a021506107
Moves the relocation handling into C, after decompression. This requires that the decompressed size is passed to the decompression routine as well so that relocations can be found. Only kernels that need relocation support will use the code (currently just x86_32), but this is laying the ground work for 64-bit using it in support of KASLR. Based on work by Neill Clift and Michael Davidson. Signed-off-by: Kees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/20130708161517.GA4832@www.outflux.net Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
389 lines
8.3 KiB
ArmAsm
389 lines
8.3 KiB
ArmAsm
/*
|
|
* linux/boot/head.S
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* head.S contains the 32-bit startup code.
|
|
*
|
|
* NOTE!!! Startup happens at absolute address 0x00001000, which is also where
|
|
* the page directory will exist. The startup code will be overwritten by
|
|
* the page directory. [According to comments etc elsewhere on a compressed
|
|
* kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
|
|
*
|
|
* Page 0 is deliberately kept safe, since System Management Mode code in
|
|
* laptops may need to access the BIOS data stored there. This is also
|
|
* useful for future device drivers that either access the BIOS via VM86
|
|
* mode.
|
|
*/
|
|
|
|
/*
|
|
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
|
|
*/
|
|
.code32
|
|
.text
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/linkage.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/boot.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/asm-offsets.h>
|
|
|
|
__HEAD
|
|
.code32
|
|
ENTRY(startup_32)
|
|
/*
|
|
* 32bit entry is 0 and it is ABI so immutable!
|
|
* If we come here directly from a bootloader,
|
|
* kernel(text+data+bss+brk) ramdisk, zero_page, command line
|
|
* all need to be under the 4G limit.
|
|
*/
|
|
cld
|
|
/*
|
|
* Test KEEP_SEGMENTS flag to see if the bootloader is asking
|
|
* us to not reload segments
|
|
*/
|
|
testb $(1<<6), BP_loadflags(%esi)
|
|
jnz 1f
|
|
|
|
cli
|
|
movl $(__BOOT_DS), %eax
|
|
movl %eax, %ds
|
|
movl %eax, %es
|
|
movl %eax, %ss
|
|
1:
|
|
|
|
/*
|
|
* Calculate the delta between where we were compiled to run
|
|
* at and where we were actually loaded at. This can only be done
|
|
* with a short local call on x86. Nothing else will tell us what
|
|
* address we are running at. The reserved chunk of the real-mode
|
|
* data at 0x1e4 (defined as a scratch field) are used as the stack
|
|
* for this calculation. Only 4 bytes are needed.
|
|
*/
|
|
leal (BP_scratch+4)(%esi), %esp
|
|
call 1f
|
|
1: popl %ebp
|
|
subl $1b, %ebp
|
|
|
|
/* setup a stack and make sure cpu supports long mode. */
|
|
movl $boot_stack_end, %eax
|
|
addl %ebp, %eax
|
|
movl %eax, %esp
|
|
|
|
call verify_cpu
|
|
testl %eax, %eax
|
|
jnz no_longmode
|
|
|
|
/*
|
|
* Compute the delta between where we were compiled to run at
|
|
* and where the code will actually run at.
|
|
*
|
|
* %ebp contains the address we are loaded at by the boot loader and %ebx
|
|
* contains the address where we should move the kernel image temporarily
|
|
* for safe in-place decompression.
|
|
*/
|
|
|
|
#ifdef CONFIG_RELOCATABLE
|
|
movl %ebp, %ebx
|
|
movl BP_kernel_alignment(%esi), %eax
|
|
decl %eax
|
|
addl %eax, %ebx
|
|
notl %eax
|
|
andl %eax, %ebx
|
|
#else
|
|
movl $LOAD_PHYSICAL_ADDR, %ebx
|
|
#endif
|
|
|
|
/* Target address to relocate to for decompression */
|
|
addl $z_extract_offset, %ebx
|
|
|
|
/*
|
|
* Prepare for entering 64 bit mode
|
|
*/
|
|
|
|
/* Load new GDT with the 64bit segments using 32bit descriptor */
|
|
leal gdt(%ebp), %eax
|
|
movl %eax, gdt+2(%ebp)
|
|
lgdt gdt(%ebp)
|
|
|
|
/* Enable PAE mode */
|
|
movl $(X86_CR4_PAE), %eax
|
|
movl %eax, %cr4
|
|
|
|
/*
|
|
* Build early 4G boot pagetable
|
|
*/
|
|
/* Initialize Page tables to 0 */
|
|
leal pgtable(%ebx), %edi
|
|
xorl %eax, %eax
|
|
movl $((4096*6)/4), %ecx
|
|
rep stosl
|
|
|
|
/* Build Level 4 */
|
|
leal pgtable + 0(%ebx), %edi
|
|
leal 0x1007 (%edi), %eax
|
|
movl %eax, 0(%edi)
|
|
|
|
/* Build Level 3 */
|
|
leal pgtable + 0x1000(%ebx), %edi
|
|
leal 0x1007(%edi), %eax
|
|
movl $4, %ecx
|
|
1: movl %eax, 0x00(%edi)
|
|
addl $0x00001000, %eax
|
|
addl $8, %edi
|
|
decl %ecx
|
|
jnz 1b
|
|
|
|
/* Build Level 2 */
|
|
leal pgtable + 0x2000(%ebx), %edi
|
|
movl $0x00000183, %eax
|
|
movl $2048, %ecx
|
|
1: movl %eax, 0(%edi)
|
|
addl $0x00200000, %eax
|
|
addl $8, %edi
|
|
decl %ecx
|
|
jnz 1b
|
|
|
|
/* Enable the boot page tables */
|
|
leal pgtable(%ebx), %eax
|
|
movl %eax, %cr3
|
|
|
|
/* Enable Long mode in EFER (Extended Feature Enable Register) */
|
|
movl $MSR_EFER, %ecx
|
|
rdmsr
|
|
btsl $_EFER_LME, %eax
|
|
wrmsr
|
|
|
|
/* After gdt is loaded */
|
|
xorl %eax, %eax
|
|
lldt %ax
|
|
movl $0x20, %eax
|
|
ltr %ax
|
|
|
|
/*
|
|
* Setup for the jump to 64bit mode
|
|
*
|
|
* When the jump is performend we will be in long mode but
|
|
* in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
|
|
* (and in turn EFER.LMA = 1). To jump into 64bit mode we use
|
|
* the new gdt/idt that has __KERNEL_CS with CS.L = 1.
|
|
* We place all of the values on our mini stack so lret can
|
|
* used to perform that far jump.
|
|
*/
|
|
pushl $__KERNEL_CS
|
|
leal startup_64(%ebp), %eax
|
|
pushl %eax
|
|
|
|
/* Enter paged protected Mode, activating Long Mode */
|
|
movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
|
|
movl %eax, %cr0
|
|
|
|
/* Jump from 32bit compatibility mode into 64bit mode. */
|
|
lret
|
|
ENDPROC(startup_32)
|
|
|
|
.code64
|
|
.org 0x200
|
|
ENTRY(startup_64)
|
|
/*
|
|
* 64bit entry is 0x200 and it is ABI so immutable!
|
|
* We come here either from startup_32 or directly from a
|
|
* 64bit bootloader.
|
|
* If we come here from a bootloader, kernel(text+data+bss+brk),
|
|
* ramdisk, zero_page, command line could be above 4G.
|
|
* We depend on an identity mapped page table being provided
|
|
* that maps our entire kernel(text+data+bss+brk), zero page
|
|
* and command line.
|
|
*/
|
|
#ifdef CONFIG_EFI_STUB
|
|
/*
|
|
* The entry point for the PE/COFF executable is efi_pe_entry, so
|
|
* only legacy boot loaders will execute this jmp.
|
|
*/
|
|
jmp preferred_addr
|
|
|
|
ENTRY(efi_pe_entry)
|
|
mov %rcx, %rdi
|
|
mov %rdx, %rsi
|
|
pushq %rdi
|
|
pushq %rsi
|
|
call make_boot_params
|
|
cmpq $0,%rax
|
|
je 1f
|
|
mov %rax, %rdx
|
|
popq %rsi
|
|
popq %rdi
|
|
|
|
ENTRY(efi_stub_entry)
|
|
call efi_main
|
|
movq %rax,%rsi
|
|
cmpq $0,%rax
|
|
jne 2f
|
|
1:
|
|
/* EFI init failed, so hang. */
|
|
hlt
|
|
jmp 1b
|
|
2:
|
|
call 3f
|
|
3:
|
|
popq %rax
|
|
subq $3b, %rax
|
|
subq BP_pref_address(%rsi), %rax
|
|
add BP_code32_start(%esi), %eax
|
|
leaq preferred_addr(%rax), %rax
|
|
jmp *%rax
|
|
|
|
preferred_addr:
|
|
#endif
|
|
|
|
/* Setup data segments. */
|
|
xorl %eax, %eax
|
|
movl %eax, %ds
|
|
movl %eax, %es
|
|
movl %eax, %ss
|
|
movl %eax, %fs
|
|
movl %eax, %gs
|
|
|
|
/*
|
|
* Compute the decompressed kernel start address. It is where
|
|
* we were loaded at aligned to a 2M boundary. %rbp contains the
|
|
* decompressed kernel start address.
|
|
*
|
|
* If it is a relocatable kernel then decompress and run the kernel
|
|
* from load address aligned to 2MB addr, otherwise decompress and
|
|
* run the kernel from LOAD_PHYSICAL_ADDR
|
|
*
|
|
* We cannot rely on the calculation done in 32-bit mode, since we
|
|
* may have been invoked via the 64-bit entry point.
|
|
*/
|
|
|
|
/* Start with the delta to where the kernel will run at. */
|
|
#ifdef CONFIG_RELOCATABLE
|
|
leaq startup_32(%rip) /* - $startup_32 */, %rbp
|
|
movl BP_kernel_alignment(%rsi), %eax
|
|
decl %eax
|
|
addq %rax, %rbp
|
|
notq %rax
|
|
andq %rax, %rbp
|
|
#else
|
|
movq $LOAD_PHYSICAL_ADDR, %rbp
|
|
#endif
|
|
|
|
/* Target address to relocate to for decompression */
|
|
leaq z_extract_offset(%rbp), %rbx
|
|
|
|
/* Set up the stack */
|
|
leaq boot_stack_end(%rbx), %rsp
|
|
|
|
/* Zero EFLAGS */
|
|
pushq $0
|
|
popfq
|
|
|
|
/*
|
|
* Copy the compressed kernel to the end of our buffer
|
|
* where decompression in place becomes safe.
|
|
*/
|
|
pushq %rsi
|
|
leaq (_bss-8)(%rip), %rsi
|
|
leaq (_bss-8)(%rbx), %rdi
|
|
movq $_bss /* - $startup_32 */, %rcx
|
|
shrq $3, %rcx
|
|
std
|
|
rep movsq
|
|
cld
|
|
popq %rsi
|
|
|
|
/*
|
|
* Jump to the relocated address.
|
|
*/
|
|
leaq relocated(%rbx), %rax
|
|
jmp *%rax
|
|
|
|
.text
|
|
relocated:
|
|
|
|
/*
|
|
* Clear BSS (stack is currently empty)
|
|
*/
|
|
xorl %eax, %eax
|
|
leaq _bss(%rip), %rdi
|
|
leaq _ebss(%rip), %rcx
|
|
subq %rdi, %rcx
|
|
shrq $3, %rcx
|
|
rep stosq
|
|
|
|
/*
|
|
* Adjust our own GOT
|
|
*/
|
|
leaq _got(%rip), %rdx
|
|
leaq _egot(%rip), %rcx
|
|
1:
|
|
cmpq %rcx, %rdx
|
|
jae 2f
|
|
addq %rbx, (%rdx)
|
|
addq $8, %rdx
|
|
jmp 1b
|
|
2:
|
|
|
|
/*
|
|
* Do the decompression, and jump to the new kernel..
|
|
*/
|
|
pushq %rsi /* Save the real mode argument */
|
|
movq %rsi, %rdi /* real mode address */
|
|
leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
|
|
leaq input_data(%rip), %rdx /* input_data */
|
|
movl $z_input_len, %ecx /* input_len */
|
|
movq %rbp, %r8 /* output target address */
|
|
movq $z_output_len, %r9 /* decompressed length */
|
|
call decompress_kernel
|
|
popq %rsi
|
|
|
|
/*
|
|
* Jump to the decompressed kernel.
|
|
*/
|
|
jmp *%rbp
|
|
|
|
.code32
|
|
no_longmode:
|
|
/* This isn't an x86-64 CPU so hang */
|
|
1:
|
|
hlt
|
|
jmp 1b
|
|
|
|
#include "../../kernel/verify_cpu.S"
|
|
|
|
.data
|
|
gdt:
|
|
.word gdt_end - gdt
|
|
.long gdt
|
|
.word 0
|
|
.quad 0x0000000000000000 /* NULL descriptor */
|
|
.quad 0x00af9a000000ffff /* __KERNEL_CS */
|
|
.quad 0x00cf92000000ffff /* __KERNEL_DS */
|
|
.quad 0x0080890000000000 /* TS descriptor */
|
|
.quad 0x0000000000000000 /* TS continued */
|
|
gdt_end:
|
|
|
|
/*
|
|
* Stack and heap for uncompression
|
|
*/
|
|
.bss
|
|
.balign 4
|
|
boot_heap:
|
|
.fill BOOT_HEAP_SIZE, 1, 0
|
|
boot_stack:
|
|
.fill BOOT_STACK_SIZE, 1, 0
|
|
boot_stack_end:
|
|
|
|
/*
|
|
* Space for page tables (not in .bss so not zeroed)
|
|
*/
|
|
.section ".pgtable","a",@nobits
|
|
.balign 4096
|
|
pgtable:
|
|
.fill 6*4096, 1, 0
|