b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
560 lines
13 KiB
C
560 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Mips Jazz DMA controller support
|
|
* Copyright (C) 1995, 1996 by Andreas Busse
|
|
*
|
|
* NOTE: Some of the argument checking could be removed when
|
|
* things have settled down. Also, instead of returning 0xffffffff
|
|
* on failure of vdma_alloc() one could leave page #0 unused
|
|
* and return the more usual NULL pointer as logical address.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/gfp.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/jazz.h>
|
|
#include <asm/io.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/jazzdma.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
/*
|
|
* Set this to one to enable additional vdma debug code.
|
|
*/
|
|
#define CONF_DEBUG_VDMA 0
|
|
|
|
static VDMA_PGTBL_ENTRY *pgtbl;
|
|
|
|
static DEFINE_SPINLOCK(vdma_lock);
|
|
|
|
/*
|
|
* Debug stuff
|
|
*/
|
|
#define vdma_debug ((CONF_DEBUG_VDMA) ? debuglvl : 0)
|
|
|
|
static int debuglvl = 3;
|
|
|
|
/*
|
|
* Initialize the pagetable with a one-to-one mapping of
|
|
* the first 16 Mbytes of main memory and declare all
|
|
* entries to be unused. Using this method will at least
|
|
* allow some early device driver operations to work.
|
|
*/
|
|
static inline void vdma_pgtbl_init(void)
|
|
{
|
|
unsigned long paddr = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
|
|
pgtbl[i].frame = paddr;
|
|
pgtbl[i].owner = VDMA_PAGE_EMPTY;
|
|
paddr += VDMA_PAGESIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the Jazz R4030 dma controller
|
|
*/
|
|
static int __init vdma_init(void)
|
|
{
|
|
/*
|
|
* Allocate 32k of memory for DMA page tables. This needs to be page
|
|
* aligned and should be uncached to avoid cache flushing after every
|
|
* update.
|
|
*/
|
|
pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
|
|
get_order(VDMA_PGTBL_SIZE));
|
|
BUG_ON(!pgtbl);
|
|
dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
|
|
pgtbl = (VDMA_PGTBL_ENTRY *)KSEG1ADDR(pgtbl);
|
|
|
|
/*
|
|
* Clear the R4030 translation table
|
|
*/
|
|
vdma_pgtbl_init();
|
|
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE, CPHYSADDR(pgtbl));
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
|
|
|
|
printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA pagetables using a simple first-fit algorithm
|
|
*/
|
|
unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
|
|
{
|
|
int first, last, pages, frame, i;
|
|
unsigned long laddr, flags;
|
|
|
|
/* check arguments */
|
|
|
|
if (paddr > 0x1fffffff) {
|
|
if (vdma_debug)
|
|
printk("vdma_alloc: Invalid physical address: %08lx\n",
|
|
paddr);
|
|
return VDMA_ERROR; /* invalid physical address */
|
|
}
|
|
if (size > 0x400000 || size == 0) {
|
|
if (vdma_debug)
|
|
printk("vdma_alloc: Invalid size: %08lx\n", size);
|
|
return VDMA_ERROR; /* invalid physical address */
|
|
}
|
|
|
|
spin_lock_irqsave(&vdma_lock, flags);
|
|
/*
|
|
* Find free chunk
|
|
*/
|
|
pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
|
|
first = 0;
|
|
while (1) {
|
|
while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
|
|
first < VDMA_PGTBL_ENTRIES) first++;
|
|
if (first + pages > VDMA_PGTBL_ENTRIES) { /* nothing free */
|
|
spin_unlock_irqrestore(&vdma_lock, flags);
|
|
return VDMA_ERROR;
|
|
}
|
|
|
|
last = first + 1;
|
|
while (pgtbl[last].owner == VDMA_PAGE_EMPTY
|
|
&& last - first < pages)
|
|
last++;
|
|
|
|
if (last - first == pages)
|
|
break; /* found */
|
|
first = last + 1;
|
|
}
|
|
|
|
/*
|
|
* Mark pages as allocated
|
|
*/
|
|
laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
|
|
frame = paddr & ~(VDMA_PAGESIZE - 1);
|
|
|
|
for (i = first; i < last; i++) {
|
|
pgtbl[i].frame = frame;
|
|
pgtbl[i].owner = laddr;
|
|
frame += VDMA_PAGESIZE;
|
|
}
|
|
|
|
/*
|
|
* Update translation table and return logical start address
|
|
*/
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
|
|
|
|
if (vdma_debug > 1)
|
|
printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
|
|
pages, laddr);
|
|
|
|
if (vdma_debug > 2) {
|
|
printk("LADDR: ");
|
|
for (i = first; i < last; i++)
|
|
printk("%08x ", i << 12);
|
|
printk("\nPADDR: ");
|
|
for (i = first; i < last; i++)
|
|
printk("%08x ", pgtbl[i].frame);
|
|
printk("\nOWNER: ");
|
|
for (i = first; i < last; i++)
|
|
printk("%08x ", pgtbl[i].owner);
|
|
printk("\n");
|
|
}
|
|
|
|
spin_unlock_irqrestore(&vdma_lock, flags);
|
|
|
|
return laddr;
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_alloc);
|
|
|
|
/*
|
|
* Free previously allocated dma translation pages
|
|
* Note that this does NOT change the translation table,
|
|
* it just marks the free'd pages as unused!
|
|
*/
|
|
int vdma_free(unsigned long laddr)
|
|
{
|
|
int i;
|
|
|
|
i = laddr >> 12;
|
|
|
|
if (pgtbl[i].owner != laddr) {
|
|
printk
|
|
("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
|
|
laddr);
|
|
return -1;
|
|
}
|
|
|
|
while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) {
|
|
pgtbl[i].owner = VDMA_PAGE_EMPTY;
|
|
i++;
|
|
}
|
|
|
|
if (vdma_debug > 1)
|
|
printk("vdma_free: freed %ld pages starting from %08lx\n",
|
|
i - (laddr >> 12), laddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_free);
|
|
|
|
/*
|
|
* Map certain page(s) to another physical address.
|
|
* Caller must have allocated the page(s) before.
|
|
*/
|
|
int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
|
|
{
|
|
int first, pages;
|
|
|
|
if (laddr > 0xffffff) {
|
|
if (vdma_debug)
|
|
printk
|
|
("vdma_map: Invalid logical address: %08lx\n",
|
|
laddr);
|
|
return -EINVAL; /* invalid logical address */
|
|
}
|
|
if (paddr > 0x1fffffff) {
|
|
if (vdma_debug)
|
|
printk
|
|
("vdma_map: Invalid physical address: %08lx\n",
|
|
paddr);
|
|
return -EINVAL; /* invalid physical address */
|
|
}
|
|
|
|
pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
|
|
first = laddr >> 12;
|
|
if (vdma_debug)
|
|
printk("vdma_remap: first=%x, pages=%x\n", first, pages);
|
|
if (first + pages > VDMA_PGTBL_ENTRIES) {
|
|
if (vdma_debug)
|
|
printk("vdma_alloc: Invalid size: %08lx\n", size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
paddr &= ~(VDMA_PAGESIZE - 1);
|
|
while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
|
|
if (pgtbl[first].owner != laddr) {
|
|
if (vdma_debug)
|
|
printk("Trying to remap other's pages.\n");
|
|
return -EPERM; /* not owner */
|
|
}
|
|
pgtbl[first].frame = paddr;
|
|
paddr += VDMA_PAGESIZE;
|
|
first++;
|
|
pages--;
|
|
}
|
|
|
|
/*
|
|
* Update translation table
|
|
*/
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
|
|
|
|
if (vdma_debug > 2) {
|
|
int i;
|
|
pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
|
|
first = laddr >> 12;
|
|
printk("LADDR: ");
|
|
for (i = first; i < first + pages; i++)
|
|
printk("%08x ", i << 12);
|
|
printk("\nPADDR: ");
|
|
for (i = first; i < first + pages; i++)
|
|
printk("%08x ", pgtbl[i].frame);
|
|
printk("\nOWNER: ");
|
|
for (i = first; i < first + pages; i++)
|
|
printk("%08x ", pgtbl[i].owner);
|
|
printk("\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Translate a physical address to a logical address.
|
|
* This will return the logical address of the first
|
|
* match.
|
|
*/
|
|
unsigned long vdma_phys2log(unsigned long paddr)
|
|
{
|
|
int i;
|
|
int frame;
|
|
|
|
frame = paddr & ~(VDMA_PAGESIZE - 1);
|
|
|
|
for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
|
|
if (pgtbl[i].frame == frame)
|
|
break;
|
|
}
|
|
|
|
if (i == VDMA_PGTBL_ENTRIES)
|
|
return ~0UL;
|
|
|
|
return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_phys2log);
|
|
|
|
/*
|
|
* Translate a logical DMA address to a physical address
|
|
*/
|
|
unsigned long vdma_log2phys(unsigned long laddr)
|
|
{
|
|
return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_log2phys);
|
|
|
|
/*
|
|
* Print DMA statistics
|
|
*/
|
|
void vdma_stats(void)
|
|
{
|
|
int i;
|
|
|
|
printk("vdma_stats: CONFIG: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_CONFIG));
|
|
printk("R4030 translation table base: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
|
|
printk("R4030 translation table limit: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
|
|
printk("vdma_stats: INV_ADDR: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_INV_ADDR));
|
|
printk("vdma_stats: R_FAIL_ADDR: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
|
|
printk("vdma_stats: M_FAIL_ADDR: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
|
|
printk("vdma_stats: IRQ_SOURCE: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
|
|
printk("vdma_stats: I386_ERROR: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_I386_ERROR));
|
|
printk("vdma_chnl_modes: ");
|
|
for (i = 0; i < 8; i++)
|
|
printk("%04x ",
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
|
|
(i << 5)));
|
|
printk("\n");
|
|
printk("vdma_chnl_enables: ");
|
|
for (i = 0; i < 8; i++)
|
|
printk("%04x ",
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(i << 5)));
|
|
printk("\n");
|
|
}
|
|
|
|
/*
|
|
* DMA transfer functions
|
|
*/
|
|
|
|
/*
|
|
* Enable a DMA channel. Also clear any error conditions.
|
|
*/
|
|
void vdma_enable(int channel)
|
|
{
|
|
int status;
|
|
|
|
if (vdma_debug)
|
|
printk("vdma_enable: channel %d\n", channel);
|
|
|
|
/*
|
|
* Check error conditions first
|
|
*/
|
|
status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
|
|
if (status & 0x400)
|
|
printk("VDMA: Channel %d: Address error!\n", channel);
|
|
if (status & 0x200)
|
|
printk("VDMA: Channel %d: Memory error!\n", channel);
|
|
|
|
/*
|
|
* Clear all interrupt flags
|
|
*/
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) | R4030_TC_INTR
|
|
| R4030_MEM_INTR | R4030_ADDR_INTR);
|
|
|
|
/*
|
|
* Enable the desired channel
|
|
*/
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) |
|
|
R4030_CHNL_ENABLE);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_enable);
|
|
|
|
/*
|
|
* Disable a DMA channel
|
|
*/
|
|
void vdma_disable(int channel)
|
|
{
|
|
if (vdma_debug) {
|
|
int status =
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5));
|
|
|
|
printk("vdma_disable: channel %d\n", channel);
|
|
printk("VDMA: channel %d status: %04x (%s) mode: "
|
|
"%02x addr: %06x count: %06x\n",
|
|
channel, status,
|
|
((status & 0x600) ? "ERROR" : "OK"),
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
|
|
(channel << 5)),
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
|
|
(channel << 5)),
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
|
|
(channel << 5)));
|
|
}
|
|
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) &
|
|
~R4030_CHNL_ENABLE);
|
|
|
|
/*
|
|
* After disabling a DMA channel a remote bus register should be
|
|
* read to ensure that the current DMA acknowledge cycle is completed.
|
|
*/
|
|
*((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_disable);
|
|
|
|
/*
|
|
* Set DMA mode. This function accepts the mode values used
|
|
* to set a PC-style DMA controller. For the SCSI and FDC
|
|
* channels, we also set the default modes each time we're
|
|
* called.
|
|
* NOTE: The FAST and BURST dma modes are supported by the
|
|
* R4030 Rev. 2 and PICA chipsets only. I leave them disabled
|
|
* for now.
|
|
*/
|
|
void vdma_set_mode(int channel, int mode)
|
|
{
|
|
if (vdma_debug)
|
|
printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
|
|
mode);
|
|
|
|
switch (channel) {
|
|
case JAZZ_SCSI_DMA: /* scsi */
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
|
|
/* R4030_MODE_FAST | */
|
|
/* R4030_MODE_BURST | */
|
|
R4030_MODE_INTR_EN |
|
|
R4030_MODE_WIDTH_16 |
|
|
R4030_MODE_ATIME_80);
|
|
break;
|
|
|
|
case JAZZ_FLOPPY_DMA: /* floppy */
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
|
|
/* R4030_MODE_FAST | */
|
|
/* R4030_MODE_BURST | */
|
|
R4030_MODE_INTR_EN |
|
|
R4030_MODE_WIDTH_8 |
|
|
R4030_MODE_ATIME_120);
|
|
break;
|
|
|
|
case JAZZ_AUDIOL_DMA:
|
|
case JAZZ_AUDIOR_DMA:
|
|
printk("VDMA: Audio DMA not supported yet.\n");
|
|
break;
|
|
|
|
default:
|
|
printk
|
|
("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
|
|
channel);
|
|
}
|
|
|
|
switch (mode) {
|
|
case DMA_MODE_READ:
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) &
|
|
~R4030_CHNL_WRITE);
|
|
break;
|
|
|
|
case DMA_MODE_WRITE:
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) |
|
|
R4030_CHNL_WRITE);
|
|
break;
|
|
|
|
default:
|
|
printk
|
|
("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
|
|
mode);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_set_mode);
|
|
|
|
/*
|
|
* Set Transfer Address
|
|
*/
|
|
void vdma_set_addr(int channel, long addr)
|
|
{
|
|
if (vdma_debug)
|
|
printk("vdma_set_addr: channel %d, addr %lx\n", channel,
|
|
addr);
|
|
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_set_addr);
|
|
|
|
/*
|
|
* Set Transfer Count
|
|
*/
|
|
void vdma_set_count(int channel, int count)
|
|
{
|
|
if (vdma_debug)
|
|
printk("vdma_set_count: channel %d, count %08x\n", channel,
|
|
(unsigned) count);
|
|
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_set_count);
|
|
|
|
/*
|
|
* Get Residual
|
|
*/
|
|
int vdma_get_residue(int channel)
|
|
{
|
|
int residual;
|
|
|
|
residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
|
|
|
|
if (vdma_debug)
|
|
printk("vdma_get_residual: channel %d: residual=%d\n",
|
|
channel, residual);
|
|
|
|
return residual;
|
|
}
|
|
|
|
/*
|
|
* Get DMA channel enable register
|
|
*/
|
|
int vdma_get_enable(int channel)
|
|
{
|
|
int enable;
|
|
|
|
enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
|
|
|
|
if (vdma_debug)
|
|
printk("vdma_get_enable: channel %d: enable=%d\n", channel,
|
|
enable);
|
|
|
|
return enable;
|
|
}
|
|
|
|
arch_initcall(vdma_init);
|