64ea57d0c7
In order to unifying regulatory limit handling
commit ca2c68cc7b
(ath9k_hw: clean up tx power handling) introduced
a new helper function 'ath9k_hw_apply_txpower',
and the direct calls of 'ah->eep_ops->set_txpower'
has been replaced by a call of the helper function.
This caused a change in the behaviour of the
'ath9k_hw_set_txpowerlimit' function. The purpose
of that function is to calculate and store the
rate txpower table and the regulatory limit without
touching the hardware registers. Before the commit,
the 'test' parameter of the function was passed to
the 'ah->eep_ops->set_txpower'. Now the calling of
the 'set_txpower' function happens indirectly through
'ath9k_hw_apply_txpower', so the 'test' argument of
the 'set_txpower' is always 'false'.
This patch restores the original behaviour of
'ath9k_hw_set_txpowerlimit' by adding a new
argument to 'ath9k_hw_apply_txpower.'
Signed-off-by: Gabor Juhos <juhosg@openwrt.org>
Acked-by: Felix Fietkau <nbd@openwrt.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
867 lines
25 KiB
C
867 lines
25 KiB
C
/*
|
|
* Copyright (c) 2010-2011 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include "hw.h"
|
|
#include "ar9003_phy.h"
|
|
|
|
void ar9003_paprd_enable(struct ath_hw *ah, bool val)
|
|
{
|
|
struct ath9k_channel *chan = ah->curchan;
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
/*
|
|
* 3 bits for modalHeader5G.papdRateMaskHt20
|
|
* is used for sub-band disabling of PAPRD.
|
|
* 5G band is divided into 3 sub-bands -- upper,
|
|
* middle, lower.
|
|
* if bit 30 of modalHeader5G.papdRateMaskHt20 is set
|
|
* -- disable PAPRD for upper band 5GHz
|
|
* if bit 29 of modalHeader5G.papdRateMaskHt20 is set
|
|
* -- disable PAPRD for middle band 5GHz
|
|
* if bit 28 of modalHeader5G.papdRateMaskHt20 is set
|
|
* -- disable PAPRD for lower band 5GHz
|
|
*/
|
|
|
|
if (IS_CHAN_5GHZ(chan)) {
|
|
if (chan->channel >= UPPER_5G_SUB_BAND_START) {
|
|
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
|
|
& BIT(30))
|
|
val = false;
|
|
} else if (chan->channel >= MID_5G_SUB_BAND_START) {
|
|
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
|
|
& BIT(29))
|
|
val = false;
|
|
} else {
|
|
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
|
|
& BIT(28))
|
|
val = false;
|
|
}
|
|
}
|
|
|
|
if (val) {
|
|
ah->paprd_table_write_done = true;
|
|
ath9k_hw_apply_txpower(ah, chan, false);
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
|
|
if (ah->caps.tx_chainmask & BIT(1))
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
|
|
if (ah->caps.tx_chainmask & BIT(2))
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_enable);
|
|
|
|
static int ar9003_get_training_power_2g(struct ath_hw *ah)
|
|
{
|
|
struct ath9k_channel *chan = ah->curchan;
|
|
unsigned int power, scale, delta;
|
|
|
|
scale = ar9003_get_paprd_scale_factor(ah, chan);
|
|
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
|
|
AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
|
|
|
|
delta = abs((int) ah->paprd_target_power - (int) power);
|
|
if (delta > scale)
|
|
return -1;
|
|
|
|
if (delta < 4)
|
|
power -= 4 - delta;
|
|
|
|
return power;
|
|
}
|
|
|
|
static int ar9003_get_training_power_5g(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath9k_channel *chan = ah->curchan;
|
|
unsigned int power, scale, delta;
|
|
|
|
scale = ar9003_get_paprd_scale_factor(ah, chan);
|
|
|
|
if (IS_CHAN_HT40(chan))
|
|
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
|
|
AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
|
|
else
|
|
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
|
|
AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
|
|
|
|
power += scale;
|
|
delta = abs((int) ah->paprd_target_power - (int) power);
|
|
if (delta > scale)
|
|
return -1;
|
|
|
|
switch (get_streams(ah->txchainmask)) {
|
|
case 1:
|
|
delta = 6;
|
|
break;
|
|
case 2:
|
|
delta = 4;
|
|
break;
|
|
case 3:
|
|
delta = 2;
|
|
break;
|
|
default:
|
|
delta = 0;
|
|
ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
|
|
ah->txchainmask);
|
|
}
|
|
|
|
power += delta;
|
|
return power;
|
|
}
|
|
|
|
static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
static const u32 ctrl0[3] = {
|
|
AR_PHY_PAPRD_CTRL0_B0,
|
|
AR_PHY_PAPRD_CTRL0_B1,
|
|
AR_PHY_PAPRD_CTRL0_B2
|
|
};
|
|
static const u32 ctrl1[3] = {
|
|
AR_PHY_PAPRD_CTRL1_B0,
|
|
AR_PHY_PAPRD_CTRL1_B1,
|
|
AR_PHY_PAPRD_CTRL1_B2
|
|
};
|
|
int training_power;
|
|
int i, val;
|
|
|
|
if (IS_CHAN_2GHZ(ah->curchan))
|
|
training_power = ar9003_get_training_power_2g(ah);
|
|
else
|
|
training_power = ar9003_get_training_power_5g(ah);
|
|
|
|
ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
|
|
training_power, ah->paprd_target_power);
|
|
|
|
if (training_power < 0) {
|
|
ath_dbg(common, CALIBRATE,
|
|
"PAPRD target power delta out of range\n");
|
|
return -ERANGE;
|
|
}
|
|
ah->paprd_training_power = training_power;
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
|
|
ah->paprd_ratemask);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
|
|
ah->paprd_ratemask);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
|
|
ah->paprd_ratemask_ht40);
|
|
|
|
for (i = 0; i < ah->caps.max_txchains; i++) {
|
|
REG_RMW_FIELD(ah, ctrl0[i],
|
|
AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
|
|
REG_RMW_FIELD(ah, ctrl0[i],
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
|
|
}
|
|
|
|
ar9003_paprd_enable(ah, false);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
|
|
val = AR_SREV_9462(ah) ? 0x91 : 147;
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
|
|
AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
|
|
if (AR_SREV_9485(ah) || AR_SREV_9462(ah))
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
|
|
-3);
|
|
else
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
|
|
-6);
|
|
val = AR_SREV_9462(ah) ? -10 : -15;
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
|
|
val);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
|
|
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
|
|
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
|
|
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
|
|
100);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
|
|
return 0;
|
|
}
|
|
|
|
static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
|
|
{
|
|
u32 *entry = ah->paprd_gain_table_entries;
|
|
u8 *index = ah->paprd_gain_table_index;
|
|
u32 reg = AR_PHY_TXGAIN_TABLE;
|
|
int i;
|
|
|
|
memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
|
|
memset(index, 0, sizeof(ah->paprd_gain_table_index));
|
|
|
|
for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
|
|
entry[i] = REG_READ(ah, reg);
|
|
index[i] = (entry[i] >> 24) & 0xff;
|
|
reg += 4;
|
|
}
|
|
}
|
|
|
|
static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
|
|
int target_power)
|
|
{
|
|
int olpc_gain_delta = 0, cl_gain_mod;
|
|
int alpha_therm, alpha_volt;
|
|
int therm_cal_value, volt_cal_value;
|
|
int therm_value, volt_value;
|
|
int thermal_gain_corr, voltage_gain_corr;
|
|
int desired_scale, desired_gain = 0;
|
|
u32 reg_olpc = 0, reg_cl_gain = 0;
|
|
|
|
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
|
|
desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
|
|
AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
|
|
alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
|
|
AR_PHY_TPC_19_ALPHA_THERM);
|
|
alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
|
|
AR_PHY_TPC_19_ALPHA_VOLT);
|
|
therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
|
|
AR_PHY_TPC_18_THERM_CAL_VALUE);
|
|
volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
|
|
AR_PHY_TPC_18_VOLT_CAL_VALUE);
|
|
therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
|
|
AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
|
|
volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
|
|
AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
|
|
|
|
switch (chain) {
|
|
case 0:
|
|
reg_olpc = AR_PHY_TPC_11_B0;
|
|
reg_cl_gain = AR_PHY_CL_TAB_0;
|
|
break;
|
|
case 1:
|
|
reg_olpc = AR_PHY_TPC_11_B1;
|
|
reg_cl_gain = AR_PHY_CL_TAB_1;
|
|
break;
|
|
case 2:
|
|
reg_olpc = AR_PHY_TPC_11_B2;
|
|
reg_cl_gain = AR_PHY_CL_TAB_2;
|
|
break;
|
|
default:
|
|
ath_dbg(ath9k_hw_common(ah), CALIBRATE,
|
|
"Invalid chainmask: %d\n", chain);
|
|
break;
|
|
}
|
|
|
|
olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
|
|
AR_PHY_TPC_11_OLPC_GAIN_DELTA);
|
|
cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
|
|
AR_PHY_CL_TAB_CL_GAIN_MOD);
|
|
|
|
if (olpc_gain_delta >= 128)
|
|
olpc_gain_delta = olpc_gain_delta - 256;
|
|
|
|
thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
|
|
(256 / 2)) / 256;
|
|
voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
|
|
(128 / 2)) / 128;
|
|
desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
|
|
voltage_gain_corr + desired_scale + cl_gain_mod;
|
|
|
|
return desired_gain;
|
|
}
|
|
|
|
static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
|
|
{
|
|
int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
|
|
int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
|
|
u32 *gain_table_entries = ah->paprd_gain_table_entries;
|
|
|
|
selected_gain_entry = gain_table_entries[gain_index];
|
|
txbb1dbgain = selected_gain_entry & 0x7;
|
|
txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
|
|
txmxrgain = (selected_gain_entry >> 5) & 0xf;
|
|
padrvgnA = (selected_gain_entry >> 9) & 0xf;
|
|
padrvgnB = (selected_gain_entry >> 13) & 0xf;
|
|
padrvgnC = (selected_gain_entry >> 17) & 0xf;
|
|
padrvgnD = (selected_gain_entry >> 21) & 0x3;
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
|
|
}
|
|
|
|
static inline int find_expn(int num)
|
|
{
|
|
return fls(num) - 1;
|
|
}
|
|
|
|
static inline int find_proper_scale(int expn, int N)
|
|
{
|
|
return (expn > N) ? expn - 10 : 0;
|
|
}
|
|
|
|
#define NUM_BIN 23
|
|
|
|
static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
|
|
{
|
|
unsigned int thresh_accum_cnt;
|
|
int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
|
|
int PA_in[NUM_BIN + 1];
|
|
int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
|
|
unsigned int B1_abs_max, B2_abs_max;
|
|
int max_index, scale_factor;
|
|
int y_est[NUM_BIN + 1];
|
|
int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
|
|
unsigned int x_tilde_abs;
|
|
int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
|
|
int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
|
|
int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
|
|
int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
|
|
int y5, y3, tmp;
|
|
int theta_low_bin = 0;
|
|
int i;
|
|
|
|
/* disregard any bin that contains <= 16 samples */
|
|
thresh_accum_cnt = 16;
|
|
scale_factor = 5;
|
|
max_index = 0;
|
|
memset(theta, 0, sizeof(theta));
|
|
memset(x_est, 0, sizeof(x_est));
|
|
memset(Y, 0, sizeof(Y));
|
|
memset(y_est, 0, sizeof(y_est));
|
|
memset(x_tilde, 0, sizeof(x_tilde));
|
|
|
|
for (i = 0; i < NUM_BIN; i++) {
|
|
s32 accum_cnt, accum_tx, accum_rx, accum_ang;
|
|
|
|
/* number of samples */
|
|
accum_cnt = data_L[i] & 0xffff;
|
|
|
|
if (accum_cnt <= thresh_accum_cnt)
|
|
continue;
|
|
|
|
/* sum(tx amplitude) */
|
|
accum_tx = ((data_L[i] >> 16) & 0xffff) |
|
|
((data_U[i] & 0x7ff) << 16);
|
|
|
|
/* sum(rx amplitude distance to lower bin edge) */
|
|
accum_rx = ((data_U[i] >> 11) & 0x1f) |
|
|
((data_L[i + 23] & 0xffff) << 5);
|
|
|
|
/* sum(angles) */
|
|
accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
|
|
((data_U[i + 23] & 0x7ff) << 16);
|
|
|
|
accum_tx <<= scale_factor;
|
|
accum_rx <<= scale_factor;
|
|
x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
|
|
scale_factor;
|
|
|
|
Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
|
|
scale_factor) +
|
|
(1 << scale_factor) * max_index + 16;
|
|
|
|
if (accum_ang >= (1 << 26))
|
|
accum_ang -= 1 << 27;
|
|
|
|
theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
|
|
accum_cnt;
|
|
|
|
max_index++;
|
|
}
|
|
|
|
/*
|
|
* Find average theta of first 5 bin and all of those to same value.
|
|
* Curve is linear at that range.
|
|
*/
|
|
for (i = 1; i < 6; i++)
|
|
theta_low_bin += theta[i];
|
|
|
|
theta_low_bin = theta_low_bin / 5;
|
|
for (i = 1; i < 6; i++)
|
|
theta[i] = theta_low_bin;
|
|
|
|
/* Set values at origin */
|
|
theta[0] = theta_low_bin;
|
|
for (i = 0; i <= max_index; i++)
|
|
theta[i] -= theta_low_bin;
|
|
|
|
x_est[0] = 0;
|
|
Y[0] = 0;
|
|
scale_factor = 8;
|
|
|
|
/* low signal gain */
|
|
if (x_est[6] == x_est[3])
|
|
return false;
|
|
|
|
G_fxp =
|
|
(((Y[6] - Y[3]) * 1 << scale_factor) +
|
|
(x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
|
|
|
|
/* prevent division by zero */
|
|
if (G_fxp == 0)
|
|
return false;
|
|
|
|
Y_intercept =
|
|
(G_fxp * (x_est[0] - x_est[3]) +
|
|
(1 << scale_factor)) / (1 << scale_factor) + Y[3];
|
|
|
|
for (i = 0; i <= max_index; i++)
|
|
y_est[i] = Y[i] - Y_intercept;
|
|
|
|
for (i = 0; i <= 3; i++) {
|
|
y_est[i] = i * 32;
|
|
x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
|
|
}
|
|
|
|
if (y_est[max_index] == 0)
|
|
return false;
|
|
|
|
x_est_fxp1_nonlin =
|
|
x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
|
|
G_fxp) / G_fxp;
|
|
|
|
order_x_by_y =
|
|
(x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
|
|
|
|
if (order_x_by_y == 0)
|
|
M = 10;
|
|
else if (order_x_by_y == 1)
|
|
M = 9;
|
|
else
|
|
M = 8;
|
|
|
|
I = (max_index > 15) ? 7 : max_index >> 1;
|
|
L = max_index - I;
|
|
scale_factor = 8;
|
|
sum_y_sqr = 0;
|
|
sum_y_quad = 0;
|
|
x_tilde_abs = 0;
|
|
|
|
for (i = 0; i <= L; i++) {
|
|
unsigned int y_sqr;
|
|
unsigned int y_quad;
|
|
unsigned int tmp_abs;
|
|
|
|
/* prevent division by zero */
|
|
if (y_est[i + I] == 0)
|
|
return false;
|
|
|
|
x_est_fxp1_nonlin =
|
|
x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
|
|
G_fxp) / G_fxp;
|
|
|
|
x_tilde[i] =
|
|
(x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
|
|
I];
|
|
x_tilde[i] =
|
|
(x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
|
|
x_tilde[i] =
|
|
(x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
|
|
y_sqr =
|
|
(y_est[i + I] * y_est[i + I] +
|
|
(scale_factor * scale_factor)) / (scale_factor *
|
|
scale_factor);
|
|
tmp_abs = abs(x_tilde[i]);
|
|
if (tmp_abs > x_tilde_abs)
|
|
x_tilde_abs = tmp_abs;
|
|
|
|
y_quad = y_sqr * y_sqr;
|
|
sum_y_sqr = sum_y_sqr + y_sqr;
|
|
sum_y_quad = sum_y_quad + y_quad;
|
|
B1_tmp[i] = y_sqr * (L + 1);
|
|
B2_tmp[i] = y_sqr;
|
|
}
|
|
|
|
B1_abs_max = 0;
|
|
B2_abs_max = 0;
|
|
for (i = 0; i <= L; i++) {
|
|
int abs_val;
|
|
|
|
B1_tmp[i] -= sum_y_sqr;
|
|
B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
|
|
|
|
abs_val = abs(B1_tmp[i]);
|
|
if (abs_val > B1_abs_max)
|
|
B1_abs_max = abs_val;
|
|
|
|
abs_val = abs(B2_tmp[i]);
|
|
if (abs_val > B2_abs_max)
|
|
B2_abs_max = abs_val;
|
|
}
|
|
|
|
Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
|
|
Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
|
|
Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
|
|
|
|
beta_raw = 0;
|
|
alpha_raw = 0;
|
|
for (i = 0; i <= L; i++) {
|
|
x_tilde[i] = x_tilde[i] / (1 << Q_x);
|
|
B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
|
|
B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
|
|
beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
|
|
alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
|
|
}
|
|
|
|
scale_B =
|
|
((sum_y_quad / scale_factor) * (L + 1) -
|
|
(sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
|
|
|
|
Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
|
|
scale_B = scale_B / (1 << Q_scale_B);
|
|
if (scale_B == 0)
|
|
return false;
|
|
Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
|
|
Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
|
|
beta_raw = beta_raw / (1 << Q_beta);
|
|
alpha_raw = alpha_raw / (1 << Q_alpha);
|
|
alpha = (alpha_raw << 10) / scale_B;
|
|
beta = (beta_raw << 10) / scale_B;
|
|
order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
|
|
order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
|
|
order1_5x = order_1 / 5;
|
|
order2_3x = order_2 / 3;
|
|
order1_5x_rem = order_1 - 5 * order1_5x;
|
|
order2_3x_rem = order_2 - 3 * order2_3x;
|
|
|
|
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
|
|
tmp = i * 32;
|
|
y5 = ((beta * tmp) >> 6) >> order1_5x;
|
|
y5 = (y5 * tmp) >> order1_5x;
|
|
y5 = (y5 * tmp) >> order1_5x;
|
|
y5 = (y5 * tmp) >> order1_5x;
|
|
y5 = (y5 * tmp) >> order1_5x;
|
|
y5 = y5 >> order1_5x_rem;
|
|
y3 = (alpha * tmp) >> order2_3x;
|
|
y3 = (y3 * tmp) >> order2_3x;
|
|
y3 = (y3 * tmp) >> order2_3x;
|
|
y3 = y3 >> order2_3x_rem;
|
|
PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
|
|
|
|
if (i >= 2) {
|
|
tmp = PA_in[i] - PA_in[i - 1];
|
|
if (tmp < 0)
|
|
PA_in[i] =
|
|
PA_in[i - 1] + (PA_in[i - 1] -
|
|
PA_in[i - 2]);
|
|
}
|
|
|
|
PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
|
|
}
|
|
|
|
beta_raw = 0;
|
|
alpha_raw = 0;
|
|
|
|
for (i = 0; i <= L; i++) {
|
|
int theta_tilde =
|
|
((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
|
|
theta_tilde =
|
|
((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
|
|
theta_tilde =
|
|
((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
|
|
beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
|
|
alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
|
|
}
|
|
|
|
Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
|
|
Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
|
|
beta_raw = beta_raw / (1 << Q_beta);
|
|
alpha_raw = alpha_raw / (1 << Q_alpha);
|
|
|
|
alpha = (alpha_raw << 10) / scale_B;
|
|
beta = (beta_raw << 10) / scale_B;
|
|
order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
|
|
order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
|
|
order1_5x = order_1 / 5;
|
|
order2_3x = order_2 / 3;
|
|
order1_5x_rem = order_1 - 5 * order1_5x;
|
|
order2_3x_rem = order_2 - 3 * order2_3x;
|
|
|
|
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
|
|
int PA_angle;
|
|
|
|
/* pa_table[4] is calculated from PA_angle for i=5 */
|
|
if (i == 4)
|
|
continue;
|
|
|
|
tmp = i * 32;
|
|
if (beta > 0)
|
|
y5 = (((beta * tmp - 64) >> 6) -
|
|
(1 << order1_5x)) / (1 << order1_5x);
|
|
else
|
|
y5 = ((((beta * tmp - 64) >> 6) +
|
|
(1 << order1_5x)) / (1 << order1_5x));
|
|
|
|
y5 = (y5 * tmp) / (1 << order1_5x);
|
|
y5 = (y5 * tmp) / (1 << order1_5x);
|
|
y5 = (y5 * tmp) / (1 << order1_5x);
|
|
y5 = (y5 * tmp) / (1 << order1_5x);
|
|
y5 = y5 / (1 << order1_5x_rem);
|
|
|
|
if (beta > 0)
|
|
y3 = (alpha * tmp -
|
|
(1 << order2_3x)) / (1 << order2_3x);
|
|
else
|
|
y3 = (alpha * tmp +
|
|
(1 << order2_3x)) / (1 << order2_3x);
|
|
y3 = (y3 * tmp) / (1 << order2_3x);
|
|
y3 = (y3 * tmp) / (1 << order2_3x);
|
|
y3 = y3 / (1 << order2_3x_rem);
|
|
|
|
if (i < 4) {
|
|
PA_angle = 0;
|
|
} else {
|
|
PA_angle = y5 + y3;
|
|
if (PA_angle < -150)
|
|
PA_angle = -150;
|
|
else if (PA_angle > 150)
|
|
PA_angle = 150;
|
|
}
|
|
|
|
pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
|
|
if (i == 5) {
|
|
PA_angle = (PA_angle + 2) >> 1;
|
|
pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
|
|
(PA_angle & 0x7ff);
|
|
}
|
|
}
|
|
|
|
*gain = G_fxp;
|
|
return true;
|
|
}
|
|
|
|
void ar9003_paprd_populate_single_table(struct ath_hw *ah,
|
|
struct ath9k_hw_cal_data *caldata,
|
|
int chain)
|
|
{
|
|
u32 *paprd_table_val = caldata->pa_table[chain];
|
|
u32 small_signal_gain = caldata->small_signal_gain[chain];
|
|
u32 training_power = ah->paprd_training_power;
|
|
u32 reg = 0;
|
|
int i;
|
|
|
|
if (chain == 0)
|
|
reg = AR_PHY_PAPRD_MEM_TAB_B0;
|
|
else if (chain == 1)
|
|
reg = AR_PHY_PAPRD_MEM_TAB_B1;
|
|
else if (chain == 2)
|
|
reg = AR_PHY_PAPRD_MEM_TAB_B2;
|
|
|
|
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
|
|
REG_WRITE(ah, reg, paprd_table_val[i]);
|
|
reg = reg + 4;
|
|
}
|
|
|
|
if (chain == 0)
|
|
reg = AR_PHY_PA_GAIN123_B0;
|
|
else if (chain == 1)
|
|
reg = AR_PHY_PA_GAIN123_B1;
|
|
else
|
|
reg = AR_PHY_PA_GAIN123_B2;
|
|
|
|
REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
|
|
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
|
|
training_power);
|
|
|
|
if (ah->caps.tx_chainmask & BIT(1))
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
|
|
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
|
|
training_power);
|
|
|
|
if (ah->caps.tx_chainmask & BIT(2))
|
|
/* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
|
|
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
|
|
training_power);
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
|
|
|
|
int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
|
|
{
|
|
unsigned int i, desired_gain, gain_index;
|
|
unsigned int train_power = ah->paprd_training_power;
|
|
|
|
desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
|
|
|
|
gain_index = 0;
|
|
for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
|
|
if (ah->paprd_gain_table_index[i] >= desired_gain)
|
|
break;
|
|
gain_index++;
|
|
}
|
|
|
|
ar9003_tx_force_gain(ah, gain_index);
|
|
|
|
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
|
|
|
|
int ar9003_paprd_create_curve(struct ath_hw *ah,
|
|
struct ath9k_hw_cal_data *caldata, int chain)
|
|
{
|
|
u16 *small_signal_gain = &caldata->small_signal_gain[chain];
|
|
u32 *pa_table = caldata->pa_table[chain];
|
|
u32 *data_L, *data_U;
|
|
int i, status = 0;
|
|
u32 *buf;
|
|
u32 reg;
|
|
|
|
memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
|
|
|
|
buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
data_L = &buf[0];
|
|
data_U = &buf[48];
|
|
|
|
REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
|
|
AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
|
|
|
|
reg = AR_PHY_CHAN_INFO_TAB_0;
|
|
for (i = 0; i < 48; i++)
|
|
data_L[i] = REG_READ(ah, reg + (i << 2));
|
|
|
|
REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
|
|
AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
|
|
|
|
for (i = 0; i < 48; i++)
|
|
data_U[i] = REG_READ(ah, reg + (i << 2));
|
|
|
|
if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
|
|
status = -2;
|
|
|
|
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
|
|
|
|
kfree(buf);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_create_curve);
|
|
|
|
int ar9003_paprd_init_table(struct ath_hw *ah)
|
|
{
|
|
int ret;
|
|
|
|
ret = ar9003_paprd_setup_single_table(ah);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ar9003_paprd_get_gain_table(ah);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_init_table);
|
|
|
|
bool ar9003_paprd_is_done(struct ath_hw *ah)
|
|
{
|
|
int paprd_done, agc2_pwr;
|
|
paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
|
|
|
|
if (paprd_done == 0x1) {
|
|
agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
|
|
|
|
ath_dbg(ath9k_hw_common(ah), CALIBRATE,
|
|
"AGC2_PWR = 0x%x training done = 0x%x\n",
|
|
agc2_pwr, paprd_done);
|
|
/*
|
|
* agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
|
|
* when the training is completely done, otherwise retraining is
|
|
* done to make sure the value is in ideal range
|
|
*/
|
|
if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
|
|
paprd_done = 0;
|
|
}
|
|
|
|
return !!paprd_done;
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_is_done);
|