linux/drivers/net/wireless/ath/ath9k/main.c
Sujith 9e98ac65a3 ath9k: Remove redundant HT macros
These can be obtained from mac80211.

Signed-off-by: Sujith <Sujith.Manoharan@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-07-27 15:24:14 -04:00

2869 lines
72 KiB
C

/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/nl80211.h>
#include "ath9k.h"
#define ATH_PCI_VERSION "0.1"
static char *dev_info = "ath9k";
MODULE_AUTHOR("Atheros Communications");
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
static int modparam_nohwcrypt;
module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
/* We use the hw_value as an index into our private channel structure */
#define CHAN2G(_freq, _idx) { \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 20, \
}
#define CHAN5G(_freq, _idx) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 20, \
}
/* Some 2 GHz radios are actually tunable on 2312-2732
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static struct ieee80211_channel ath9k_2ghz_chantable[] = {
CHAN2G(2412, 0), /* Channel 1 */
CHAN2G(2417, 1), /* Channel 2 */
CHAN2G(2422, 2), /* Channel 3 */
CHAN2G(2427, 3), /* Channel 4 */
CHAN2G(2432, 4), /* Channel 5 */
CHAN2G(2437, 5), /* Channel 6 */
CHAN2G(2442, 6), /* Channel 7 */
CHAN2G(2447, 7), /* Channel 8 */
CHAN2G(2452, 8), /* Channel 9 */
CHAN2G(2457, 9), /* Channel 10 */
CHAN2G(2462, 10), /* Channel 11 */
CHAN2G(2467, 11), /* Channel 12 */
CHAN2G(2472, 12), /* Channel 13 */
CHAN2G(2484, 13), /* Channel 14 */
};
/* Some 5 GHz radios are actually tunable on XXXX-YYYY
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static struct ieee80211_channel ath9k_5ghz_chantable[] = {
/* _We_ call this UNII 1 */
CHAN5G(5180, 14), /* Channel 36 */
CHAN5G(5200, 15), /* Channel 40 */
CHAN5G(5220, 16), /* Channel 44 */
CHAN5G(5240, 17), /* Channel 48 */
/* _We_ call this UNII 2 */
CHAN5G(5260, 18), /* Channel 52 */
CHAN5G(5280, 19), /* Channel 56 */
CHAN5G(5300, 20), /* Channel 60 */
CHAN5G(5320, 21), /* Channel 64 */
/* _We_ call this "Middle band" */
CHAN5G(5500, 22), /* Channel 100 */
CHAN5G(5520, 23), /* Channel 104 */
CHAN5G(5540, 24), /* Channel 108 */
CHAN5G(5560, 25), /* Channel 112 */
CHAN5G(5580, 26), /* Channel 116 */
CHAN5G(5600, 27), /* Channel 120 */
CHAN5G(5620, 28), /* Channel 124 */
CHAN5G(5640, 29), /* Channel 128 */
CHAN5G(5660, 30), /* Channel 132 */
CHAN5G(5680, 31), /* Channel 136 */
CHAN5G(5700, 32), /* Channel 140 */
/* _We_ call this UNII 3 */
CHAN5G(5745, 33), /* Channel 149 */
CHAN5G(5765, 34), /* Channel 153 */
CHAN5G(5785, 35), /* Channel 157 */
CHAN5G(5805, 36), /* Channel 161 */
CHAN5G(5825, 37), /* Channel 165 */
};
static void ath_cache_conf_rate(struct ath_softc *sc,
struct ieee80211_conf *conf)
{
switch (conf->channel->band) {
case IEEE80211_BAND_2GHZ:
if (conf_is_ht20(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
else if (conf_is_ht40_minus(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
else if (conf_is_ht40_plus(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
else
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11G];
break;
case IEEE80211_BAND_5GHZ:
if (conf_is_ht20(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
else if (conf_is_ht40_minus(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
else if (conf_is_ht40_plus(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
else
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11A];
break;
default:
BUG_ON(1);
break;
}
}
static void ath_update_txpow(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
u32 txpow;
if (sc->curtxpow != sc->config.txpowlimit) {
ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
/* read back in case value is clamped */
ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
sc->curtxpow = txpow;
}
}
static u8 parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
1 microsecond */
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
{
const struct ath_rate_table *rate_table = NULL;
struct ieee80211_supported_band *sband;
struct ieee80211_rate *rate;
int i, maxrates;
switch (band) {
case IEEE80211_BAND_2GHZ:
rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
break;
case IEEE80211_BAND_5GHZ:
rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
break;
default:
break;
}
if (rate_table == NULL)
return;
sband = &sc->sbands[band];
rate = sc->rates[band];
if (rate_table->rate_cnt > ATH_RATE_MAX)
maxrates = ATH_RATE_MAX;
else
maxrates = rate_table->rate_cnt;
for (i = 0; i < maxrates; i++) {
rate[i].bitrate = rate_table->info[i].ratekbps / 100;
rate[i].hw_value = rate_table->info[i].ratecode;
if (rate_table->info[i].short_preamble) {
rate[i].hw_value_short = rate_table->info[i].ratecode |
rate_table->info[i].short_preamble;
rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
}
sband->n_bitrates++;
DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
rate[i].bitrate / 10, rate[i].hw_value);
}
}
static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
struct ieee80211_hw *hw)
{
struct ieee80211_channel *curchan = hw->conf.channel;
struct ath9k_channel *channel;
u8 chan_idx;
chan_idx = curchan->hw_value;
channel = &sc->sc_ah->channels[chan_idx];
ath9k_update_ichannel(sc, hw, channel);
return channel;
}
/*
* Set/change channels. If the channel is really being changed, it's done
* by reseting the chip. To accomplish this we must first cleanup any pending
* DMA, then restart stuff.
*/
int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
struct ath9k_channel *hchan)
{
struct ath_hw *ah = sc->sc_ah;
bool fastcc = true, stopped;
struct ieee80211_channel *channel = hw->conf.channel;
int r;
if (sc->sc_flags & SC_OP_INVALID)
return -EIO;
ath9k_ps_wakeup(sc);
/*
* This is only performed if the channel settings have
* actually changed.
*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, false);
stopped = ath_stoprecv(sc);
/* XXX: do not flush receive queue here. We don't want
* to flush data frames already in queue because of
* changing channel. */
if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
fastcc = false;
DPRINTF(sc, ATH_DBG_CONFIG,
"(%u MHz) -> (%u MHz), chanwidth: %d\n",
sc->sc_ah->curchan->channel,
channel->center_freq, sc->tx_chan_width);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, hchan, fastcc);
if (r) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset channel (%u Mhz) "
"reset status %d\n",
channel->center_freq, r);
spin_unlock_bh(&sc->sc_resetlock);
goto ps_restore;
}
spin_unlock_bh(&sc->sc_resetlock);
sc->sc_flags &= ~SC_OP_FULL_RESET;
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to restart recv logic\n");
r = -EIO;
goto ps_restore;
}
ath_cache_conf_rate(sc, &hw->conf);
ath_update_txpow(sc);
ath9k_hw_set_interrupts(ah, sc->imask);
ps_restore:
ath9k_ps_restore(sc);
return r;
}
/*
* This routine performs the periodic noise floor calibration function
* that is used to adjust and optimize the chip performance. This
* takes environmental changes (location, temperature) into account.
* When the task is complete, it reschedules itself depending on the
* appropriate interval that was calculated.
*/
static void ath_ani_calibrate(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
struct ath_hw *ah = sc->sc_ah;
bool longcal = false;
bool shortcal = false;
bool aniflag = false;
unsigned int timestamp = jiffies_to_msecs(jiffies);
u32 cal_interval, short_cal_interval;
short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
/*
* don't calibrate when we're scanning.
* we are most likely not on our home channel.
*/
spin_lock(&sc->ani_lock);
if (sc->sc_flags & SC_OP_SCANNING)
goto set_timer;
/* Only calibrate if awake */
if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
goto set_timer;
ath9k_ps_wakeup(sc);
/* Long calibration runs independently of short calibration. */
if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
longcal = true;
DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
sc->ani.longcal_timer = timestamp;
}
/* Short calibration applies only while caldone is false */
if (!sc->ani.caldone) {
if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
shortcal = true;
DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
sc->ani.shortcal_timer = timestamp;
sc->ani.resetcal_timer = timestamp;
}
} else {
if ((timestamp - sc->ani.resetcal_timer) >=
ATH_RESTART_CALINTERVAL) {
sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
if (sc->ani.caldone)
sc->ani.resetcal_timer = timestamp;
}
}
/* Verify whether we must check ANI */
if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
aniflag = true;
sc->ani.checkani_timer = timestamp;
}
/* Skip all processing if there's nothing to do. */
if (longcal || shortcal || aniflag) {
/* Call ANI routine if necessary */
if (aniflag)
ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
/* Perform calibration if necessary */
if (longcal || shortcal) {
sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
sc->rx_chainmask, longcal);
if (longcal)
sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
ah->curchan);
DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
ah->curchan->channel, ah->curchan->channelFlags,
sc->ani.noise_floor);
}
}
ath9k_ps_restore(sc);
set_timer:
spin_unlock(&sc->ani_lock);
/*
* Set timer interval based on previous results.
* The interval must be the shortest necessary to satisfy ANI,
* short calibration and long calibration.
*/
cal_interval = ATH_LONG_CALINTERVAL;
if (sc->sc_ah->config.enable_ani)
cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
if (!sc->ani.caldone)
cal_interval = min(cal_interval, (u32)short_cal_interval);
mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
}
static void ath_start_ani(struct ath_softc *sc)
{
unsigned long timestamp = jiffies_to_msecs(jiffies);
sc->ani.longcal_timer = timestamp;
sc->ani.shortcal_timer = timestamp;
sc->ani.checkani_timer = timestamp;
mod_timer(&sc->ani.timer,
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
}
/*
* Update tx/rx chainmask. For legacy association,
* hard code chainmask to 1x1, for 11n association, use
* the chainmask configuration, for bt coexistence, use
* the chainmask configuration even in legacy mode.
*/
void ath_update_chainmask(struct ath_softc *sc, int is_ht)
{
if (is_ht ||
(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
} else {
sc->tx_chainmask = 1;
sc->rx_chainmask = 1;
}
DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
sc->tx_chainmask, sc->rx_chainmask);
}
static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
{
struct ath_node *an;
an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR) {
ath_tx_node_init(sc, an);
an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
sta->ht_cap.ampdu_factor);
an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
an->last_rssi = ATH_RSSI_DUMMY_MARKER;
}
}
static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
{
struct ath_node *an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR)
ath_tx_node_cleanup(sc, an);
}
static void ath9k_tasklet(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
u32 status = sc->intrstatus;
ath9k_ps_wakeup(sc);
if (status & ATH9K_INT_FATAL) {
ath_reset(sc, false);
ath9k_ps_restore(sc);
return;
}
if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
spin_lock_bh(&sc->rx.rxflushlock);
ath_rx_tasklet(sc, 0);
spin_unlock_bh(&sc->rx.rxflushlock);
}
if (status & ATH9K_INT_TX)
ath_tx_tasklet(sc);
if ((status & ATH9K_INT_TSFOOR) &&
(sc->hw->conf.flags & IEEE80211_CONF_PS)) {
/*
* TSF sync does not look correct; remain awake to sync with
* the next Beacon.
*/
DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
}
/* re-enable hardware interrupt */
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
ath9k_ps_restore(sc);
}
irqreturn_t ath_isr(int irq, void *dev)
{
#define SCHED_INTR ( \
ATH9K_INT_FATAL | \
ATH9K_INT_RXORN | \
ATH9K_INT_RXEOL | \
ATH9K_INT_RX | \
ATH9K_INT_TX | \
ATH9K_INT_BMISS | \
ATH9K_INT_CST | \
ATH9K_INT_TSFOOR)
struct ath_softc *sc = dev;
struct ath_hw *ah = sc->sc_ah;
enum ath9k_int status;
bool sched = false;
/*
* The hardware is not ready/present, don't
* touch anything. Note this can happen early
* on if the IRQ is shared.
*/
if (sc->sc_flags & SC_OP_INVALID)
return IRQ_NONE;
/* shared irq, not for us */
if (!ath9k_hw_intrpend(ah))
return IRQ_NONE;
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
status &= sc->imask; /* discard unasked-for bits */
/*
* If there are no status bits set, then this interrupt was not
* for me (should have been caught above).
*/
if (!status)
return IRQ_NONE;
/* Cache the status */
sc->intrstatus = status;
if (status & SCHED_INTR)
sched = true;
/*
* If a FATAL or RXORN interrupt is received, we have to reset the
* chip immediately.
*/
if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
goto chip_reset;
if (status & ATH9K_INT_SWBA)
tasklet_schedule(&sc->bcon_tasklet);
if (status & ATH9K_INT_TXURN)
ath9k_hw_updatetxtriglevel(ah, true);
if (status & ATH9K_INT_MIB) {
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to
* fire.
*/
ath9k_hw_set_interrupts(ah, 0);
/*
* Let the hal handle the event. We assume
* it will clear whatever condition caused
* the interrupt.
*/
ath9k_hw_procmibevent(ah, &sc->nodestats);
ath9k_hw_set_interrupts(ah, sc->imask);
}
if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
if (status & ATH9K_INT_TIM_TIMER) {
/* Clear RxAbort bit so that we can
* receive frames */
ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
ath9k_hw_setrxabort(sc->sc_ah, 0);
sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
}
chip_reset:
ath_debug_stat_interrupt(sc, status);
if (sched) {
/* turn off every interrupt except SWBA */
ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
tasklet_schedule(&sc->intr_tq);
}
return IRQ_HANDLED;
#undef SCHED_INTR
}
static u32 ath_get_extchanmode(struct ath_softc *sc,
struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type)
{
u32 chanmode = 0;
switch (chan->band) {
case IEEE80211_BAND_2GHZ:
switch(channel_type) {
case NL80211_CHAN_NO_HT:
case NL80211_CHAN_HT20:
chanmode = CHANNEL_G_HT20;
break;
case NL80211_CHAN_HT40PLUS:
chanmode = CHANNEL_G_HT40PLUS;
break;
case NL80211_CHAN_HT40MINUS:
chanmode = CHANNEL_G_HT40MINUS;
break;
}
break;
case IEEE80211_BAND_5GHZ:
switch(channel_type) {
case NL80211_CHAN_NO_HT:
case NL80211_CHAN_HT20:
chanmode = CHANNEL_A_HT20;
break;
case NL80211_CHAN_HT40PLUS:
chanmode = CHANNEL_A_HT40PLUS;
break;
case NL80211_CHAN_HT40MINUS:
chanmode = CHANNEL_A_HT40MINUS;
break;
}
break;
default:
break;
}
return chanmode;
}
static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
struct ath9k_keyval *hk, const u8 *addr,
bool authenticator)
{
const u8 *key_rxmic;
const u8 *key_txmic;
key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
if (addr == NULL) {
/*
* Group key installation - only two key cache entries are used
* regardless of splitmic capability since group key is only
* used either for TX or RX.
*/
if (authenticator) {
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
} else {
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
}
return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
}
if (!sc->splitmic) {
/* TX and RX keys share the same key cache entry. */
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
}
/* Separate key cache entries for TX and RX */
/* TX key goes at first index, RX key at +32. */
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
/* TX MIC entry failed. No need to proceed further */
DPRINTF(sc, ATH_DBG_FATAL,
"Setting TX MIC Key Failed\n");
return 0;
}
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
/* XXX delete tx key on failure? */
return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
}
static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
{
int i;
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
if (test_bit(i, sc->keymap) ||
test_bit(i + 64, sc->keymap))
continue; /* At least one part of TKIP key allocated */
if (sc->splitmic &&
(test_bit(i + 32, sc->keymap) ||
test_bit(i + 64 + 32, sc->keymap)))
continue; /* At least one part of TKIP key allocated */
/* Found a free slot for a TKIP key */
return i;
}
return -1;
}
static int ath_reserve_key_cache_slot(struct ath_softc *sc)
{
int i;
/* First, try to find slots that would not be available for TKIP. */
if (sc->splitmic) {
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
if (!test_bit(i, sc->keymap) &&
(test_bit(i + 32, sc->keymap) ||
test_bit(i + 64, sc->keymap) ||
test_bit(i + 64 + 32, sc->keymap)))
return i;
if (!test_bit(i + 32, sc->keymap) &&
(test_bit(i, sc->keymap) ||
test_bit(i + 64, sc->keymap) ||
test_bit(i + 64 + 32, sc->keymap)))
return i + 32;
if (!test_bit(i + 64, sc->keymap) &&
(test_bit(i , sc->keymap) ||
test_bit(i + 32, sc->keymap) ||
test_bit(i + 64 + 32, sc->keymap)))
return i + 64;
if (!test_bit(i + 64 + 32, sc->keymap) &&
(test_bit(i, sc->keymap) ||
test_bit(i + 32, sc->keymap) ||
test_bit(i + 64, sc->keymap)))
return i + 64 + 32;
}
} else {
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
if (!test_bit(i, sc->keymap) &&
test_bit(i + 64, sc->keymap))
return i;
if (test_bit(i, sc->keymap) &&
!test_bit(i + 64, sc->keymap))
return i + 64;
}
}
/* No partially used TKIP slots, pick any available slot */
for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
/* Do not allow slots that could be needed for TKIP group keys
* to be used. This limitation could be removed if we know that
* TKIP will not be used. */
if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
continue;
if (sc->splitmic) {
if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
continue;
if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
continue;
}
if (!test_bit(i, sc->keymap))
return i; /* Found a free slot for a key */
}
/* No free slot found */
return -1;
}
static int ath_key_config(struct ath_softc *sc,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath9k_keyval hk;
const u8 *mac = NULL;
int ret = 0;
int idx;
memset(&hk, 0, sizeof(hk));
switch (key->alg) {
case ALG_WEP:
hk.kv_type = ATH9K_CIPHER_WEP;
break;
case ALG_TKIP:
hk.kv_type = ATH9K_CIPHER_TKIP;
break;
case ALG_CCMP:
hk.kv_type = ATH9K_CIPHER_AES_CCM;
break;
default:
return -EOPNOTSUPP;
}
hk.kv_len = key->keylen;
memcpy(hk.kv_val, key->key, key->keylen);
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
/* For now, use the default keys for broadcast keys. This may
* need to change with virtual interfaces. */
idx = key->keyidx;
} else if (key->keyidx) {
if (WARN_ON(!sta))
return -EOPNOTSUPP;
mac = sta->addr;
if (vif->type != NL80211_IFTYPE_AP) {
/* Only keyidx 0 should be used with unicast key, but
* allow this for client mode for now. */
idx = key->keyidx;
} else
return -EIO;
} else {
if (WARN_ON(!sta))
return -EOPNOTSUPP;
mac = sta->addr;
if (key->alg == ALG_TKIP)
idx = ath_reserve_key_cache_slot_tkip(sc);
else
idx = ath_reserve_key_cache_slot(sc);
if (idx < 0)
return -ENOSPC; /* no free key cache entries */
}
if (key->alg == ALG_TKIP)
ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
vif->type == NL80211_IFTYPE_AP);
else
ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
if (!ret)
return -EIO;
set_bit(idx, sc->keymap);
if (key->alg == ALG_TKIP) {
set_bit(idx + 64, sc->keymap);
if (sc->splitmic) {
set_bit(idx + 32, sc->keymap);
set_bit(idx + 64 + 32, sc->keymap);
}
}
return idx;
}
static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
{
ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
if (key->hw_key_idx < IEEE80211_WEP_NKID)
return;
clear_bit(key->hw_key_idx, sc->keymap);
if (key->alg != ALG_TKIP)
return;
clear_bit(key->hw_key_idx + 64, sc->keymap);
if (sc->splitmic) {
clear_bit(key->hw_key_idx + 32, sc->keymap);
clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
}
}
static void setup_ht_cap(struct ath_softc *sc,
struct ieee80211_sta_ht_cap *ht_info)
{
u8 tx_streams, rx_streams;
ht_info->ht_supported = true;
ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SM_PS |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_DSSSCCK40;
ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
/* set up supported mcs set */
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
if (tx_streams != rx_streams) {
DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
tx_streams, rx_streams);
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
ht_info->mcs.tx_params |= ((tx_streams - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
}
ht_info->mcs.rx_mask[0] = 0xff;
if (rx_streams >= 2)
ht_info->mcs.rx_mask[1] = 0xff;
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
}
static void ath9k_bss_assoc_info(struct ath_softc *sc,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf)
{
if (bss_conf->assoc) {
DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
bss_conf->aid, sc->curbssid);
/* New association, store aid */
sc->curaid = bss_conf->aid;
ath9k_hw_write_associd(sc);
/*
* Request a re-configuration of Beacon related timers
* on the receipt of the first Beacon frame (i.e.,
* after time sync with the AP).
*/
sc->sc_flags |= SC_OP_BEACON_SYNC;
/* Configure the beacon */
ath_beacon_config(sc, vif);
/* Reset rssi stats */
sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
ath_start_ani(sc);
} else {
DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
sc->curaid = 0;
/* Stop ANI */
del_timer_sync(&sc->ani.timer);
}
}
/********************************/
/* LED functions */
/********************************/
static void ath_led_blink_work(struct work_struct *work)
{
struct ath_softc *sc = container_of(work, struct ath_softc,
ath_led_blink_work.work);
if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
return;
if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
(sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
else
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
(sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
(sc->sc_flags & SC_OP_LED_ON) ?
msecs_to_jiffies(sc->led_off_duration) :
msecs_to_jiffies(sc->led_on_duration));
sc->led_on_duration = sc->led_on_cnt ?
max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
ATH_LED_ON_DURATION_IDLE;
sc->led_off_duration = sc->led_off_cnt ?
max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
ATH_LED_OFF_DURATION_IDLE;
sc->led_on_cnt = sc->led_off_cnt = 0;
if (sc->sc_flags & SC_OP_LED_ON)
sc->sc_flags &= ~SC_OP_LED_ON;
else
sc->sc_flags |= SC_OP_LED_ON;
}
static void ath_led_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
struct ath_softc *sc = led->sc;
switch (brightness) {
case LED_OFF:
if (led->led_type == ATH_LED_ASSOC ||
led->led_type == ATH_LED_RADIO) {
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
(led->led_type == ATH_LED_RADIO));
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
if (led->led_type == ATH_LED_RADIO)
sc->sc_flags &= ~SC_OP_LED_ON;
} else {
sc->led_off_cnt++;
}
break;
case LED_FULL:
if (led->led_type == ATH_LED_ASSOC) {
sc->sc_flags |= SC_OP_LED_ASSOCIATED;
queue_delayed_work(sc->hw->workqueue,
&sc->ath_led_blink_work, 0);
} else if (led->led_type == ATH_LED_RADIO) {
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
sc->sc_flags |= SC_OP_LED_ON;
} else {
sc->led_on_cnt++;
}
break;
default:
break;
}
}
static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
char *trigger)
{
int ret;
led->sc = sc;
led->led_cdev.name = led->name;
led->led_cdev.default_trigger = trigger;
led->led_cdev.brightness_set = ath_led_brightness;
ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
if (ret)
DPRINTF(sc, ATH_DBG_FATAL,
"Failed to register led:%s", led->name);
else
led->registered = 1;
return ret;
}
static void ath_unregister_led(struct ath_led *led)
{
if (led->registered) {
led_classdev_unregister(&led->led_cdev);
led->registered = 0;
}
}
static void ath_deinit_leds(struct ath_softc *sc)
{
cancel_delayed_work_sync(&sc->ath_led_blink_work);
ath_unregister_led(&sc->assoc_led);
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
ath_unregister_led(&sc->tx_led);
ath_unregister_led(&sc->rx_led);
ath_unregister_led(&sc->radio_led);
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
}
static void ath_init_leds(struct ath_softc *sc)
{
char *trigger;
int ret;
/* Configure gpio 1 for output */
ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
/* LED off, active low */
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
trigger = ieee80211_get_radio_led_name(sc->hw);
snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
"ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->radio_led, trigger);
sc->radio_led.led_type = ATH_LED_RADIO;
if (ret)
goto fail;
trigger = ieee80211_get_assoc_led_name(sc->hw);
snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
"ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->assoc_led, trigger);
sc->assoc_led.led_type = ATH_LED_ASSOC;
if (ret)
goto fail;
trigger = ieee80211_get_tx_led_name(sc->hw);
snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
"ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->tx_led, trigger);
sc->tx_led.led_type = ATH_LED_TX;
if (ret)
goto fail;
trigger = ieee80211_get_rx_led_name(sc->hw);
snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
"ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->rx_led, trigger);
sc->rx_led.led_type = ATH_LED_RX;
if (ret)
goto fail;
return;
fail:
ath_deinit_leds(sc);
}
void ath_radio_enable(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ieee80211_channel *channel = sc->hw->conf.channel;
int r;
ath9k_ps_wakeup(sc);
ath9k_hw_configpcipowersave(ah, 0);
if (!ah->curchan)
ah->curchan = ath_get_curchannel(sc, sc->hw);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, ah->curchan, false);
if (r) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset channel %u (%uMhz) ",
"reset status %d\n",
channel->center_freq, r);
}
spin_unlock_bh(&sc->sc_resetlock);
ath_update_txpow(sc);
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to restart recv logic\n");
return;
}
if (sc->sc_flags & SC_OP_BEACONS)
ath_beacon_config(sc, NULL); /* restart beacons */
/* Re-Enable interrupts */
ath9k_hw_set_interrupts(ah, sc->imask);
/* Enable LED */
ath9k_hw_cfg_output(ah, ATH_LED_PIN,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
ieee80211_wake_queues(sc->hw);
ath9k_ps_restore(sc);
}
void ath_radio_disable(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ieee80211_channel *channel = sc->hw->conf.channel;
int r;
ath9k_ps_wakeup(sc);
ieee80211_stop_queues(sc->hw);
/* Disable LED */
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
/* Disable interrupts */
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, false); /* clear pending tx frames */
ath_stoprecv(sc); /* turn off frame recv */
ath_flushrecv(sc); /* flush recv queue */
if (!ah->curchan)
ah->curchan = ath_get_curchannel(sc, sc->hw);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, ah->curchan, false);
if (r) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset channel %u (%uMhz) "
"reset status %d\n",
channel->center_freq, r);
}
spin_unlock_bh(&sc->sc_resetlock);
ath9k_hw_phy_disable(ah);
ath9k_hw_configpcipowersave(ah, 1);
ath9k_ps_restore(sc);
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
}
/*******************/
/* Rfkill */
/*******************/
static bool ath_is_rfkill_set(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
ah->rfkill_polarity;
}
static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
bool blocked = !!ath_is_rfkill_set(sc);
wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
if (blocked)
ath_radio_disable(sc);
else
ath_radio_enable(sc);
}
static void ath_start_rfkill_poll(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
wiphy_rfkill_start_polling(sc->hw->wiphy);
}
void ath_cleanup(struct ath_softc *sc)
{
ath_detach(sc);
free_irq(sc->irq, sc);
ath_bus_cleanup(sc);
kfree(sc->sec_wiphy);
ieee80211_free_hw(sc->hw);
}
void ath_detach(struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
int i = 0;
ath9k_ps_wakeup(sc);
DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
ath_deinit_leds(sc);
cancel_work_sync(&sc->chan_work);
cancel_delayed_work_sync(&sc->wiphy_work);
cancel_delayed_work_sync(&sc->tx_complete_work);
for (i = 0; i < sc->num_sec_wiphy; i++) {
struct ath_wiphy *aphy = sc->sec_wiphy[i];
if (aphy == NULL)
continue;
sc->sec_wiphy[i] = NULL;
ieee80211_unregister_hw(aphy->hw);
ieee80211_free_hw(aphy->hw);
}
ieee80211_unregister_hw(hw);
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
tasklet_kill(&sc->intr_tq);
tasklet_kill(&sc->bcon_tasklet);
if (!(sc->sc_flags & SC_OP_INVALID))
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
ath9k_hw_detach(sc->sc_ah);
ath9k_exit_debug(sc);
}
static int ath9k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_regulatory *reg = &sc->sc_ah->regulatory;
return ath_reg_notifier_apply(wiphy, request, reg);
}
static int ath_init(u16 devid, struct ath_softc *sc)
{
struct ath_hw *ah = NULL;
int status;
int error = 0, i;
int csz = 0;
/* XXX: hardware will not be ready until ath_open() being called */
sc->sc_flags |= SC_OP_INVALID;
if (ath9k_init_debug(sc) < 0)
printk(KERN_ERR "Unable to create debugfs files\n");
spin_lock_init(&sc->wiphy_lock);
spin_lock_init(&sc->sc_resetlock);
spin_lock_init(&sc->sc_serial_rw);
spin_lock_init(&sc->ani_lock);
spin_lock_init(&sc->sc_pm_lock);
mutex_init(&sc->mutex);
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
(unsigned long)sc);
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
ath_read_cachesize(sc, &csz);
/* XXX assert csz is non-zero */
sc->cachelsz = csz << 2; /* convert to bytes */
ah = ath9k_hw_attach(devid, sc, &status);
if (ah == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to attach hardware; HAL status %d\n", status);
error = -ENXIO;
goto bad;
}
sc->sc_ah = ah;
/* Get the hardware key cache size. */
sc->keymax = ah->caps.keycache_size;
if (sc->keymax > ATH_KEYMAX) {
DPRINTF(sc, ATH_DBG_ANY,
"Warning, using only %u entries in %u key cache\n",
ATH_KEYMAX, sc->keymax);
sc->keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->keymax; i++)
ath9k_hw_keyreset(ah, (u16) i);
if (error)
goto bad;
/* default to MONITOR mode */
sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
/* Setup rate tables */
ath_rate_attach(sc);
ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles reseting
* these queues at the needed time.
*/
sc->beacon.beaconq = ath_beaconq_setup(ah);
if (sc->beacon.beaconq == -1) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup a beacon xmit queue\n");
error = -EIO;
goto bad2;
}
sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
if (sc->beacon.cabq == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup CAB xmit queue\n");
error = -EIO;
goto bad2;
}
sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
ath_cabq_update(sc);
for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
sc->tx.hwq_map[i] = -1;
/* Setup data queues */
/* NB: ensure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup xmit queue for BK traffic\n");
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup xmit queue for BE traffic\n");
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup xmit queue for VI traffic\n");
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup xmit queue for VO traffic\n");
error = -EIO;
goto bad2;
}
/* Initializes the noise floor to a reasonable default value.
* Later on this will be updated during ANI processing. */
sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)) {
/*
* Whether we should enable h/w TKIP MIC.
* XXX: if we don't support WME TKIP MIC, then we wouldn't
* report WMM capable, so it's always safe to turn on
* TKIP MIC in this case.
*/
ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
0, 1, NULL);
}
/*
* Check whether the separate key cache entries
* are required to handle both tx+rx MIC keys.
* With split mic keys the number of stations is limited
* to 27 otherwise 59.
*/
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)
&& ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_MIC, NULL)
&& ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
0, NULL))
sc->splitmic = 1;
/* turn on mcast key search if possible */
if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
(void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1, NULL);
sc->config.txpowlimit = ATH_TXPOWER_MAX;
/* 11n Capabilities */
if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
sc->sc_flags |= SC_OP_TXAGGR;
sc->sc_flags |= SC_OP_RXAGGR;
}
sc->tx_chainmask = ah->caps.tx_chainmask;
sc->rx_chainmask = ah->caps.rx_chainmask;
ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
sc->rx.defant = ath9k_hw_getdefantenna(ah);
if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
/* initialize beacon slots */
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
sc->beacon.bslot[i] = NULL;
sc->beacon.bslot_aphy[i] = NULL;
}
/* setup channels and rates */
sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
sc->rates[IEEE80211_BAND_2GHZ];
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
ARRAY_SIZE(ath9k_2ghz_chantable);
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
sc->rates[IEEE80211_BAND_5GHZ];
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
ARRAY_SIZE(ath9k_5ghz_chantable);
}
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
ath9k_hw_btcoex_enable(sc->sc_ah);
return 0;
bad2:
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
bad:
if (ah)
ath9k_hw_detach(ah);
ath9k_exit_debug(sc);
return error;
}
void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
{
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_AMPDU_AGGREGATION |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK |
IEEE80211_HW_SPECTRUM_MGMT;
if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
hw->flags |= IEEE80211_HW_MFP_CAPABLE;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT);
hw->queues = 4;
hw->max_rates = 4;
hw->channel_change_time = 5000;
hw->max_listen_interval = 10;
/* Hardware supports 10 but we use 4 */
hw->max_rate_tries = 4;
hw->sta_data_size = sizeof(struct ath_node);
hw->vif_data_size = sizeof(struct ath_vif);
hw->rate_control_algorithm = "ath9k_rate_control";
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&sc->sbands[IEEE80211_BAND_2GHZ];
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&sc->sbands[IEEE80211_BAND_5GHZ];
}
int ath_attach(u16 devid, struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
int error = 0, i;
struct ath_regulatory *reg;
DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
error = ath_init(devid, sc);
if (error != 0)
return error;
/* get mac address from hardware and set in mac80211 */
SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
ath_set_hw_capab(sc, hw);
error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
ath9k_reg_notifier);
if (error)
return error;
reg = &sc->sc_ah->regulatory;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
}
/* initialize tx/rx engine */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto error_attach;
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto error_attach;
INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
sc->wiphy_scheduler_int = msecs_to_jiffies(500);
error = ieee80211_register_hw(hw);
if (!ath_is_world_regd(reg)) {
error = regulatory_hint(hw->wiphy, reg->alpha2);
if (error)
goto error_attach;
}
/* Initialize LED control */
ath_init_leds(sc);
ath_start_rfkill_poll(sc);
return 0;
error_attach:
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
ath9k_hw_detach(sc->sc_ah);
ath9k_exit_debug(sc);
return error;
}
int ath_reset(struct ath_softc *sc, bool retry_tx)
{
struct ath_hw *ah = sc->sc_ah;
struct ieee80211_hw *hw = sc->hw;
int r;
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, retry_tx);
ath_stoprecv(sc);
ath_flushrecv(sc);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
if (r)
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset hardware; reset status %d\n", r);
spin_unlock_bh(&sc->sc_resetlock);
if (ath_startrecv(sc) != 0)
DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
/*
* We may be doing a reset in response to a request
* that changes the channel so update any state that
* might change as a result.
*/
ath_cache_conf_rate(sc, &hw->conf);
ath_update_txpow(sc);
if (sc->sc_flags & SC_OP_BEACONS)
ath_beacon_config(sc, NULL); /* restart beacons */
ath9k_hw_set_interrupts(ah, sc->imask);
if (retry_tx) {
int i;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
spin_lock_bh(&sc->tx.txq[i].axq_lock);
ath_txq_schedule(sc, &sc->tx.txq[i]);
spin_unlock_bh(&sc->tx.txq[i].axq_lock);
}
}
}
return r;
}
/*
* This function will allocate both the DMA descriptor structure, and the
* buffers it contains. These are used to contain the descriptors used
* by the system.
*/
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
struct list_head *head, const char *name,
int nbuf, int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
struct ath_desc *ds;
struct ath_buf *bf;
int i, bsize, error;
DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
name, nbuf, ndesc);
INIT_LIST_HEAD(head);
/* ath_desc must be a multiple of DWORDs */
if ((sizeof(struct ath_desc) % 4) != 0) {
DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
ASSERT((sizeof(struct ath_desc) % 4) == 0);
error = -ENOMEM;
goto fail;
}
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
/*
* Need additional DMA memory because we can't use
* descriptors that cross the 4K page boundary. Assume
* one skipped descriptor per 4K page.
*/
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
u32 ndesc_skipped =
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
u32 dma_len;
while (ndesc_skipped) {
dma_len = ndesc_skipped * sizeof(struct ath_desc);
dd->dd_desc_len += dma_len;
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
};
}
/* allocate descriptors */
dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
ds = dd->dd_desc;
DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = kzalloc(bsize, GFP_KERNEL);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
dd->dd_bufptr = bf;
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (!(sc->sc_ah->caps.hw_caps &
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
/*
* Skip descriptor addresses which can cause 4KB
* boundary crossing (addr + length) with a 32 dword
* descriptor fetch.
*/
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
ASSERT((caddr_t) bf->bf_desc <
((caddr_t) dd->dd_desc +
dd->dd_desc_len));
ds += ndesc;
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
list_add_tail(&bf->list, head);
}
return 0;
fail2:
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
fail:
memset(dd, 0, sizeof(*dd));
return error;
#undef ATH_DESC_4KB_BOUND_CHECK
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
#undef DS2PHYS
}
void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head)
{
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
INIT_LIST_HEAD(head);
kfree(dd->dd_bufptr);
memset(dd, 0, sizeof(*dd));
}
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case 0:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
break;
case 1:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
break;
case 2:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
break;
case 3:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
break;
default:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
break;
}
return qnum;
}
int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case ATH9K_WME_AC_VO:
qnum = 0;
break;
case ATH9K_WME_AC_VI:
qnum = 1;
break;
case ATH9K_WME_AC_BE:
qnum = 2;
break;
case ATH9K_WME_AC_BK:
qnum = 3;
break;
default:
qnum = -1;
break;
}
return qnum;
}
/* XXX: Remove me once we don't depend on ath9k_channel for all
* this redundant data */
void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
struct ath9k_channel *ichan)
{
struct ieee80211_channel *chan = hw->conf.channel;
struct ieee80211_conf *conf = &hw->conf;
ichan->channel = chan->center_freq;
ichan->chan = chan;
if (chan->band == IEEE80211_BAND_2GHZ) {
ichan->chanmode = CHANNEL_G;
ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
} else {
ichan->chanmode = CHANNEL_A;
ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
}
sc->tx_chan_width = ATH9K_HT_MACMODE_20;
if (conf_is_ht(conf)) {
if (conf_is_ht40(conf))
sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
ichan->chanmode = ath_get_extchanmode(sc, chan,
conf->channel_type);
}
}
/**********************/
/* mac80211 callbacks */
/**********************/
static int ath9k_start(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ieee80211_channel *curchan = hw->conf.channel;
struct ath9k_channel *init_channel;
int r;
DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
"initial channel: %d MHz\n", curchan->center_freq);
mutex_lock(&sc->mutex);
if (ath9k_wiphy_started(sc)) {
if (sc->chan_idx == curchan->hw_value) {
/*
* Already on the operational channel, the new wiphy
* can be marked active.
*/
aphy->state = ATH_WIPHY_ACTIVE;
ieee80211_wake_queues(hw);
} else {
/*
* Another wiphy is on another channel, start the new
* wiphy in paused state.
*/
aphy->state = ATH_WIPHY_PAUSED;
ieee80211_stop_queues(hw);
}
mutex_unlock(&sc->mutex);
return 0;
}
aphy->state = ATH_WIPHY_ACTIVE;
/* setup initial channel */
sc->chan_idx = curchan->hw_value;
init_channel = ath_get_curchannel(sc, hw);
/* Reset SERDES registers */
ath9k_hw_configpcipowersave(sc->sc_ah, 0);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
if (r) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset hardware; reset status %d "
"(freq %u MHz)\n", r,
curchan->center_freq);
spin_unlock_bh(&sc->sc_resetlock);
goto mutex_unlock;
}
spin_unlock_bh(&sc->sc_resetlock);
/*
* This is needed only to setup initial state
* but it's best done after a reset.
*/
ath_update_txpow(sc);
/*
* Setup the hardware after reset:
* The receive engine is set going.
* Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
r = -EIO;
goto mutex_unlock;
}
/* Setup our intr mask. */
sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
sc->imask |= ATH9K_INT_GTT;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
sc->imask |= ATH9K_INT_CST;
ath_cache_conf_rate(sc, &hw->conf);
sc->sc_flags &= ~SC_OP_INVALID;
/* Disable BMISS interrupt when we're not associated */
sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
ieee80211_wake_queues(hw);
queue_delayed_work(sc->hw->workqueue, &sc->tx_complete_work, 0);
mutex_unlock:
mutex_unlock(&sc->mutex);
return r;
}
static int ath9k_tx(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_tx_control txctl;
int hdrlen, padsize;
if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
"%d\n", wiphy_name(hw->wiphy), aphy->state);
goto exit;
}
if (sc->hw->conf.flags & IEEE80211_CONF_PS) {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
/*
* mac80211 does not set PM field for normal data frames, so we
* need to update that based on the current PS mode.
*/
if (ieee80211_is_data(hdr->frame_control) &&
!ieee80211_is_nullfunc(hdr->frame_control) &&
!ieee80211_has_pm(hdr->frame_control)) {
DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
"while in PS mode\n");
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
}
}
if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
/*
* We are using PS-Poll and mac80211 can request TX while in
* power save mode. Need to wake up hardware for the TX to be
* completed and if needed, also for RX of buffered frames.
*/
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
ath9k_ps_wakeup(sc);
ath9k_hw_setrxabort(sc->sc_ah, 0);
if (ieee80211_is_pspoll(hdr->frame_control)) {
DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
"buffered frame\n");
sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
} else {
DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
}
/*
* The actual restore operation will happen only after
* the sc_flags bit is cleared. We are just dropping
* the ps_usecount here.
*/
ath9k_ps_restore(sc);
}
memset(&txctl, 0, sizeof(struct ath_tx_control));
/*
* As a temporary workaround, assign seq# here; this will likely need
* to be cleaned up to work better with Beacon transmission and virtual
* BSSes.
*/
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
sc->tx.seq_no += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
}
/* Add the padding after the header if this is not already done */
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
if (hdrlen & 3) {
padsize = hdrlen % 4;
if (skb_headroom(skb) < padsize)
return -1;
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, hdrlen);
}
/* Check if a tx queue is available */
txctl.txq = ath_test_get_txq(sc, skb);
if (!txctl.txq)
goto exit;
DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
if (ath_tx_start(hw, skb, &txctl) != 0) {
DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
goto exit;
}
return 0;
exit:
dev_kfree_skb_any(skb);
return 0;
}
static void ath9k_stop(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
aphy->state = ATH_WIPHY_INACTIVE;
if (sc->sc_flags & SC_OP_INVALID) {
DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
return;
}
mutex_lock(&sc->mutex);
if (ath9k_wiphy_started(sc)) {
mutex_unlock(&sc->mutex);
return; /* another wiphy still in use */
}
/* make sure h/w will not generate any interrupt
* before setting the invalid flag. */
ath9k_hw_set_interrupts(sc->sc_ah, 0);
if (!(sc->sc_flags & SC_OP_INVALID)) {
ath_drain_all_txq(sc, false);
ath_stoprecv(sc);
ath9k_hw_phy_disable(sc->sc_ah);
} else
sc->rx.rxlink = NULL;
wiphy_rfkill_stop_polling(sc->hw->wiphy);
/* disable HAL and put h/w to sleep */
ath9k_hw_disable(sc->sc_ah);
ath9k_hw_configpcipowersave(sc->sc_ah, 1);
sc->sc_flags |= SC_OP_INVALID;
mutex_unlock(&sc->mutex);
DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
}
static int ath9k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_vif *avp = (void *)conf->vif->drv_priv;
enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
int ret = 0;
mutex_lock(&sc->mutex);
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
sc->nvifs > 0) {
ret = -ENOBUFS;
goto out;
}
switch (conf->type) {
case NL80211_IFTYPE_STATION:
ic_opmode = NL80211_IFTYPE_STATION;
break;
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_MESH_POINT:
if (sc->nbcnvifs >= ATH_BCBUF) {
ret = -ENOBUFS;
goto out;
}
ic_opmode = conf->type;
break;
default:
DPRINTF(sc, ATH_DBG_FATAL,
"Interface type %d not yet supported\n", conf->type);
ret = -EOPNOTSUPP;
goto out;
}
DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
/* Set the VIF opmode */
avp->av_opmode = ic_opmode;
avp->av_bslot = -1;
sc->nvifs++;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
ath9k_set_bssid_mask(hw);
if (sc->nvifs > 1)
goto out; /* skip global settings for secondary vif */
if (ic_opmode == NL80211_IFTYPE_AP) {
ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
sc->sc_flags |= SC_OP_TSF_RESET;
}
/* Set the device opmode */
sc->sc_ah->opmode = ic_opmode;
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if ((conf->type == NL80211_IFTYPE_STATION) ||
(conf->type == NL80211_IFTYPE_ADHOC) ||
(conf->type == NL80211_IFTYPE_MESH_POINT)) {
if (ath9k_hw_phycounters(sc->sc_ah))
sc->imask |= ATH9K_INT_MIB;
sc->imask |= ATH9K_INT_TSFOOR;
}
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
if (conf->type == NL80211_IFTYPE_AP ||
conf->type == NL80211_IFTYPE_ADHOC ||
conf->type == NL80211_IFTYPE_MONITOR)
ath_start_ani(sc);
out:
mutex_unlock(&sc->mutex);
return ret;
}
static void ath9k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_vif *avp = (void *)conf->vif->drv_priv;
int i;
DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
mutex_lock(&sc->mutex);
/* Stop ANI */
del_timer_sync(&sc->ani.timer);
/* Reclaim beacon resources */
if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
(sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
(sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
ath_beacon_return(sc, avp);
}
sc->sc_flags &= ~SC_OP_BEACONS;
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
if (sc->beacon.bslot[i] == conf->vif) {
printk(KERN_DEBUG "%s: vif had allocated beacon "
"slot\n", __func__);
sc->beacon.bslot[i] = NULL;
sc->beacon.bslot_aphy[i] = NULL;
}
}
sc->nvifs--;
mutex_unlock(&sc->mutex);
}
static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ieee80211_conf *conf = &hw->conf;
struct ath_hw *ah = sc->sc_ah;
bool all_wiphys_idle = false, disable_radio = false;
mutex_lock(&sc->mutex);
/* Leave this as the first check */
if (changed & IEEE80211_CONF_CHANGE_IDLE) {
spin_lock_bh(&sc->wiphy_lock);
all_wiphys_idle = ath9k_all_wiphys_idle(sc);
spin_unlock_bh(&sc->wiphy_lock);
if (conf->flags & IEEE80211_CONF_IDLE){
if (all_wiphys_idle)
disable_radio = true;
}
else if (all_wiphys_idle) {
ath_radio_enable(sc);
DPRINTF(sc, ATH_DBG_CONFIG,
"not-idle: enabling radio\n");
}
}
if (changed & IEEE80211_CONF_CHANGE_PS) {
if (conf->flags & IEEE80211_CONF_PS) {
if (!(ah->caps.hw_caps &
ATH9K_HW_CAP_AUTOSLEEP)) {
if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
sc->imask |= ATH9K_INT_TIM_TIMER;
ath9k_hw_set_interrupts(sc->sc_ah,
sc->imask);
}
ath9k_hw_setrxabort(sc->sc_ah, 1);
}
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
} else {
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
if (!(ah->caps.hw_caps &
ATH9K_HW_CAP_AUTOSLEEP)) {
ath9k_hw_setrxabort(sc->sc_ah, 0);
sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
SC_OP_WAIT_FOR_CAB |
SC_OP_WAIT_FOR_PSPOLL_DATA |
SC_OP_WAIT_FOR_TX_ACK);
if (sc->imask & ATH9K_INT_TIM_TIMER) {
sc->imask &= ~ATH9K_INT_TIM_TIMER;
ath9k_hw_set_interrupts(sc->sc_ah,
sc->imask);
}
}
}
}
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
struct ieee80211_channel *curchan = hw->conf.channel;
int pos = curchan->hw_value;
aphy->chan_idx = pos;
aphy->chan_is_ht = conf_is_ht(conf);
if (aphy->state == ATH_WIPHY_SCAN ||
aphy->state == ATH_WIPHY_ACTIVE)
ath9k_wiphy_pause_all_forced(sc, aphy);
else {
/*
* Do not change operational channel based on a paused
* wiphy changes.
*/
goto skip_chan_change;
}
DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
curchan->center_freq);
/* XXX: remove me eventualy */
ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
ath_update_chainmask(sc, conf_is_ht(conf));
if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
mutex_unlock(&sc->mutex);
return -EINVAL;
}
}
skip_chan_change:
if (changed & IEEE80211_CONF_CHANGE_POWER)
sc->config.txpowlimit = 2 * conf->power_level;
if (disable_radio) {
DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
ath_radio_disable(sc);
}
mutex_unlock(&sc->mutex);
return 0;
}
#define SUPPORTED_FILTERS \
(FIF_PROMISC_IN_BSS | \
FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_FCSFAIL)
/* FIXME: sc->sc_full_reset ? */
static void ath9k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count,
struct dev_mc_list *mclist)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
u32 rfilt;
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
sc->rx.rxfilter = *total_flags;
ath9k_ps_wakeup(sc);
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
ath9k_ps_restore(sc);
DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
}
static void ath9k_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
switch (cmd) {
case STA_NOTIFY_ADD:
ath_node_attach(sc, sta);
break;
case STA_NOTIFY_REMOVE:
ath_node_detach(sc, sta);
break;
default:
break;
}
}
static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath9k_tx_queue_info qi;
int ret = 0, qnum;
if (queue >= WME_NUM_AC)
return 0;
mutex_lock(&sc->mutex);
memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
qi.tqi_aifs = params->aifs;
qi.tqi_cwmin = params->cw_min;
qi.tqi_cwmax = params->cw_max;
qi.tqi_burstTime = params->txop;
qnum = ath_get_hal_qnum(queue, sc);
DPRINTF(sc, ATH_DBG_CONFIG,
"Configure tx [queue/halq] [%d/%d], "
"aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
queue, qnum, params->aifs, params->cw_min,
params->cw_max, params->txop);
ret = ath_txq_update(sc, qnum, &qi);
if (ret)
DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
mutex_unlock(&sc->mutex);
return ret;
}
static int ath9k_set_key(struct ieee80211_hw *hw,
enum set_key_cmd cmd,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
int ret = 0;
if (modparam_nohwcrypt)
return -ENOSPC;
mutex_lock(&sc->mutex);
ath9k_ps_wakeup(sc);
DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
switch (cmd) {
case SET_KEY:
ret = ath_key_config(sc, vif, sta, key);
if (ret >= 0) {
key->hw_key_idx = ret;
/* push IV and Michael MIC generation to stack */
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
if (key->alg == ALG_TKIP)
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
ret = 0;
}
break;
case DISABLE_KEY:
ath_key_delete(sc, key);
break;
default:
ret = -EINVAL;
}
ath9k_ps_restore(sc);
mutex_unlock(&sc->mutex);
return ret;
}
static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changed)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_hw *ah = sc->sc_ah;
struct ath_vif *avp = (void *)vif->drv_priv;
u32 rfilt = 0;
int error, i;
mutex_lock(&sc->mutex);
/*
* TODO: Need to decide which hw opmode to use for
* multi-interface cases
* XXX: This belongs into add_interface!
*/
if (vif->type == NL80211_IFTYPE_AP &&
ah->opmode != NL80211_IFTYPE_AP) {
ah->opmode = NL80211_IFTYPE_STATION;
ath9k_hw_setopmode(ah);
memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
sc->curaid = 0;
ath9k_hw_write_associd(sc);
/* Request full reset to get hw opmode changed properly */
sc->sc_flags |= SC_OP_FULL_RESET;
}
if ((changed & BSS_CHANGED_BSSID) &&
!is_zero_ether_addr(bss_conf->bssid)) {
switch (vif->type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
/* Set BSSID */
memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
sc->curaid = 0;
ath9k_hw_write_associd(sc);
/* Set aggregation protection mode parameters */
sc->config.ath_aggr_prot = 0;
DPRINTF(sc, ATH_DBG_CONFIG,
"RX filter 0x%x bssid %pM aid 0x%x\n",
rfilt, sc->curbssid, sc->curaid);
/* need to reconfigure the beacon */
sc->sc_flags &= ~SC_OP_BEACONS ;
break;
default:
break;
}
}
if ((vif->type == NL80211_IFTYPE_ADHOC) ||
(vif->type == NL80211_IFTYPE_AP) ||
(vif->type == NL80211_IFTYPE_MESH_POINT)) {
if ((changed & BSS_CHANGED_BEACON) ||
(changed & BSS_CHANGED_BEACON_ENABLED &&
bss_conf->enable_beacon)) {
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; we may be called
* with beacon transmission active.
*/
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
error = ath_beacon_alloc(aphy, vif);
if (!error)
ath_beacon_config(sc, vif);
}
}
/* Check for WLAN_CAPABILITY_PRIVACY ? */
if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
ath9k_hw_keysetmac(sc->sc_ah,
(u16)i,
sc->curbssid);
}
/* Only legacy IBSS for now */
if (vif->type == NL80211_IFTYPE_ADHOC)
ath_update_chainmask(sc, 0);
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
bss_conf->use_short_preamble);
if (bss_conf->use_short_preamble)
sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
else
sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
bss_conf->use_cts_prot);
if (bss_conf->use_cts_prot &&
hw->conf.channel->band != IEEE80211_BAND_5GHZ)
sc->sc_flags |= SC_OP_PROTECT_ENABLE;
else
sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
}
if (changed & BSS_CHANGED_ASSOC) {
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
bss_conf->assoc);
ath9k_bss_assoc_info(sc, vif, bss_conf);
}
/*
* The HW TSF has to be reset when the beacon interval changes.
* We set the flag here, and ath_beacon_config_ap() would take this
* into account when it gets called through the subsequent
* config_interface() call - with IFCC_BEACON in the changed field.
*/
if (changed & BSS_CHANGED_BEACON_INT) {
sc->sc_flags |= SC_OP_TSF_RESET;
sc->beacon_interval = bss_conf->beacon_int;
}
mutex_unlock(&sc->mutex);
}
static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
{
u64 tsf;
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
mutex_lock(&sc->mutex);
tsf = ath9k_hw_gettsf64(sc->sc_ah);
mutex_unlock(&sc->mutex);
return tsf;
}
static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
mutex_lock(&sc->mutex);
ath9k_hw_settsf64(sc->sc_ah, tsf);
mutex_unlock(&sc->mutex);
}
static void ath9k_reset_tsf(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
mutex_lock(&sc->mutex);
ath9k_hw_reset_tsf(sc->sc_ah);
mutex_unlock(&sc->mutex);
}
static int ath9k_ampdu_action(struct ieee80211_hw *hw,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta,
u16 tid, u16 *ssn)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
int ret = 0;
switch (action) {
case IEEE80211_AMPDU_RX_START:
if (!(sc->sc_flags & SC_OP_RXAGGR))
ret = -ENOTSUPP;
break;
case IEEE80211_AMPDU_RX_STOP:
break;
case IEEE80211_AMPDU_TX_START:
ret = ath_tx_aggr_start(sc, sta, tid, ssn);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to start TX aggregation\n");
else
ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
ret = ath_tx_aggr_stop(sc, sta, tid);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to stop TX aggregation\n");
ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
ath_tx_aggr_resume(sc, sta, tid);
break;
default:
DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
}
return ret;
}
static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
if (ath9k_wiphy_scanning(sc)) {
printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
"same time\n");
/*
* Do not allow the concurrent scanning state for now. This
* could be improved with scanning control moved into ath9k.
*/
return;
}
aphy->state = ATH_WIPHY_SCAN;
ath9k_wiphy_pause_all_forced(sc, aphy);
spin_lock_bh(&sc->ani_lock);
sc->sc_flags |= SC_OP_SCANNING;
spin_unlock_bh(&sc->ani_lock);
}
static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
spin_lock_bh(&sc->ani_lock);
aphy->state = ATH_WIPHY_ACTIVE;
sc->sc_flags &= ~SC_OP_SCANNING;
sc->sc_flags |= SC_OP_FULL_RESET;
spin_unlock_bh(&sc->ani_lock);
}
struct ieee80211_ops ath9k_ops = {
.tx = ath9k_tx,
.start = ath9k_start,
.stop = ath9k_stop,
.add_interface = ath9k_add_interface,
.remove_interface = ath9k_remove_interface,
.config = ath9k_config,
.configure_filter = ath9k_configure_filter,
.sta_notify = ath9k_sta_notify,
.conf_tx = ath9k_conf_tx,
.bss_info_changed = ath9k_bss_info_changed,
.set_key = ath9k_set_key,
.get_tsf = ath9k_get_tsf,
.set_tsf = ath9k_set_tsf,
.reset_tsf = ath9k_reset_tsf,
.ampdu_action = ath9k_ampdu_action,
.sw_scan_start = ath9k_sw_scan_start,
.sw_scan_complete = ath9k_sw_scan_complete,
.rfkill_poll = ath9k_rfkill_poll_state,
};
static struct {
u32 version;
const char * name;
} ath_mac_bb_names[] = {
{ AR_SREV_VERSION_5416_PCI, "5416" },
{ AR_SREV_VERSION_5416_PCIE, "5418" },
{ AR_SREV_VERSION_9100, "9100" },
{ AR_SREV_VERSION_9160, "9160" },
{ AR_SREV_VERSION_9280, "9280" },
{ AR_SREV_VERSION_9285, "9285" }
};
static struct {
u16 version;
const char * name;
} ath_rf_names[] = {
{ 0, "5133" },
{ AR_RAD5133_SREV_MAJOR, "5133" },
{ AR_RAD5122_SREV_MAJOR, "5122" },
{ AR_RAD2133_SREV_MAJOR, "2133" },
{ AR_RAD2122_SREV_MAJOR, "2122" }
};
/*
* Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
*/
const char *
ath_mac_bb_name(u32 mac_bb_version)
{
int i;
for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
if (ath_mac_bb_names[i].version == mac_bb_version) {
return ath_mac_bb_names[i].name;
}
}
return "????";
}
/*
* Return the RF name. "????" is returned if the RF is unknown.
*/
const char *
ath_rf_name(u16 rf_version)
{
int i;
for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
if (ath_rf_names[i].version == rf_version) {
return ath_rf_names[i].name;
}
}
return "????";
}
static int __init ath9k_init(void)
{
int error;
/* Register rate control algorithm */
error = ath_rate_control_register();
if (error != 0) {
printk(KERN_ERR
"ath9k: Unable to register rate control "
"algorithm: %d\n",
error);
goto err_out;
}
error = ath9k_debug_create_root();
if (error) {
printk(KERN_ERR
"ath9k: Unable to create debugfs root: %d\n",
error);
goto err_rate_unregister;
}
error = ath_pci_init();
if (error < 0) {
printk(KERN_ERR
"ath9k: No PCI devices found, driver not installed.\n");
error = -ENODEV;
goto err_remove_root;
}
error = ath_ahb_init();
if (error < 0) {
error = -ENODEV;
goto err_pci_exit;
}
return 0;
err_pci_exit:
ath_pci_exit();
err_remove_root:
ath9k_debug_remove_root();
err_rate_unregister:
ath_rate_control_unregister();
err_out:
return error;
}
module_init(ath9k_init);
static void __exit ath9k_exit(void)
{
ath_ahb_exit();
ath_pci_exit();
ath9k_debug_remove_root();
ath_rate_control_unregister();
printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
}
module_exit(ath9k_exit);