linux/drivers/net/wireless/ath/ath9k/channel.c
Sujith Manoharan a064eaa10c ath9k: Add ath9k_chanctx_stop_queues()
This can be used when the queues of a context
needs to be stopped.

Signed-off-by: Sujith Manoharan <c_manoha@qca.qualcomm.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2014-10-02 14:26:32 -04:00

1435 lines
37 KiB
C

/*
* Copyright (c) 2014 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath9k.h"
/* Set/change channels. If the channel is really being changed, it's done
* by reseting the chip. To accomplish this we must first cleanup any pending
* DMA, then restart stuff.
*/
static int ath_set_channel(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ieee80211_hw *hw = sc->hw;
struct ath9k_channel *hchan;
struct cfg80211_chan_def *chandef = &sc->cur_chan->chandef;
struct ieee80211_channel *chan = chandef->chan;
int pos = chan->hw_value;
int old_pos = -1;
int r;
if (test_bit(ATH_OP_INVALID, &common->op_flags))
return -EIO;
if (ah->curchan)
old_pos = ah->curchan - &ah->channels[0];
ath_dbg(common, CONFIG, "Set channel: %d MHz width: %d\n",
chan->center_freq, chandef->width);
/* update survey stats for the old channel before switching */
spin_lock_bh(&common->cc_lock);
ath_update_survey_stats(sc);
spin_unlock_bh(&common->cc_lock);
ath9k_cmn_get_channel(hw, ah, chandef);
/* If the operating channel changes, change the survey in-use flags
* along with it.
* Reset the survey data for the new channel, unless we're switching
* back to the operating channel from an off-channel operation.
*/
if (!sc->cur_chan->offchannel && sc->cur_survey != &sc->survey[pos]) {
if (sc->cur_survey)
sc->cur_survey->filled &= ~SURVEY_INFO_IN_USE;
sc->cur_survey = &sc->survey[pos];
memset(sc->cur_survey, 0, sizeof(struct survey_info));
sc->cur_survey->filled |= SURVEY_INFO_IN_USE;
} else if (!(sc->survey[pos].filled & SURVEY_INFO_IN_USE)) {
memset(&sc->survey[pos], 0, sizeof(struct survey_info));
}
hchan = &sc->sc_ah->channels[pos];
r = ath_reset_internal(sc, hchan);
if (r)
return r;
/* The most recent snapshot of channel->noisefloor for the old
* channel is only available after the hardware reset. Copy it to
* the survey stats now.
*/
if (old_pos >= 0)
ath_update_survey_nf(sc, old_pos);
/* Enable radar pulse detection if on a DFS channel. Spectral
* scanning and radar detection can not be used concurrently.
*/
if (hw->conf.radar_enabled) {
u32 rxfilter;
rxfilter = ath9k_hw_getrxfilter(ah);
rxfilter |= ATH9K_RX_FILTER_PHYRADAR |
ATH9K_RX_FILTER_PHYERR;
ath9k_hw_setrxfilter(ah, rxfilter);
ath_dbg(common, DFS, "DFS enabled at freq %d\n",
chan->center_freq);
} else {
/* perform spectral scan if requested. */
if (test_bit(ATH_OP_SCANNING, &common->op_flags) &&
sc->spectral_mode == SPECTRAL_CHANSCAN)
ath9k_spectral_scan_trigger(hw);
}
return 0;
}
void ath_chanctx_init(struct ath_softc *sc)
{
struct ath_chanctx *ctx;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ieee80211_supported_band *sband;
struct ieee80211_channel *chan;
int i, j;
sband = &common->sbands[IEEE80211_BAND_2GHZ];
if (!sband->n_channels)
sband = &common->sbands[IEEE80211_BAND_5GHZ];
chan = &sband->channels[0];
for (i = 0; i < ATH9K_NUM_CHANCTX; i++) {
ctx = &sc->chanctx[i];
cfg80211_chandef_create(&ctx->chandef, chan, NL80211_CHAN_HT20);
INIT_LIST_HEAD(&ctx->vifs);
ctx->txpower = ATH_TXPOWER_MAX;
for (j = 0; j < ARRAY_SIZE(ctx->acq); j++)
INIT_LIST_HEAD(&ctx->acq[j]);
}
}
void ath_chanctx_set_channel(struct ath_softc *sc, struct ath_chanctx *ctx,
struct cfg80211_chan_def *chandef)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
bool cur_chan;
spin_lock_bh(&sc->chan_lock);
if (chandef)
memcpy(&ctx->chandef, chandef, sizeof(*chandef));
cur_chan = sc->cur_chan == ctx;
spin_unlock_bh(&sc->chan_lock);
if (!cur_chan) {
ath_dbg(common, CHAN_CTX,
"Current context differs from the new context\n");
return;
}
ath_set_channel(sc);
}
#ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
/**********************************************************/
/* Functions to handle the channel context state machine. */
/**********************************************************/
static const char *offchannel_state_string(enum ath_offchannel_state state)
{
switch (state) {
case_rtn_string(ATH_OFFCHANNEL_IDLE);
case_rtn_string(ATH_OFFCHANNEL_PROBE_SEND);
case_rtn_string(ATH_OFFCHANNEL_PROBE_WAIT);
case_rtn_string(ATH_OFFCHANNEL_SUSPEND);
case_rtn_string(ATH_OFFCHANNEL_ROC_START);
case_rtn_string(ATH_OFFCHANNEL_ROC_WAIT);
case_rtn_string(ATH_OFFCHANNEL_ROC_DONE);
default:
return "unknown";
}
}
static const char *chanctx_event_string(enum ath_chanctx_event ev)
{
switch (ev) {
case_rtn_string(ATH_CHANCTX_EVENT_BEACON_PREPARE);
case_rtn_string(ATH_CHANCTX_EVENT_BEACON_SENT);
case_rtn_string(ATH_CHANCTX_EVENT_TSF_TIMER);
case_rtn_string(ATH_CHANCTX_EVENT_BEACON_RECEIVED);
case_rtn_string(ATH_CHANCTX_EVENT_ASSOC);
case_rtn_string(ATH_CHANCTX_EVENT_SWITCH);
case_rtn_string(ATH_CHANCTX_EVENT_ASSIGN);
case_rtn_string(ATH_CHANCTX_EVENT_UNASSIGN);
case_rtn_string(ATH_CHANCTX_EVENT_CHANGE);
case_rtn_string(ATH_CHANCTX_EVENT_ENABLE_MULTICHANNEL);
default:
return "unknown";
}
}
static const char *chanctx_state_string(enum ath_chanctx_state state)
{
switch (state) {
case_rtn_string(ATH_CHANCTX_STATE_IDLE);
case_rtn_string(ATH_CHANCTX_STATE_WAIT_FOR_BEACON);
case_rtn_string(ATH_CHANCTX_STATE_WAIT_FOR_TIMER);
case_rtn_string(ATH_CHANCTX_STATE_SWITCH);
case_rtn_string(ATH_CHANCTX_STATE_FORCE_ACTIVE);
default:
return "unknown";
}
}
void ath_chanctx_check_active(struct ath_softc *sc, struct ath_chanctx *ctx)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_vif *avp;
bool active = false;
u8 n_active = 0;
if (!ctx)
return;
list_for_each_entry(avp, &ctx->vifs, list) {
struct ieee80211_vif *vif = avp->vif;
switch (vif->type) {
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_STATION:
if (avp->assoc)
active = true;
break;
default:
active = true;
break;
}
}
ctx->active = active;
ath_for_each_chanctx(sc, ctx) {
if (!ctx->assigned || list_empty(&ctx->vifs))
continue;
n_active++;
}
if (n_active <= 1) {
clear_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags);
return;
}
if (test_and_set_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags))
return;
if (ath9k_is_chanctx_enabled()) {
ath_chanctx_event(sc, NULL,
ATH_CHANCTX_EVENT_ENABLE_MULTICHANNEL);
}
}
static struct ath_chanctx *
ath_chanctx_get_next(struct ath_softc *sc, struct ath_chanctx *ctx)
{
int idx = ctx - &sc->chanctx[0];
return &sc->chanctx[!idx];
}
static void ath_chanctx_adjust_tbtt_delta(struct ath_softc *sc)
{
struct ath_chanctx *prev, *cur;
struct timespec ts;
u32 cur_tsf, prev_tsf, beacon_int;
s32 offset;
beacon_int = TU_TO_USEC(sc->cur_chan->beacon.beacon_interval);
cur = sc->cur_chan;
prev = ath_chanctx_get_next(sc, cur);
if (!prev->switch_after_beacon)
return;
getrawmonotonic(&ts);
cur_tsf = (u32) cur->tsf_val +
ath9k_hw_get_tsf_offset(&cur->tsf_ts, &ts);
prev_tsf = prev->last_beacon - (u32) prev->tsf_val + cur_tsf;
prev_tsf -= ath9k_hw_get_tsf_offset(&prev->tsf_ts, &ts);
/* Adjust the TSF time of the AP chanctx to keep its beacons
* at half beacon interval offset relative to the STA chanctx.
*/
offset = cur_tsf - prev_tsf;
/* Ignore stale data or spurious timestamps */
if (offset < 0 || offset > 3 * beacon_int)
return;
offset = beacon_int / 2 - (offset % beacon_int);
prev->tsf_val += offset;
}
/* Configure the TSF based hardware timer for a channel switch.
* Also set up backup software timer, in case the gen timer fails.
* This could be caused by a hardware reset.
*/
static void ath_chanctx_setup_timer(struct ath_softc *sc, u32 tsf_time)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_hw *ah = sc->sc_ah;
ath9k_hw_gen_timer_start(ah, sc->p2p_ps_timer, tsf_time, 1000000);
tsf_time -= ath9k_hw_gettsf32(ah);
tsf_time = msecs_to_jiffies(tsf_time / 1000) + 1;
mod_timer(&sc->sched.timer, jiffies + tsf_time);
ath_dbg(common, CHAN_CTX,
"Setup chanctx timer with timeout: %d ms\n", jiffies_to_msecs(tsf_time));
}
void ath_chanctx_event(struct ath_softc *sc, struct ieee80211_vif *vif,
enum ath_chanctx_event ev)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_beacon_config *cur_conf;
struct ath_vif *avp = NULL;
struct ath_chanctx *ctx;
u32 tsf_time;
u32 beacon_int;
if (vif)
avp = (struct ath_vif *) vif->drv_priv;
spin_lock_bh(&sc->chan_lock);
ath_dbg(common, CHAN_CTX, "cur_chan: %d MHz, event: %s, state: %s\n",
sc->cur_chan->chandef.center_freq1,
chanctx_event_string(ev),
chanctx_state_string(sc->sched.state));
switch (ev) {
case ATH_CHANCTX_EVENT_BEACON_PREPARE:
if (avp->offchannel_duration)
avp->offchannel_duration = 0;
if (avp->chanctx != sc->cur_chan) {
ath_dbg(common, CHAN_CTX,
"Contexts differ, not preparing beacon\n");
break;
}
if (sc->sched.offchannel_pending && !sc->sched.wait_switch) {
sc->sched.offchannel_pending = false;
sc->next_chan = &sc->offchannel.chan;
sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON;
ath_dbg(common, CHAN_CTX,
"Setting offchannel_pending to false\n");
}
ctx = ath_chanctx_get_next(sc, sc->cur_chan);
if (ctx->active && sc->sched.state == ATH_CHANCTX_STATE_IDLE) {
sc->next_chan = ctx;
sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON;
ath_dbg(common, CHAN_CTX,
"Set next context, move chanctx state to WAIT_FOR_BEACON\n");
}
/* if the timer missed its window, use the next interval */
if (sc->sched.state == ATH_CHANCTX_STATE_WAIT_FOR_TIMER) {
sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON;
ath_dbg(common, CHAN_CTX,
"Move chanctx state from WAIT_FOR_TIMER to WAIT_FOR_BEACON\n");
}
if (sc->sched.state != ATH_CHANCTX_STATE_WAIT_FOR_BEACON)
break;
ath_dbg(common, CHAN_CTX, "Preparing beacon for vif: %pM\n", vif->addr);
sc->sched.beacon_pending = true;
sc->sched.next_tbtt = REG_READ(ah, AR_NEXT_TBTT_TIMER);
cur_conf = &sc->cur_chan->beacon;
beacon_int = TU_TO_USEC(cur_conf->beacon_interval);
/* defer channel switch by a quarter beacon interval */
tsf_time = sc->sched.next_tbtt + beacon_int / 4;
sc->sched.switch_start_time = tsf_time;
sc->cur_chan->last_beacon = sc->sched.next_tbtt;
/*
* If an offchannel switch is scheduled to happen after
* a beacon transmission, update the NoA with one-shot
* values and increment the index.
*/
if (sc->next_chan == &sc->offchannel.chan) {
avp->noa_index++;
avp->offchannel_start = tsf_time;
avp->offchannel_duration = sc->sched.offchannel_duration;
ath_dbg(common, CHAN_CTX,
"offchannel noa_duration: %d, noa_start: %d, noa_index: %d\n",
avp->offchannel_duration,
avp->offchannel_start,
avp->noa_index);
/*
* When multiple contexts are active, the NoA
* has to be recalculated and advertised after
* an offchannel operation.
*/
if (ctx->active && avp->noa_duration)
avp->noa_duration = 0;
break;
}
/*
* Clear the extend_absence flag if it had been
* set during the previous beacon transmission,
* since we need to revert to the normal NoA
* schedule.
*/
if (ctx->active && sc->sched.extend_absence) {
avp->noa_duration = 0;
sc->sched.extend_absence = false;
}
/* If at least two consecutive beacons were missed on the STA
* chanctx, stay on the STA channel for one extra beacon period,
* to resync the timer properly.
*/
if (ctx->active && sc->sched.beacon_miss >= 2) {
avp->noa_duration = 0;
sc->sched.extend_absence = true;
}
/* Prevent wrap-around issues */
if (avp->noa_duration && tsf_time - avp->noa_start > BIT(30))
avp->noa_duration = 0;
/*
* If multiple contexts are active, start periodic
* NoA and increment the index for the first
* announcement.
*/
if (ctx->active &&
(!avp->noa_duration || sc->sched.force_noa_update)) {
avp->noa_index++;
avp->noa_start = tsf_time;
if (sc->sched.extend_absence)
avp->noa_duration = (3 * beacon_int / 2) +
sc->sched.channel_switch_time;
else
avp->noa_duration =
TU_TO_USEC(cur_conf->beacon_interval) / 2 +
sc->sched.channel_switch_time;
if (test_bit(ATH_OP_SCANNING, &common->op_flags) ||
sc->sched.extend_absence)
avp->periodic_noa = false;
else
avp->periodic_noa = true;
ath_dbg(common, CHAN_CTX,
"noa_duration: %d, noa_start: %d, noa_index: %d, periodic: %d\n",
avp->noa_duration,
avp->noa_start,
avp->noa_index,
avp->periodic_noa);
}
if (ctx->active && sc->sched.force_noa_update)
sc->sched.force_noa_update = false;
break;
case ATH_CHANCTX_EVENT_BEACON_SENT:
if (!sc->sched.beacon_pending) {
ath_dbg(common, CHAN_CTX,
"No pending beacon\n");
break;
}
sc->sched.beacon_pending = false;
if (sc->sched.state != ATH_CHANCTX_STATE_WAIT_FOR_BEACON)
break;
ath_dbg(common, CHAN_CTX,
"Move chanctx state to WAIT_FOR_TIMER\n");
sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_TIMER;
ath_chanctx_setup_timer(sc, sc->sched.switch_start_time);
break;
case ATH_CHANCTX_EVENT_TSF_TIMER:
if (sc->sched.state != ATH_CHANCTX_STATE_WAIT_FOR_TIMER)
break;
if (!sc->cur_chan->switch_after_beacon &&
sc->sched.beacon_pending)
sc->sched.beacon_miss++;
ath_dbg(common, CHAN_CTX,
"Move chanctx state to SWITCH\n");
sc->sched.state = ATH_CHANCTX_STATE_SWITCH;
ieee80211_queue_work(sc->hw, &sc->chanctx_work);
break;
case ATH_CHANCTX_EVENT_BEACON_RECEIVED:
if (!test_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags) ||
sc->cur_chan == &sc->offchannel.chan)
break;
ath_chanctx_adjust_tbtt_delta(sc);
sc->sched.beacon_pending = false;
sc->sched.beacon_miss = 0;
/* TSF time might have been updated by the incoming beacon,
* need update the channel switch timer to reflect the change.
*/
tsf_time = sc->sched.switch_start_time;
tsf_time -= (u32) sc->cur_chan->tsf_val +
ath9k_hw_get_tsf_offset(&sc->cur_chan->tsf_ts, NULL);
tsf_time += ath9k_hw_gettsf32(ah);
ath_chanctx_setup_timer(sc, tsf_time);
break;
case ATH_CHANCTX_EVENT_ASSOC:
if (sc->sched.state != ATH_CHANCTX_STATE_FORCE_ACTIVE ||
avp->chanctx != sc->cur_chan)
break;
ath_dbg(common, CHAN_CTX,
"Move chanctx state from FORCE_ACTIVE to IDLE\n");
sc->sched.state = ATH_CHANCTX_STATE_IDLE;
/* fall through */
case ATH_CHANCTX_EVENT_SWITCH:
if (!test_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags) ||
sc->sched.state == ATH_CHANCTX_STATE_FORCE_ACTIVE ||
sc->cur_chan->switch_after_beacon ||
sc->cur_chan == &sc->offchannel.chan)
break;
/* If this is a station chanctx, stay active for a half
* beacon period (minus channel switch time)
*/
sc->next_chan = ath_chanctx_get_next(sc, sc->cur_chan);
cur_conf = &sc->cur_chan->beacon;
ath_dbg(common, CHAN_CTX,
"Move chanctx state to WAIT_FOR_TIMER (event SWITCH)\n");
sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_TIMER;
sc->sched.wait_switch = false;
tsf_time = TU_TO_USEC(cur_conf->beacon_interval) / 2;
if (sc->sched.extend_absence) {
sc->sched.beacon_miss = 0;
tsf_time *= 3;
}
tsf_time -= sc->sched.channel_switch_time;
tsf_time += ath9k_hw_gettsf32(sc->sc_ah);
sc->sched.switch_start_time = tsf_time;
ath_chanctx_setup_timer(sc, tsf_time);
sc->sched.beacon_pending = true;
break;
case ATH_CHANCTX_EVENT_ENABLE_MULTICHANNEL:
if (sc->cur_chan == &sc->offchannel.chan ||
sc->cur_chan->switch_after_beacon)
break;
sc->next_chan = ath_chanctx_get_next(sc, sc->cur_chan);
ieee80211_queue_work(sc->hw, &sc->chanctx_work);
break;
case ATH_CHANCTX_EVENT_UNASSIGN:
if (sc->cur_chan->assigned) {
if (sc->next_chan && !sc->next_chan->assigned &&
sc->next_chan != &sc->offchannel.chan)
sc->sched.state = ATH_CHANCTX_STATE_IDLE;
break;
}
ctx = ath_chanctx_get_next(sc, sc->cur_chan);
sc->sched.state = ATH_CHANCTX_STATE_IDLE;
if (!ctx->assigned)
break;
sc->next_chan = ctx;
ieee80211_queue_work(sc->hw, &sc->chanctx_work);
break;
case ATH_CHANCTX_EVENT_ASSIGN:
/*
* When adding a new channel context, check if a scan
* is in progress and abort it since the addition of
* a new channel context is usually followed by VIF
* assignment, in which case we have to start multi-channel
* operation.
*/
if (test_bit(ATH_OP_SCANNING, &common->op_flags)) {
ath_dbg(common, CHAN_CTX,
"Aborting HW scan to add new context\n");
spin_unlock_bh(&sc->chan_lock);
del_timer_sync(&sc->offchannel.timer);
ath_scan_complete(sc, true);
spin_lock_bh(&sc->chan_lock);
}
break;
case ATH_CHANCTX_EVENT_CHANGE:
break;
}
spin_unlock_bh(&sc->chan_lock);
}
void ath_chanctx_beacon_sent_ev(struct ath_softc *sc,
enum ath_chanctx_event ev)
{
if (sc->sched.beacon_pending)
ath_chanctx_event(sc, NULL, ev);
}
void ath_chanctx_beacon_recv_ev(struct ath_softc *sc,
enum ath_chanctx_event ev)
{
ath_chanctx_event(sc, NULL, ev);
}
static int ath_scan_channel_duration(struct ath_softc *sc,
struct ieee80211_channel *chan)
{
struct cfg80211_scan_request *req = sc->offchannel.scan_req;
if (!req->n_ssids || (chan->flags & IEEE80211_CHAN_NO_IR))
return (HZ / 9); /* ~110 ms */
return (HZ / 16); /* ~60 ms */
}
static void ath_chanctx_switch(struct ath_softc *sc, struct ath_chanctx *ctx,
struct cfg80211_chan_def *chandef)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
spin_lock_bh(&sc->chan_lock);
if (test_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags) &&
(sc->cur_chan != ctx) && (ctx == &sc->offchannel.chan)) {
if (chandef)
ctx->chandef = *chandef;
sc->sched.offchannel_pending = true;
sc->sched.wait_switch = true;
sc->sched.offchannel_duration =
jiffies_to_usecs(sc->offchannel.duration) +
sc->sched.channel_switch_time;
spin_unlock_bh(&sc->chan_lock);
ath_dbg(common, CHAN_CTX,
"Set offchannel_pending to true\n");
return;
}
sc->next_chan = ctx;
if (chandef) {
ctx->chandef = *chandef;
ath_dbg(common, CHAN_CTX,
"Assigned next_chan to %d MHz\n", chandef->center_freq1);
}
if (sc->next_chan == &sc->offchannel.chan) {
sc->sched.offchannel_duration =
jiffies_to_usecs(sc->offchannel.duration) +
sc->sched.channel_switch_time;
if (chandef) {
ath_dbg(common, CHAN_CTX,
"Offchannel duration for chan %d MHz : %u\n",
chandef->center_freq1,
sc->sched.offchannel_duration);
}
}
spin_unlock_bh(&sc->chan_lock);
ieee80211_queue_work(sc->hw, &sc->chanctx_work);
}
static void ath_chanctx_offchan_switch(struct ath_softc *sc,
struct ieee80211_channel *chan)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct cfg80211_chan_def chandef;
cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_NO_HT);
ath_dbg(common, CHAN_CTX,
"Channel definition created: %d MHz\n", chandef.center_freq1);
ath_chanctx_switch(sc, &sc->offchannel.chan, &chandef);
}
static struct ath_chanctx *ath_chanctx_get_oper_chan(struct ath_softc *sc,
bool active)
{
struct ath_chanctx *ctx;
ath_for_each_chanctx(sc, ctx) {
if (!ctx->assigned || list_empty(&ctx->vifs))
continue;
if (active && !ctx->active)
continue;
if (ctx->switch_after_beacon)
return ctx;
}
return &sc->chanctx[0];
}
static void
ath_scan_next_channel(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct cfg80211_scan_request *req = sc->offchannel.scan_req;
struct ieee80211_channel *chan;
if (sc->offchannel.scan_idx >= req->n_channels) {
ath_dbg(common, CHAN_CTX,
"Moving offchannel state to ATH_OFFCHANNEL_IDLE, "
"scan_idx: %d, n_channels: %d\n",
sc->offchannel.scan_idx,
req->n_channels);
sc->offchannel.state = ATH_OFFCHANNEL_IDLE;
ath_chanctx_switch(sc, ath_chanctx_get_oper_chan(sc, false),
NULL);
return;
}
ath_dbg(common, CHAN_CTX,
"Moving offchannel state to ATH_OFFCHANNEL_PROBE_SEND, scan_idx: %d\n",
sc->offchannel.scan_idx);
chan = req->channels[sc->offchannel.scan_idx++];
sc->offchannel.duration = ath_scan_channel_duration(sc, chan);
sc->offchannel.state = ATH_OFFCHANNEL_PROBE_SEND;
ath_chanctx_offchan_switch(sc, chan);
}
void ath_offchannel_next(struct ath_softc *sc)
{
struct ieee80211_vif *vif;
if (sc->offchannel.scan_req) {
vif = sc->offchannel.scan_vif;
sc->offchannel.chan.txpower = vif->bss_conf.txpower;
ath_scan_next_channel(sc);
} else if (sc->offchannel.roc_vif) {
vif = sc->offchannel.roc_vif;
sc->offchannel.chan.txpower = vif->bss_conf.txpower;
sc->offchannel.duration =
msecs_to_jiffies(sc->offchannel.roc_duration);
sc->offchannel.state = ATH_OFFCHANNEL_ROC_START;
ath_chanctx_offchan_switch(sc, sc->offchannel.roc_chan);
} else {
ath_chanctx_switch(sc, ath_chanctx_get_oper_chan(sc, false),
NULL);
sc->offchannel.state = ATH_OFFCHANNEL_IDLE;
if (sc->ps_idle)
ath_cancel_work(sc);
}
}
void ath_roc_complete(struct ath_softc *sc, bool abort)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
if (abort)
ath_dbg(common, CHAN_CTX, "RoC aborted\n");
else
ath_dbg(common, CHAN_CTX, "RoC expired\n");
sc->offchannel.roc_vif = NULL;
sc->offchannel.roc_chan = NULL;
if (!abort)
ieee80211_remain_on_channel_expired(sc->hw);
ath_offchannel_next(sc);
ath9k_ps_restore(sc);
}
void ath_scan_complete(struct ath_softc *sc, bool abort)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
if (abort)
ath_dbg(common, CHAN_CTX, "HW scan aborted\n");
else
ath_dbg(common, CHAN_CTX, "HW scan complete\n");
sc->offchannel.scan_req = NULL;
sc->offchannel.scan_vif = NULL;
sc->offchannel.state = ATH_OFFCHANNEL_IDLE;
ieee80211_scan_completed(sc->hw, abort);
clear_bit(ATH_OP_SCANNING, &common->op_flags);
spin_lock_bh(&sc->chan_lock);
if (test_bit(ATH_OP_MULTI_CHANNEL, &common->op_flags))
sc->sched.force_noa_update = true;
spin_unlock_bh(&sc->chan_lock);
ath_offchannel_next(sc);
ath9k_ps_restore(sc);
}
static void ath_scan_send_probe(struct ath_softc *sc,
struct cfg80211_ssid *ssid)
{
struct cfg80211_scan_request *req = sc->offchannel.scan_req;
struct ieee80211_vif *vif = sc->offchannel.scan_vif;
struct ath_tx_control txctl = {};
struct sk_buff *skb;
struct ieee80211_tx_info *info;
int band = sc->offchannel.chan.chandef.chan->band;
skb = ieee80211_probereq_get(sc->hw, vif,
ssid->ssid, ssid->ssid_len, req->ie_len);
if (!skb)
return;
info = IEEE80211_SKB_CB(skb);
if (req->no_cck)
info->flags |= IEEE80211_TX_CTL_NO_CCK_RATE;
if (req->ie_len)
memcpy(skb_put(skb, req->ie_len), req->ie, req->ie_len);
skb_set_queue_mapping(skb, IEEE80211_AC_VO);
if (!ieee80211_tx_prepare_skb(sc->hw, vif, skb, band, NULL))
goto error;
txctl.txq = sc->tx.txq_map[IEEE80211_AC_VO];
txctl.force_channel = true;
if (ath_tx_start(sc->hw, skb, &txctl))
goto error;
return;
error:
ieee80211_free_txskb(sc->hw, skb);
}
static void ath_scan_channel_start(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct cfg80211_scan_request *req = sc->offchannel.scan_req;
int i;
if (!(sc->cur_chan->chandef.chan->flags & IEEE80211_CHAN_NO_IR) &&
req->n_ssids) {
for (i = 0; i < req->n_ssids; i++)
ath_scan_send_probe(sc, &req->ssids[i]);
}
ath_dbg(common, CHAN_CTX,
"Moving offchannel state to ATH_OFFCHANNEL_PROBE_WAIT\n");
sc->offchannel.state = ATH_OFFCHANNEL_PROBE_WAIT;
mod_timer(&sc->offchannel.timer, jiffies + sc->offchannel.duration);
}
static void ath_chanctx_timer(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *) data;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
ath_dbg(common, CHAN_CTX,
"Channel context timer invoked\n");
ath_chanctx_event(sc, NULL, ATH_CHANCTX_EVENT_TSF_TIMER);
}
static void ath_offchannel_timer(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
struct ath_chanctx *ctx;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
ath_dbg(common, CHAN_CTX, "%s: offchannel state: %s\n",
__func__, offchannel_state_string(sc->offchannel.state));
switch (sc->offchannel.state) {
case ATH_OFFCHANNEL_PROBE_WAIT:
if (!sc->offchannel.scan_req)
return;
/* get first active channel context */
ctx = ath_chanctx_get_oper_chan(sc, true);
if (ctx->active) {
ath_dbg(common, CHAN_CTX,
"Switch to oper/active context, "
"move offchannel state to ATH_OFFCHANNEL_SUSPEND\n");
sc->offchannel.state = ATH_OFFCHANNEL_SUSPEND;
ath_chanctx_switch(sc, ctx, NULL);
mod_timer(&sc->offchannel.timer, jiffies + HZ / 10);
break;
}
/* fall through */
case ATH_OFFCHANNEL_SUSPEND:
if (!sc->offchannel.scan_req)
return;
ath_scan_next_channel(sc);
break;
case ATH_OFFCHANNEL_ROC_START:
case ATH_OFFCHANNEL_ROC_WAIT:
ctx = ath_chanctx_get_oper_chan(sc, false);
sc->offchannel.state = ATH_OFFCHANNEL_ROC_DONE;
ath_chanctx_switch(sc, ctx, NULL);
break;
default:
break;
}
}
static bool
ath_chanctx_send_vif_ps_frame(struct ath_softc *sc, struct ath_vif *avp,
bool powersave)
{
struct ieee80211_vif *vif = avp->vif;
struct ieee80211_sta *sta = NULL;
struct ieee80211_hdr_3addr *nullfunc;
struct ath_tx_control txctl;
struct sk_buff *skb;
int band = sc->cur_chan->chandef.chan->band;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
if (!avp->assoc)
return false;
skb = ieee80211_nullfunc_get(sc->hw, vif);
if (!skb)
return false;
nullfunc = (struct ieee80211_hdr_3addr *) skb->data;
if (powersave)
nullfunc->frame_control |=
cpu_to_le16(IEEE80211_FCTL_PM);
skb_set_queue_mapping(skb, IEEE80211_AC_VO);
if (!ieee80211_tx_prepare_skb(sc->hw, vif, skb, band, &sta)) {
dev_kfree_skb_any(skb);
return false;
}
break;
default:
return false;
}
memset(&txctl, 0, sizeof(txctl));
txctl.txq = sc->tx.txq_map[IEEE80211_AC_VO];
txctl.sta = sta;
txctl.force_channel = true;
if (ath_tx_start(sc->hw, skb, &txctl)) {
ieee80211_free_txskb(sc->hw, skb);
return false;
}
return true;
}
static bool
ath_chanctx_send_ps_frame(struct ath_softc *sc, bool powersave)
{
struct ath_vif *avp;
bool sent = false;
rcu_read_lock();
list_for_each_entry(avp, &sc->cur_chan->vifs, list) {
if (ath_chanctx_send_vif_ps_frame(sc, avp, powersave))
sent = true;
}
rcu_read_unlock();
return sent;
}
static bool ath_chanctx_defer_switch(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
if (sc->cur_chan == &sc->offchannel.chan)
return false;
switch (sc->sched.state) {
case ATH_CHANCTX_STATE_SWITCH:
return false;
case ATH_CHANCTX_STATE_IDLE:
if (!sc->cur_chan->switch_after_beacon)
return false;
ath_dbg(common, CHAN_CTX,
"Defer switch, set chanctx state to WAIT_FOR_BEACON\n");
sc->sched.state = ATH_CHANCTX_STATE_WAIT_FOR_BEACON;
break;
default:
break;
}
return true;
}
static void ath_offchannel_channel_change(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
ath_dbg(common, CHAN_CTX, "%s: offchannel state: %s\n",
__func__, offchannel_state_string(sc->offchannel.state));
switch (sc->offchannel.state) {
case ATH_OFFCHANNEL_PROBE_SEND:
if (!sc->offchannel.scan_req)
return;
if (sc->cur_chan->chandef.chan !=
sc->offchannel.chan.chandef.chan)
return;
ath_scan_channel_start(sc);
break;
case ATH_OFFCHANNEL_IDLE:
if (!sc->offchannel.scan_req)
return;
ath_scan_complete(sc, false);
break;
case ATH_OFFCHANNEL_ROC_START:
if (sc->cur_chan != &sc->offchannel.chan)
break;
sc->offchannel.state = ATH_OFFCHANNEL_ROC_WAIT;
mod_timer(&sc->offchannel.timer,
jiffies + sc->offchannel.duration);
ieee80211_ready_on_channel(sc->hw);
break;
case ATH_OFFCHANNEL_ROC_DONE:
ath_roc_complete(sc, false);
break;
default:
break;
}
}
void ath_chanctx_set_next(struct ath_softc *sc, bool force)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct timespec ts;
bool measure_time = false;
bool send_ps = false;
spin_lock_bh(&sc->chan_lock);
if (!sc->next_chan) {
spin_unlock_bh(&sc->chan_lock);
return;
}
if (!force && ath_chanctx_defer_switch(sc)) {
spin_unlock_bh(&sc->chan_lock);
return;
}
ath_dbg(common, CHAN_CTX,
"%s: current: %d MHz, next: %d MHz\n",
__func__,
sc->cur_chan->chandef.center_freq1,
sc->next_chan->chandef.center_freq1);
if (sc->cur_chan != sc->next_chan) {
ath_dbg(common, CHAN_CTX,
"Stopping current chanctx: %d\n",
sc->cur_chan->chandef.center_freq1);
sc->cur_chan->stopped = true;
spin_unlock_bh(&sc->chan_lock);
if (sc->next_chan == &sc->offchannel.chan) {
getrawmonotonic(&ts);
measure_time = true;
}
__ath9k_flush(sc->hw, ~0, true);
if (ath_chanctx_send_ps_frame(sc, true))
__ath9k_flush(sc->hw, BIT(IEEE80211_AC_VO), false);
send_ps = true;
spin_lock_bh(&sc->chan_lock);
if (sc->cur_chan != &sc->offchannel.chan) {
getrawmonotonic(&sc->cur_chan->tsf_ts);
sc->cur_chan->tsf_val = ath9k_hw_gettsf64(sc->sc_ah);
}
}
sc->cur_chan = sc->next_chan;
sc->cur_chan->stopped = false;
sc->next_chan = NULL;
if (!sc->sched.offchannel_pending)
sc->sched.offchannel_duration = 0;
if (sc->sched.state != ATH_CHANCTX_STATE_FORCE_ACTIVE)
sc->sched.state = ATH_CHANCTX_STATE_IDLE;
spin_unlock_bh(&sc->chan_lock);
if (sc->sc_ah->chip_fullsleep ||
memcmp(&sc->cur_chandef, &sc->cur_chan->chandef,
sizeof(sc->cur_chandef))) {
ath_dbg(common, CHAN_CTX,
"%s: Set channel %d MHz\n",
__func__, sc->cur_chan->chandef.center_freq1);
ath_set_channel(sc);
if (measure_time)
sc->sched.channel_switch_time =
ath9k_hw_get_tsf_offset(&ts, NULL);
}
if (send_ps)
ath_chanctx_send_ps_frame(sc, false);
ath_offchannel_channel_change(sc);
ath_chanctx_event(sc, NULL, ATH_CHANCTX_EVENT_SWITCH);
}
static void ath_chanctx_work(struct work_struct *work)
{
struct ath_softc *sc = container_of(work, struct ath_softc,
chanctx_work);
mutex_lock(&sc->mutex);
ath_chanctx_set_next(sc, false);
mutex_unlock(&sc->mutex);
}
void ath9k_offchannel_init(struct ath_softc *sc)
{
struct ath_chanctx *ctx;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ieee80211_supported_band *sband;
struct ieee80211_channel *chan;
int i;
sband = &common->sbands[IEEE80211_BAND_2GHZ];
if (!sband->n_channels)
sband = &common->sbands[IEEE80211_BAND_5GHZ];
chan = &sband->channels[0];
ctx = &sc->offchannel.chan;
INIT_LIST_HEAD(&ctx->vifs);
ctx->txpower = ATH_TXPOWER_MAX;
cfg80211_chandef_create(&ctx->chandef, chan, NL80211_CHAN_HT20);
for (i = 0; i < ARRAY_SIZE(ctx->acq); i++)
INIT_LIST_HEAD(&ctx->acq[i]);
sc->offchannel.chan.offchannel = true;
}
void ath9k_init_channel_context(struct ath_softc *sc)
{
INIT_WORK(&sc->chanctx_work, ath_chanctx_work);
setup_timer(&sc->offchannel.timer, ath_offchannel_timer,
(unsigned long)sc);
setup_timer(&sc->sched.timer, ath_chanctx_timer,
(unsigned long)sc);
}
void ath9k_deinit_channel_context(struct ath_softc *sc)
{
cancel_work_sync(&sc->chanctx_work);
}
bool ath9k_is_chanctx_enabled(void)
{
return (ath9k_use_chanctx == 1);
}
/********************/
/* Queue management */
/********************/
void ath9k_chanctx_stop_queues(struct ath_softc *sc, struct ath_chanctx *ctx)
{
struct ath_hw *ah = sc->sc_ah;
int i;
if (ctx == &sc->offchannel.chan) {
ieee80211_stop_queue(sc->hw,
sc->hw->offchannel_tx_hw_queue);
} else {
for (i = 0; i < IEEE80211_NUM_ACS; i++)
ieee80211_stop_queue(sc->hw,
ctx->hw_queue_base + i);
}
if (ah->opmode == NL80211_IFTYPE_AP)
ieee80211_stop_queue(sc->hw, sc->hw->queues - 2);
}
void ath9k_chanctx_wake_queues(struct ath_softc *sc, struct ath_chanctx *ctx)
{
struct ath_hw *ah = sc->sc_ah;
int i;
if (ctx == &sc->offchannel.chan) {
ieee80211_wake_queue(sc->hw,
sc->hw->offchannel_tx_hw_queue);
} else {
for (i = 0; i < IEEE80211_NUM_ACS; i++)
ieee80211_wake_queue(sc->hw,
ctx->hw_queue_base + i);
}
if (ah->opmode == NL80211_IFTYPE_AP)
ieee80211_wake_queue(sc->hw, sc->hw->queues - 2);
}
/*****************/
/* P2P Powersave */
/*****************/
static void ath9k_update_p2p_ps_timer(struct ath_softc *sc, struct ath_vif *avp)
{
struct ath_hw *ah = sc->sc_ah;
s32 tsf, target_tsf;
if (!avp || !avp->noa.has_next_tsf)
return;
ath9k_hw_gen_timer_stop(ah, sc->p2p_ps_timer);
tsf = ath9k_hw_gettsf32(sc->sc_ah);
target_tsf = avp->noa.next_tsf;
if (!avp->noa.absent)
target_tsf -= ATH_P2P_PS_STOP_TIME;
if (target_tsf - tsf < ATH_P2P_PS_STOP_TIME)
target_tsf = tsf + ATH_P2P_PS_STOP_TIME;
ath9k_hw_gen_timer_start(ah, sc->p2p_ps_timer, (u32) target_tsf, 1000000);
}
static void ath9k_update_p2p_ps(struct ath_softc *sc, struct ieee80211_vif *vif)
{
struct ath_vif *avp = (void *)vif->drv_priv;
u32 tsf;
if (!sc->p2p_ps_timer)
return;
if (vif->type != NL80211_IFTYPE_STATION || !vif->p2p)
return;
sc->p2p_ps_vif = avp;
tsf = ath9k_hw_gettsf32(sc->sc_ah);
ieee80211_parse_p2p_noa(&vif->bss_conf.p2p_noa_attr, &avp->noa, tsf);
ath9k_update_p2p_ps_timer(sc, avp);
}
static u8 ath9k_get_ctwin(struct ath_softc *sc, struct ath_vif *avp)
{
struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
u8 switch_time, ctwin;
/*
* Channel switch in multi-channel mode is deferred
* by a quarter beacon interval when handling
* ATH_CHANCTX_EVENT_BEACON_PREPARE, so the P2P-GO
* interface is guaranteed to be discoverable
* for that duration after a TBTT.
*/
switch_time = cur_conf->beacon_interval / 4;
ctwin = avp->vif->bss_conf.p2p_noa_attr.oppps_ctwindow;
if (ctwin && (ctwin < switch_time))
return ctwin;
if (switch_time < P2P_DEFAULT_CTWIN)
return 0;
return P2P_DEFAULT_CTWIN;
}
void ath9k_beacon_add_noa(struct ath_softc *sc, struct ath_vif *avp,
struct sk_buff *skb)
{
static const u8 noa_ie_hdr[] = {
WLAN_EID_VENDOR_SPECIFIC, /* type */
0, /* length */
0x50, 0x6f, 0x9a, /* WFA OUI */
0x09, /* P2P subtype */
0x0c, /* Notice of Absence */
0x00, /* LSB of little-endian len */
0x00, /* MSB of little-endian len */
};
struct ieee80211_p2p_noa_attr *noa;
int noa_len, noa_desc, i = 0;
u8 *hdr;
if (!avp->offchannel_duration && !avp->noa_duration)
return;
noa_desc = !!avp->offchannel_duration + !!avp->noa_duration;
noa_len = 2 + sizeof(struct ieee80211_p2p_noa_desc) * noa_desc;
hdr = skb_put(skb, sizeof(noa_ie_hdr));
memcpy(hdr, noa_ie_hdr, sizeof(noa_ie_hdr));
hdr[1] = sizeof(noa_ie_hdr) + noa_len - 2;
hdr[7] = noa_len;
noa = (void *) skb_put(skb, noa_len);
memset(noa, 0, noa_len);
noa->index = avp->noa_index;
noa->oppps_ctwindow = ath9k_get_ctwin(sc, avp);
if (avp->noa_duration) {
if (avp->periodic_noa) {
u32 interval = TU_TO_USEC(sc->cur_chan->beacon.beacon_interval);
noa->desc[i].count = 255;
noa->desc[i].interval = cpu_to_le32(interval);
} else {
noa->desc[i].count = 1;
}
noa->desc[i].start_time = cpu_to_le32(avp->noa_start);
noa->desc[i].duration = cpu_to_le32(avp->noa_duration);
i++;
}
if (avp->offchannel_duration) {
noa->desc[i].count = 1;
noa->desc[i].start_time = cpu_to_le32(avp->offchannel_start);
noa->desc[i].duration = cpu_to_le32(avp->offchannel_duration);
}
}
void ath9k_p2p_ps_timer(void *priv)
{
struct ath_softc *sc = priv;
struct ath_vif *avp = sc->p2p_ps_vif;
struct ieee80211_vif *vif;
struct ieee80211_sta *sta;
struct ath_node *an;
u32 tsf;
del_timer_sync(&sc->sched.timer);
ath9k_hw_gen_timer_stop(sc->sc_ah, sc->p2p_ps_timer);
ath_chanctx_event(sc, NULL, ATH_CHANCTX_EVENT_TSF_TIMER);
if (!avp || avp->chanctx != sc->cur_chan)
return;
tsf = ath9k_hw_gettsf32(sc->sc_ah);
if (!avp->noa.absent)
tsf += ATH_P2P_PS_STOP_TIME;
if (!avp->noa.has_next_tsf ||
avp->noa.next_tsf - tsf > BIT(31))
ieee80211_update_p2p_noa(&avp->noa, tsf);
ath9k_update_p2p_ps_timer(sc, avp);
rcu_read_lock();
vif = avp->vif;
sta = ieee80211_find_sta(vif, avp->bssid);
if (!sta)
goto out;
an = (void *) sta->drv_priv;
if (an->sleeping == !!avp->noa.absent)
goto out;
an->sleeping = avp->noa.absent;
if (an->sleeping)
ath_tx_aggr_sleep(sta, sc, an);
else
ath_tx_aggr_wakeup(sc, an);
out:
rcu_read_unlock();
}
void ath9k_p2p_bss_info_changed(struct ath_softc *sc,
struct ieee80211_vif *vif)
{
unsigned long flags;
spin_lock_bh(&sc->sc_pcu_lock);
spin_lock_irqsave(&sc->sc_pm_lock, flags);
if (!(sc->ps_flags & PS_BEACON_SYNC))
ath9k_update_p2p_ps(sc, vif);
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
spin_unlock_bh(&sc->sc_pcu_lock);
}
void ath9k_p2p_beacon_sync(struct ath_softc *sc)
{
if (sc->p2p_ps_vif)
ath9k_update_p2p_ps(sc, sc->p2p_ps_vif->vif);
}
void ath9k_p2p_remove_vif(struct ath_softc *sc,
struct ieee80211_vif *vif)
{
struct ath_vif *avp = (void *)vif->drv_priv;
spin_lock_bh(&sc->sc_pcu_lock);
if (avp == sc->p2p_ps_vif) {
sc->p2p_ps_vif = NULL;
ath9k_update_p2p_ps_timer(sc, NULL);
}
spin_unlock_bh(&sc->sc_pcu_lock);
}
int ath9k_init_p2p(struct ath_softc *sc)
{
sc->p2p_ps_timer = ath_gen_timer_alloc(sc->sc_ah, ath9k_p2p_ps_timer,
NULL, sc, AR_FIRST_NDP_TIMER);
if (!sc->p2p_ps_timer)
return -ENOMEM;
return 0;
}
void ath9k_deinit_p2p(struct ath_softc *sc)
{
if (sc->p2p_ps_timer)
ath_gen_timer_free(sc->sc_ah, sc->p2p_ps_timer);
}
#endif /* CONFIG_ATH9K_CHANNEL_CONTEXT */