 0;
uvc_video_stats_start(stream);
if (intf->num_altsetting > 1) {
struct usb_host_endpoint *best_ep = NULL;
unsigned int best_psize = UINT_MAX;
unsigned int bandwidth;
unsigned int uninitialized_var(altsetting);
int intfnum = stream->intfnum;
/* Isochronous endpoint, select the alternate setting. */
bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
if (bandwidth == 0) {
uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
"bandwidth, defaulting to lowest.\n");
bandwidth = 1;
} else {
uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
"B/frame bandwidth.\n", bandwidth);
}
for (i = 0; i < intf->num_altsetting; ++i) {
struct usb_host_interface *alts;
unsigned int psize;
alts = &intf->altsetting[i];
ep = uvc_find_endpoint(alts,
stream->header.bEndpointAddress);
if (ep == NULL)
continue;
/* Check if the bandwidth is high enough. */
psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
if (psize >= bandwidth && psize <= best_psize) {
altsetting = alts->desc.bAlternateSetting;
best_psize = psize;
best_ep = ep;
}
}
if (best_ep == NULL) {
uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
"for requested bandwidth.\n");
return -EIO;
}
uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
"(%u B/frame bandwidth).\n", altsetting, best_psize);
ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
if (ret < 0)
return ret;
ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
} else {
/* Bulk endpoint, proceed to URB initialization. */
ep = uvc_find_endpoint(&intf->altsetting[0],
stream->header.bEndpointAddress);
if (ep == NULL)
return -EIO;
ret = uvc_init_video_bulk(stream, ep, gfp_flags);
}
if (ret < 0)
return ret;
/* Submit the URBs. */
for (i = 0; i < UVC_URBS; ++i) {
ret = usb_submit_urb(stream->urb[i], gfp_flags);
if (ret < 0) {
uvc_printk(KERN_ERR, "Failed to submit URB %u "
"(%d).\n", i, ret);
uvc_uninit_video(stream, 1);
return ret;
}
}
/* The Logitech C920 temporarily forgets that it should not be adjusting
* Exposure Absolute during init so restore controls to stored values.
*/
if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
uvc_ctrl_restore_values(stream->dev);
return 0;
}
/* --------------------------------------------------------------------------
* Suspend/resume
*/
/*
* Stop streaming without disabling the video queue.
*
* To let userspace applications resume without trouble, we must not touch the
* video buffers in any way. We mark the device as frozen to make sure the URB
* completion handler won't try to cancel the queue when we kill the URBs.
*/
int uvc_video_suspend(struct uvc_streaming *stream)
{
if (!uvc_queue_streaming(&stream->queue))
return 0;
stream->frozen = 1;
uvc_uninit_video(stream, 0);
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
return 0;
}
/*
* Reconfigure the video interface and restart streaming if it was enabled
* before suspend.
*
* If an error occurs, disable the video queue. This will wake all pending
* buffers, making sure userspace applications are notified of the problem
* instead of waiting forever.
*/
int uvc_video_resume(struct uvc_streaming *stream, int reset)
{
int ret;
/* If the bus has been reset on resume, set the alternate setting to 0.
* This should be the default value, but some devices crash or otherwise
* misbehave if they don't receive a SET_INTERFACE request before any
* other video control request.
*/
if (reset)
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
stream->frozen = 0;
uvc_video_clock_reset(stream);
ret = uvc_commit_video(stream, &stream->ctrl);
if (ret < 0)
return ret;
if (!uvc_queue_streaming(&stream->queue))
return 0;
return uvc_init_video(stream, GFP_NOIO);
}
/* ------------------------------------------------------------------------
* Video device
*/
/*
* Initialize the UVC video device by switching to alternate setting 0 and
* retrieve the default format.
*
* Some cameras (namely the Fuji Finepix) set the format and frame
* indexes to zero. The UVC standard doesn't clearly make this a spec
* violation, so try to silently fix the values if possible.
*
* This function is called before registering the device with V4L.
*/
int uvc_video_init(struct uvc_streaming *stream)
{
struct uvc_streaming_control *probe = &stream->ctrl;
struct uvc_format *format = NULL;
struct uvc_frame *frame = NULL;
unsigned int i;
int ret;
if (stream->nformats == 0) {
uvc_printk(KERN_INFO, "No supported video formats found.\n");
return -EINVAL;
}
atomic_set(&stream->active, 0);
/* Alternate setting 0 should be the default, yet the XBox Live Vision
* Cam (and possibly other devices) crash or otherwise misbehave if
* they don't receive a SET_INTERFACE request before any other video
* control request.
*/
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
/* Set the streaming probe control with default streaming parameters
* retrieved from the device. Webcams that don't suport GET_DEF
* requests on the probe control will just keep their current streaming
* parameters.
*/
if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
uvc_set_video_ctrl(stream, probe, 1);
/* Initialize the streaming parameters with the probe control current
* value. This makes sure SET_CUR requests on the streaming commit
* control will always use values retrieved from a successful GET_CUR
* request on the probe control, as required by the UVC specification.
*/
ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
if (ret < 0)
return ret;
/* Check if the default format descriptor exists. Use the first
* available format otherwise.
*/
for (i = stream->nformats; i > 0; --i) {
format = &stream->format[i-1];
if (format->index == probe->bFormatIndex)
break;
}
if (format->nframes == 0) {
uvc_printk(KERN_INFO, "No frame descriptor found for the "
"default format.\n");
return -EINVAL;
}
/* Zero bFrameIndex might be correct. Stream-based formats (including
* MPEG-2 TS and DV) do not support frames but have a dummy frame
* descriptor with bFrameIndex set to zero. If the default frame
* descriptor is not found, use the first available frame.
*/
for (i = format->nframes; i > 0; --i) {
frame = &format->frame[i-1];
if (frame->bFrameIndex == probe->bFrameIndex)
break;
}
probe->bFormatIndex = format->index;
probe->bFrameIndex = frame->bFrameIndex;
stream->def_format = format;
stream->cur_format = format;
stream->cur_frame = frame;
/* Select the video decoding function */
if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
stream->decode = uvc_video_decode_isight;
else if (stream->intf->num_altsetting > 1)
stream->decode = uvc_video_decode_isoc;
else
stream->decode = uvc_video_decode_bulk;
} else {
if (stream->intf->num_altsetting == 1)
stream->decode = uvc_video_encode_bulk;
else {
uvc_printk(KERN_INFO, "Isochronous endpoints are not "
"supported for video output devices.\n");
return -EINVAL;
}
}
return 0;
}
/*
* Enable or disable the video stream.
*/
int uvc_video_enable(struct uvc_streaming *stream, int enable)
{
int ret;
if (!enable) {
uvc_uninit_video(stream, 1);
if (stream->intf->num_altsetting > 1) {
usb_set_interface(stream->dev->udev,
stream->intfnum, 0);
} else {
/* UVC doesn't specify how to inform a bulk-based device
* when the video stream is stopped. Windows sends a
* CLEAR_FEATURE(HALT) request to the video streaming
* bulk endpoint, mimic the same behaviour.
*/
unsigned int epnum = stream->header.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK;
unsigned int dir = stream->header.bEndpointAddress
& USB_ENDPOINT_DIR_MASK;
unsigned int pipe;
pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
usb_clear_halt(stream->dev->udev, pipe);
}
uvc_video_clock_cleanup(stream);
return 0;
}
ret = uvc_video_clock_init(stream);
if (ret < 0)
return ret;
/* Commit the streaming parameters. */
ret = uvc_commit_video(stream, &stream->ctrl);
if (ret < 0)
goto error_commit;
ret = uvc_init_video(stream, GFP_KERNEL);
if (ret < 0)
goto error_video;
return 0;
error_video:
usb_set_interface(stream->dev->udev, stream->intfnum, 0);
error_commit:
uvc_video_clock_cleanup(stream);
return ret;
}