9e98ac65a3
These can be obtained from mac80211. Signed-off-by: Sujith <Sujith.Manoharan@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2869 lines
72 KiB
C
2869 lines
72 KiB
C
/*
|
|
* Copyright (c) 2008-2009 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/nl80211.h>
|
|
#include "ath9k.h"
|
|
|
|
#define ATH_PCI_VERSION "0.1"
|
|
|
|
static char *dev_info = "ath9k";
|
|
|
|
MODULE_AUTHOR("Atheros Communications");
|
|
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
|
|
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
|
|
static int modparam_nohwcrypt;
|
|
module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
|
|
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
|
|
|
|
/* We use the hw_value as an index into our private channel structure */
|
|
|
|
#define CHAN2G(_freq, _idx) { \
|
|
.center_freq = (_freq), \
|
|
.hw_value = (_idx), \
|
|
.max_power = 20, \
|
|
}
|
|
|
|
#define CHAN5G(_freq, _idx) { \
|
|
.band = IEEE80211_BAND_5GHZ, \
|
|
.center_freq = (_freq), \
|
|
.hw_value = (_idx), \
|
|
.max_power = 20, \
|
|
}
|
|
|
|
/* Some 2 GHz radios are actually tunable on 2312-2732
|
|
* on 5 MHz steps, we support the channels which we know
|
|
* we have calibration data for all cards though to make
|
|
* this static */
|
|
static struct ieee80211_channel ath9k_2ghz_chantable[] = {
|
|
CHAN2G(2412, 0), /* Channel 1 */
|
|
CHAN2G(2417, 1), /* Channel 2 */
|
|
CHAN2G(2422, 2), /* Channel 3 */
|
|
CHAN2G(2427, 3), /* Channel 4 */
|
|
CHAN2G(2432, 4), /* Channel 5 */
|
|
CHAN2G(2437, 5), /* Channel 6 */
|
|
CHAN2G(2442, 6), /* Channel 7 */
|
|
CHAN2G(2447, 7), /* Channel 8 */
|
|
CHAN2G(2452, 8), /* Channel 9 */
|
|
CHAN2G(2457, 9), /* Channel 10 */
|
|
CHAN2G(2462, 10), /* Channel 11 */
|
|
CHAN2G(2467, 11), /* Channel 12 */
|
|
CHAN2G(2472, 12), /* Channel 13 */
|
|
CHAN2G(2484, 13), /* Channel 14 */
|
|
};
|
|
|
|
/* Some 5 GHz radios are actually tunable on XXXX-YYYY
|
|
* on 5 MHz steps, we support the channels which we know
|
|
* we have calibration data for all cards though to make
|
|
* this static */
|
|
static struct ieee80211_channel ath9k_5ghz_chantable[] = {
|
|
/* _We_ call this UNII 1 */
|
|
CHAN5G(5180, 14), /* Channel 36 */
|
|
CHAN5G(5200, 15), /* Channel 40 */
|
|
CHAN5G(5220, 16), /* Channel 44 */
|
|
CHAN5G(5240, 17), /* Channel 48 */
|
|
/* _We_ call this UNII 2 */
|
|
CHAN5G(5260, 18), /* Channel 52 */
|
|
CHAN5G(5280, 19), /* Channel 56 */
|
|
CHAN5G(5300, 20), /* Channel 60 */
|
|
CHAN5G(5320, 21), /* Channel 64 */
|
|
/* _We_ call this "Middle band" */
|
|
CHAN5G(5500, 22), /* Channel 100 */
|
|
CHAN5G(5520, 23), /* Channel 104 */
|
|
CHAN5G(5540, 24), /* Channel 108 */
|
|
CHAN5G(5560, 25), /* Channel 112 */
|
|
CHAN5G(5580, 26), /* Channel 116 */
|
|
CHAN5G(5600, 27), /* Channel 120 */
|
|
CHAN5G(5620, 28), /* Channel 124 */
|
|
CHAN5G(5640, 29), /* Channel 128 */
|
|
CHAN5G(5660, 30), /* Channel 132 */
|
|
CHAN5G(5680, 31), /* Channel 136 */
|
|
CHAN5G(5700, 32), /* Channel 140 */
|
|
/* _We_ call this UNII 3 */
|
|
CHAN5G(5745, 33), /* Channel 149 */
|
|
CHAN5G(5765, 34), /* Channel 153 */
|
|
CHAN5G(5785, 35), /* Channel 157 */
|
|
CHAN5G(5805, 36), /* Channel 161 */
|
|
CHAN5G(5825, 37), /* Channel 165 */
|
|
};
|
|
|
|
static void ath_cache_conf_rate(struct ath_softc *sc,
|
|
struct ieee80211_conf *conf)
|
|
{
|
|
switch (conf->channel->band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
if (conf_is_ht20(conf))
|
|
sc->cur_rate_table =
|
|
sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
|
|
else if (conf_is_ht40_minus(conf))
|
|
sc->cur_rate_table =
|
|
sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
|
|
else if (conf_is_ht40_plus(conf))
|
|
sc->cur_rate_table =
|
|
sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
|
|
else
|
|
sc->cur_rate_table =
|
|
sc->hw_rate_table[ATH9K_MODE_11G];
|
|
break;
|
|
case IEEE80211_BAND_5GHZ:
|
|
if (conf_is_ht20(conf))
|
|
sc->cur_rate_table =
|
|
sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
|
|
else if (conf_is_ht40_minus(conf))
|
|
sc->cur_rate_table =
|
|
sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
|
|
else if (conf_is_ht40_plus(conf))
|
|
sc->cur_rate_table =
|
|
sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
|
|
else
|
|
sc->cur_rate_table =
|
|
sc->hw_rate_table[ATH9K_MODE_11A];
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void ath_update_txpow(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
u32 txpow;
|
|
|
|
if (sc->curtxpow != sc->config.txpowlimit) {
|
|
ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
|
|
/* read back in case value is clamped */
|
|
ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
|
|
sc->curtxpow = txpow;
|
|
}
|
|
}
|
|
|
|
static u8 parse_mpdudensity(u8 mpdudensity)
|
|
{
|
|
/*
|
|
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
|
|
* 0 for no restriction
|
|
* 1 for 1/4 us
|
|
* 2 for 1/2 us
|
|
* 3 for 1 us
|
|
* 4 for 2 us
|
|
* 5 for 4 us
|
|
* 6 for 8 us
|
|
* 7 for 16 us
|
|
*/
|
|
switch (mpdudensity) {
|
|
case 0:
|
|
return 0;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
/* Our lower layer calculations limit our precision to
|
|
1 microsecond */
|
|
return 1;
|
|
case 4:
|
|
return 2;
|
|
case 5:
|
|
return 4;
|
|
case 6:
|
|
return 8;
|
|
case 7:
|
|
return 16;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
|
|
{
|
|
const struct ath_rate_table *rate_table = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_rate *rate;
|
|
int i, maxrates;
|
|
|
|
switch (band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
|
|
break;
|
|
case IEEE80211_BAND_5GHZ:
|
|
rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (rate_table == NULL)
|
|
return;
|
|
|
|
sband = &sc->sbands[band];
|
|
rate = sc->rates[band];
|
|
|
|
if (rate_table->rate_cnt > ATH_RATE_MAX)
|
|
maxrates = ATH_RATE_MAX;
|
|
else
|
|
maxrates = rate_table->rate_cnt;
|
|
|
|
for (i = 0; i < maxrates; i++) {
|
|
rate[i].bitrate = rate_table->info[i].ratekbps / 100;
|
|
rate[i].hw_value = rate_table->info[i].ratecode;
|
|
if (rate_table->info[i].short_preamble) {
|
|
rate[i].hw_value_short = rate_table->info[i].ratecode |
|
|
rate_table->info[i].short_preamble;
|
|
rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
|
|
}
|
|
sband->n_bitrates++;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
|
|
rate[i].bitrate / 10, rate[i].hw_value);
|
|
}
|
|
}
|
|
|
|
static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
|
|
struct ieee80211_hw *hw)
|
|
{
|
|
struct ieee80211_channel *curchan = hw->conf.channel;
|
|
struct ath9k_channel *channel;
|
|
u8 chan_idx;
|
|
|
|
chan_idx = curchan->hw_value;
|
|
channel = &sc->sc_ah->channels[chan_idx];
|
|
ath9k_update_ichannel(sc, hw, channel);
|
|
return channel;
|
|
}
|
|
|
|
/*
|
|
* Set/change channels. If the channel is really being changed, it's done
|
|
* by reseting the chip. To accomplish this we must first cleanup any pending
|
|
* DMA, then restart stuff.
|
|
*/
|
|
int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
|
|
struct ath9k_channel *hchan)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
bool fastcc = true, stopped;
|
|
struct ieee80211_channel *channel = hw->conf.channel;
|
|
int r;
|
|
|
|
if (sc->sc_flags & SC_OP_INVALID)
|
|
return -EIO;
|
|
|
|
ath9k_ps_wakeup(sc);
|
|
|
|
/*
|
|
* This is only performed if the channel settings have
|
|
* actually changed.
|
|
*
|
|
* To switch channels clear any pending DMA operations;
|
|
* wait long enough for the RX fifo to drain, reset the
|
|
* hardware at the new frequency, and then re-enable
|
|
* the relevant bits of the h/w.
|
|
*/
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
ath_drain_all_txq(sc, false);
|
|
stopped = ath_stoprecv(sc);
|
|
|
|
/* XXX: do not flush receive queue here. We don't want
|
|
* to flush data frames already in queue because of
|
|
* changing channel. */
|
|
|
|
if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
|
|
fastcc = false;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"(%u MHz) -> (%u MHz), chanwidth: %d\n",
|
|
sc->sc_ah->curchan->channel,
|
|
channel->center_freq, sc->tx_chan_width);
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
|
|
r = ath9k_hw_reset(ah, hchan, fastcc);
|
|
if (r) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset channel (%u Mhz) "
|
|
"reset status %d\n",
|
|
channel->center_freq, r);
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
goto ps_restore;
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
sc->sc_flags &= ~SC_OP_FULL_RESET;
|
|
|
|
if (ath_startrecv(sc) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to restart recv logic\n");
|
|
r = -EIO;
|
|
goto ps_restore;
|
|
}
|
|
|
|
ath_cache_conf_rate(sc, &hw->conf);
|
|
ath_update_txpow(sc);
|
|
ath9k_hw_set_interrupts(ah, sc->imask);
|
|
|
|
ps_restore:
|
|
ath9k_ps_restore(sc);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* This routine performs the periodic noise floor calibration function
|
|
* that is used to adjust and optimize the chip performance. This
|
|
* takes environmental changes (location, temperature) into account.
|
|
* When the task is complete, it reschedules itself depending on the
|
|
* appropriate interval that was calculated.
|
|
*/
|
|
static void ath_ani_calibrate(unsigned long data)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *)data;
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
bool longcal = false;
|
|
bool shortcal = false;
|
|
bool aniflag = false;
|
|
unsigned int timestamp = jiffies_to_msecs(jiffies);
|
|
u32 cal_interval, short_cal_interval;
|
|
|
|
short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
|
|
ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
|
|
|
|
/*
|
|
* don't calibrate when we're scanning.
|
|
* we are most likely not on our home channel.
|
|
*/
|
|
spin_lock(&sc->ani_lock);
|
|
if (sc->sc_flags & SC_OP_SCANNING)
|
|
goto set_timer;
|
|
|
|
/* Only calibrate if awake */
|
|
if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
|
|
goto set_timer;
|
|
|
|
ath9k_ps_wakeup(sc);
|
|
|
|
/* Long calibration runs independently of short calibration. */
|
|
if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
|
|
longcal = true;
|
|
DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
|
|
sc->ani.longcal_timer = timestamp;
|
|
}
|
|
|
|
/* Short calibration applies only while caldone is false */
|
|
if (!sc->ani.caldone) {
|
|
if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
|
|
shortcal = true;
|
|
DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
|
|
sc->ani.shortcal_timer = timestamp;
|
|
sc->ani.resetcal_timer = timestamp;
|
|
}
|
|
} else {
|
|
if ((timestamp - sc->ani.resetcal_timer) >=
|
|
ATH_RESTART_CALINTERVAL) {
|
|
sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
|
|
if (sc->ani.caldone)
|
|
sc->ani.resetcal_timer = timestamp;
|
|
}
|
|
}
|
|
|
|
/* Verify whether we must check ANI */
|
|
if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
|
|
aniflag = true;
|
|
sc->ani.checkani_timer = timestamp;
|
|
}
|
|
|
|
/* Skip all processing if there's nothing to do. */
|
|
if (longcal || shortcal || aniflag) {
|
|
/* Call ANI routine if necessary */
|
|
if (aniflag)
|
|
ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
|
|
|
|
/* Perform calibration if necessary */
|
|
if (longcal || shortcal) {
|
|
sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
|
|
sc->rx_chainmask, longcal);
|
|
|
|
if (longcal)
|
|
sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
|
|
ah->curchan);
|
|
|
|
DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
|
|
ah->curchan->channel, ah->curchan->channelFlags,
|
|
sc->ani.noise_floor);
|
|
}
|
|
}
|
|
|
|
ath9k_ps_restore(sc);
|
|
|
|
set_timer:
|
|
spin_unlock(&sc->ani_lock);
|
|
/*
|
|
* Set timer interval based on previous results.
|
|
* The interval must be the shortest necessary to satisfy ANI,
|
|
* short calibration and long calibration.
|
|
*/
|
|
cal_interval = ATH_LONG_CALINTERVAL;
|
|
if (sc->sc_ah->config.enable_ani)
|
|
cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
|
|
if (!sc->ani.caldone)
|
|
cal_interval = min(cal_interval, (u32)short_cal_interval);
|
|
|
|
mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
|
|
}
|
|
|
|
static void ath_start_ani(struct ath_softc *sc)
|
|
{
|
|
unsigned long timestamp = jiffies_to_msecs(jiffies);
|
|
|
|
sc->ani.longcal_timer = timestamp;
|
|
sc->ani.shortcal_timer = timestamp;
|
|
sc->ani.checkani_timer = timestamp;
|
|
|
|
mod_timer(&sc->ani.timer,
|
|
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
|
|
}
|
|
|
|
/*
|
|
* Update tx/rx chainmask. For legacy association,
|
|
* hard code chainmask to 1x1, for 11n association, use
|
|
* the chainmask configuration, for bt coexistence, use
|
|
* the chainmask configuration even in legacy mode.
|
|
*/
|
|
void ath_update_chainmask(struct ath_softc *sc, int is_ht)
|
|
{
|
|
if (is_ht ||
|
|
(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
|
|
sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
|
|
sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
|
|
} else {
|
|
sc->tx_chainmask = 1;
|
|
sc->rx_chainmask = 1;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
|
|
sc->tx_chainmask, sc->rx_chainmask);
|
|
}
|
|
|
|
static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
|
|
{
|
|
struct ath_node *an;
|
|
|
|
an = (struct ath_node *)sta->drv_priv;
|
|
|
|
if (sc->sc_flags & SC_OP_TXAGGR) {
|
|
ath_tx_node_init(sc, an);
|
|
an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
|
|
sta->ht_cap.ampdu_factor);
|
|
an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
|
|
an->last_rssi = ATH_RSSI_DUMMY_MARKER;
|
|
}
|
|
}
|
|
|
|
static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
|
|
{
|
|
struct ath_node *an = (struct ath_node *)sta->drv_priv;
|
|
|
|
if (sc->sc_flags & SC_OP_TXAGGR)
|
|
ath_tx_node_cleanup(sc, an);
|
|
}
|
|
|
|
static void ath9k_tasklet(unsigned long data)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *)data;
|
|
u32 status = sc->intrstatus;
|
|
|
|
ath9k_ps_wakeup(sc);
|
|
|
|
if (status & ATH9K_INT_FATAL) {
|
|
ath_reset(sc, false);
|
|
ath9k_ps_restore(sc);
|
|
return;
|
|
}
|
|
|
|
if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
|
|
spin_lock_bh(&sc->rx.rxflushlock);
|
|
ath_rx_tasklet(sc, 0);
|
|
spin_unlock_bh(&sc->rx.rxflushlock);
|
|
}
|
|
|
|
if (status & ATH9K_INT_TX)
|
|
ath_tx_tasklet(sc);
|
|
|
|
if ((status & ATH9K_INT_TSFOOR) &&
|
|
(sc->hw->conf.flags & IEEE80211_CONF_PS)) {
|
|
/*
|
|
* TSF sync does not look correct; remain awake to sync with
|
|
* the next Beacon.
|
|
*/
|
|
DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
|
|
sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
|
|
}
|
|
|
|
/* re-enable hardware interrupt */
|
|
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
|
|
ath9k_ps_restore(sc);
|
|
}
|
|
|
|
irqreturn_t ath_isr(int irq, void *dev)
|
|
{
|
|
#define SCHED_INTR ( \
|
|
ATH9K_INT_FATAL | \
|
|
ATH9K_INT_RXORN | \
|
|
ATH9K_INT_RXEOL | \
|
|
ATH9K_INT_RX | \
|
|
ATH9K_INT_TX | \
|
|
ATH9K_INT_BMISS | \
|
|
ATH9K_INT_CST | \
|
|
ATH9K_INT_TSFOOR)
|
|
|
|
struct ath_softc *sc = dev;
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
enum ath9k_int status;
|
|
bool sched = false;
|
|
|
|
/*
|
|
* The hardware is not ready/present, don't
|
|
* touch anything. Note this can happen early
|
|
* on if the IRQ is shared.
|
|
*/
|
|
if (sc->sc_flags & SC_OP_INVALID)
|
|
return IRQ_NONE;
|
|
|
|
|
|
/* shared irq, not for us */
|
|
|
|
if (!ath9k_hw_intrpend(ah))
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* Figure out the reason(s) for the interrupt. Note
|
|
* that the hal returns a pseudo-ISR that may include
|
|
* bits we haven't explicitly enabled so we mask the
|
|
* value to insure we only process bits we requested.
|
|
*/
|
|
ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
|
|
status &= sc->imask; /* discard unasked-for bits */
|
|
|
|
/*
|
|
* If there are no status bits set, then this interrupt was not
|
|
* for me (should have been caught above).
|
|
*/
|
|
if (!status)
|
|
return IRQ_NONE;
|
|
|
|
/* Cache the status */
|
|
sc->intrstatus = status;
|
|
|
|
if (status & SCHED_INTR)
|
|
sched = true;
|
|
|
|
/*
|
|
* If a FATAL or RXORN interrupt is received, we have to reset the
|
|
* chip immediately.
|
|
*/
|
|
if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
|
|
goto chip_reset;
|
|
|
|
if (status & ATH9K_INT_SWBA)
|
|
tasklet_schedule(&sc->bcon_tasklet);
|
|
|
|
if (status & ATH9K_INT_TXURN)
|
|
ath9k_hw_updatetxtriglevel(ah, true);
|
|
|
|
if (status & ATH9K_INT_MIB) {
|
|
/*
|
|
* Disable interrupts until we service the MIB
|
|
* interrupt; otherwise it will continue to
|
|
* fire.
|
|
*/
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
/*
|
|
* Let the hal handle the event. We assume
|
|
* it will clear whatever condition caused
|
|
* the interrupt.
|
|
*/
|
|
ath9k_hw_procmibevent(ah, &sc->nodestats);
|
|
ath9k_hw_set_interrupts(ah, sc->imask);
|
|
}
|
|
|
|
if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
|
|
if (status & ATH9K_INT_TIM_TIMER) {
|
|
/* Clear RxAbort bit so that we can
|
|
* receive frames */
|
|
ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
|
|
ath9k_hw_setrxabort(sc->sc_ah, 0);
|
|
sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
|
|
}
|
|
|
|
chip_reset:
|
|
|
|
ath_debug_stat_interrupt(sc, status);
|
|
|
|
if (sched) {
|
|
/* turn off every interrupt except SWBA */
|
|
ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
|
|
tasklet_schedule(&sc->intr_tq);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
#undef SCHED_INTR
|
|
}
|
|
|
|
static u32 ath_get_extchanmode(struct ath_softc *sc,
|
|
struct ieee80211_channel *chan,
|
|
enum nl80211_channel_type channel_type)
|
|
{
|
|
u32 chanmode = 0;
|
|
|
|
switch (chan->band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
switch(channel_type) {
|
|
case NL80211_CHAN_NO_HT:
|
|
case NL80211_CHAN_HT20:
|
|
chanmode = CHANNEL_G_HT20;
|
|
break;
|
|
case NL80211_CHAN_HT40PLUS:
|
|
chanmode = CHANNEL_G_HT40PLUS;
|
|
break;
|
|
case NL80211_CHAN_HT40MINUS:
|
|
chanmode = CHANNEL_G_HT40MINUS;
|
|
break;
|
|
}
|
|
break;
|
|
case IEEE80211_BAND_5GHZ:
|
|
switch(channel_type) {
|
|
case NL80211_CHAN_NO_HT:
|
|
case NL80211_CHAN_HT20:
|
|
chanmode = CHANNEL_A_HT20;
|
|
break;
|
|
case NL80211_CHAN_HT40PLUS:
|
|
chanmode = CHANNEL_A_HT40PLUS;
|
|
break;
|
|
case NL80211_CHAN_HT40MINUS:
|
|
chanmode = CHANNEL_A_HT40MINUS;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return chanmode;
|
|
}
|
|
|
|
static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
|
|
struct ath9k_keyval *hk, const u8 *addr,
|
|
bool authenticator)
|
|
{
|
|
const u8 *key_rxmic;
|
|
const u8 *key_txmic;
|
|
|
|
key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
|
|
key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
|
|
|
|
if (addr == NULL) {
|
|
/*
|
|
* Group key installation - only two key cache entries are used
|
|
* regardless of splitmic capability since group key is only
|
|
* used either for TX or RX.
|
|
*/
|
|
if (authenticator) {
|
|
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
|
|
} else {
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
|
|
}
|
|
return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
|
|
}
|
|
if (!sc->splitmic) {
|
|
/* TX and RX keys share the same key cache entry. */
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
|
|
return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
|
|
}
|
|
|
|
/* Separate key cache entries for TX and RX */
|
|
|
|
/* TX key goes at first index, RX key at +32. */
|
|
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
|
|
if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
|
|
/* TX MIC entry failed. No need to proceed further */
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Setting TX MIC Key Failed\n");
|
|
return 0;
|
|
}
|
|
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
/* XXX delete tx key on failure? */
|
|
return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
|
|
}
|
|
|
|
static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
|
|
if (test_bit(i, sc->keymap) ||
|
|
test_bit(i + 64, sc->keymap))
|
|
continue; /* At least one part of TKIP key allocated */
|
|
if (sc->splitmic &&
|
|
(test_bit(i + 32, sc->keymap) ||
|
|
test_bit(i + 64 + 32, sc->keymap)))
|
|
continue; /* At least one part of TKIP key allocated */
|
|
|
|
/* Found a free slot for a TKIP key */
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int ath_reserve_key_cache_slot(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* First, try to find slots that would not be available for TKIP. */
|
|
if (sc->splitmic) {
|
|
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
|
|
if (!test_bit(i, sc->keymap) &&
|
|
(test_bit(i + 32, sc->keymap) ||
|
|
test_bit(i + 64, sc->keymap) ||
|
|
test_bit(i + 64 + 32, sc->keymap)))
|
|
return i;
|
|
if (!test_bit(i + 32, sc->keymap) &&
|
|
(test_bit(i, sc->keymap) ||
|
|
test_bit(i + 64, sc->keymap) ||
|
|
test_bit(i + 64 + 32, sc->keymap)))
|
|
return i + 32;
|
|
if (!test_bit(i + 64, sc->keymap) &&
|
|
(test_bit(i , sc->keymap) ||
|
|
test_bit(i + 32, sc->keymap) ||
|
|
test_bit(i + 64 + 32, sc->keymap)))
|
|
return i + 64;
|
|
if (!test_bit(i + 64 + 32, sc->keymap) &&
|
|
(test_bit(i, sc->keymap) ||
|
|
test_bit(i + 32, sc->keymap) ||
|
|
test_bit(i + 64, sc->keymap)))
|
|
return i + 64 + 32;
|
|
}
|
|
} else {
|
|
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
|
|
if (!test_bit(i, sc->keymap) &&
|
|
test_bit(i + 64, sc->keymap))
|
|
return i;
|
|
if (test_bit(i, sc->keymap) &&
|
|
!test_bit(i + 64, sc->keymap))
|
|
return i + 64;
|
|
}
|
|
}
|
|
|
|
/* No partially used TKIP slots, pick any available slot */
|
|
for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
|
|
/* Do not allow slots that could be needed for TKIP group keys
|
|
* to be used. This limitation could be removed if we know that
|
|
* TKIP will not be used. */
|
|
if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
if (sc->splitmic) {
|
|
if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
}
|
|
|
|
if (!test_bit(i, sc->keymap))
|
|
return i; /* Found a free slot for a key */
|
|
}
|
|
|
|
/* No free slot found */
|
|
return -1;
|
|
}
|
|
|
|
static int ath_key_config(struct ath_softc *sc,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_sta *sta,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct ath9k_keyval hk;
|
|
const u8 *mac = NULL;
|
|
int ret = 0;
|
|
int idx;
|
|
|
|
memset(&hk, 0, sizeof(hk));
|
|
|
|
switch (key->alg) {
|
|
case ALG_WEP:
|
|
hk.kv_type = ATH9K_CIPHER_WEP;
|
|
break;
|
|
case ALG_TKIP:
|
|
hk.kv_type = ATH9K_CIPHER_TKIP;
|
|
break;
|
|
case ALG_CCMP:
|
|
hk.kv_type = ATH9K_CIPHER_AES_CCM;
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
hk.kv_len = key->keylen;
|
|
memcpy(hk.kv_val, key->key, key->keylen);
|
|
|
|
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
|
|
/* For now, use the default keys for broadcast keys. This may
|
|
* need to change with virtual interfaces. */
|
|
idx = key->keyidx;
|
|
} else if (key->keyidx) {
|
|
if (WARN_ON(!sta))
|
|
return -EOPNOTSUPP;
|
|
mac = sta->addr;
|
|
|
|
if (vif->type != NL80211_IFTYPE_AP) {
|
|
/* Only keyidx 0 should be used with unicast key, but
|
|
* allow this for client mode for now. */
|
|
idx = key->keyidx;
|
|
} else
|
|
return -EIO;
|
|
} else {
|
|
if (WARN_ON(!sta))
|
|
return -EOPNOTSUPP;
|
|
mac = sta->addr;
|
|
|
|
if (key->alg == ALG_TKIP)
|
|
idx = ath_reserve_key_cache_slot_tkip(sc);
|
|
else
|
|
idx = ath_reserve_key_cache_slot(sc);
|
|
if (idx < 0)
|
|
return -ENOSPC; /* no free key cache entries */
|
|
}
|
|
|
|
if (key->alg == ALG_TKIP)
|
|
ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
|
|
vif->type == NL80211_IFTYPE_AP);
|
|
else
|
|
ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
|
|
|
|
if (!ret)
|
|
return -EIO;
|
|
|
|
set_bit(idx, sc->keymap);
|
|
if (key->alg == ALG_TKIP) {
|
|
set_bit(idx + 64, sc->keymap);
|
|
if (sc->splitmic) {
|
|
set_bit(idx + 32, sc->keymap);
|
|
set_bit(idx + 64 + 32, sc->keymap);
|
|
}
|
|
}
|
|
|
|
return idx;
|
|
}
|
|
|
|
static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
|
|
{
|
|
ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
|
|
if (key->hw_key_idx < IEEE80211_WEP_NKID)
|
|
return;
|
|
|
|
clear_bit(key->hw_key_idx, sc->keymap);
|
|
if (key->alg != ALG_TKIP)
|
|
return;
|
|
|
|
clear_bit(key->hw_key_idx + 64, sc->keymap);
|
|
if (sc->splitmic) {
|
|
clear_bit(key->hw_key_idx + 32, sc->keymap);
|
|
clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
|
|
}
|
|
}
|
|
|
|
static void setup_ht_cap(struct ath_softc *sc,
|
|
struct ieee80211_sta_ht_cap *ht_info)
|
|
{
|
|
u8 tx_streams, rx_streams;
|
|
|
|
ht_info->ht_supported = true;
|
|
ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
|
|
IEEE80211_HT_CAP_SM_PS |
|
|
IEEE80211_HT_CAP_SGI_40 |
|
|
IEEE80211_HT_CAP_DSSSCCK40;
|
|
|
|
ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
|
|
ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
|
|
|
|
/* set up supported mcs set */
|
|
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
|
|
tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
|
|
rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
|
|
|
|
if (tx_streams != rx_streams) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
|
|
tx_streams, rx_streams);
|
|
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
|
|
ht_info->mcs.tx_params |= ((tx_streams - 1) <<
|
|
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
|
|
}
|
|
|
|
ht_info->mcs.rx_mask[0] = 0xff;
|
|
if (rx_streams >= 2)
|
|
ht_info->mcs.rx_mask[1] = 0xff;
|
|
|
|
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
|
|
}
|
|
|
|
static void ath9k_bss_assoc_info(struct ath_softc *sc,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_bss_conf *bss_conf)
|
|
{
|
|
|
|
if (bss_conf->assoc) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
|
|
bss_conf->aid, sc->curbssid);
|
|
|
|
/* New association, store aid */
|
|
sc->curaid = bss_conf->aid;
|
|
ath9k_hw_write_associd(sc);
|
|
|
|
/*
|
|
* Request a re-configuration of Beacon related timers
|
|
* on the receipt of the first Beacon frame (i.e.,
|
|
* after time sync with the AP).
|
|
*/
|
|
sc->sc_flags |= SC_OP_BEACON_SYNC;
|
|
|
|
/* Configure the beacon */
|
|
ath_beacon_config(sc, vif);
|
|
|
|
/* Reset rssi stats */
|
|
sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
|
|
|
|
ath_start_ani(sc);
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
|
|
sc->curaid = 0;
|
|
/* Stop ANI */
|
|
del_timer_sync(&sc->ani.timer);
|
|
}
|
|
}
|
|
|
|
/********************************/
|
|
/* LED functions */
|
|
/********************************/
|
|
|
|
static void ath_led_blink_work(struct work_struct *work)
|
|
{
|
|
struct ath_softc *sc = container_of(work, struct ath_softc,
|
|
ath_led_blink_work.work);
|
|
|
|
if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
|
|
return;
|
|
|
|
if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
|
|
(sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
|
|
else
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
|
|
(sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
|
|
|
|
queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
|
|
(sc->sc_flags & SC_OP_LED_ON) ?
|
|
msecs_to_jiffies(sc->led_off_duration) :
|
|
msecs_to_jiffies(sc->led_on_duration));
|
|
|
|
sc->led_on_duration = sc->led_on_cnt ?
|
|
max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
|
|
ATH_LED_ON_DURATION_IDLE;
|
|
sc->led_off_duration = sc->led_off_cnt ?
|
|
max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
|
|
ATH_LED_OFF_DURATION_IDLE;
|
|
sc->led_on_cnt = sc->led_off_cnt = 0;
|
|
if (sc->sc_flags & SC_OP_LED_ON)
|
|
sc->sc_flags &= ~SC_OP_LED_ON;
|
|
else
|
|
sc->sc_flags |= SC_OP_LED_ON;
|
|
}
|
|
|
|
static void ath_led_brightness(struct led_classdev *led_cdev,
|
|
enum led_brightness brightness)
|
|
{
|
|
struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
|
|
struct ath_softc *sc = led->sc;
|
|
|
|
switch (brightness) {
|
|
case LED_OFF:
|
|
if (led->led_type == ATH_LED_ASSOC ||
|
|
led->led_type == ATH_LED_RADIO) {
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
|
|
(led->led_type == ATH_LED_RADIO));
|
|
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
|
|
if (led->led_type == ATH_LED_RADIO)
|
|
sc->sc_flags &= ~SC_OP_LED_ON;
|
|
} else {
|
|
sc->led_off_cnt++;
|
|
}
|
|
break;
|
|
case LED_FULL:
|
|
if (led->led_type == ATH_LED_ASSOC) {
|
|
sc->sc_flags |= SC_OP_LED_ASSOCIATED;
|
|
queue_delayed_work(sc->hw->workqueue,
|
|
&sc->ath_led_blink_work, 0);
|
|
} else if (led->led_type == ATH_LED_RADIO) {
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
|
|
sc->sc_flags |= SC_OP_LED_ON;
|
|
} else {
|
|
sc->led_on_cnt++;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
|
|
char *trigger)
|
|
{
|
|
int ret;
|
|
|
|
led->sc = sc;
|
|
led->led_cdev.name = led->name;
|
|
led->led_cdev.default_trigger = trigger;
|
|
led->led_cdev.brightness_set = ath_led_brightness;
|
|
|
|
ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
|
|
if (ret)
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Failed to register led:%s", led->name);
|
|
else
|
|
led->registered = 1;
|
|
return ret;
|
|
}
|
|
|
|
static void ath_unregister_led(struct ath_led *led)
|
|
{
|
|
if (led->registered) {
|
|
led_classdev_unregister(&led->led_cdev);
|
|
led->registered = 0;
|
|
}
|
|
}
|
|
|
|
static void ath_deinit_leds(struct ath_softc *sc)
|
|
{
|
|
cancel_delayed_work_sync(&sc->ath_led_blink_work);
|
|
ath_unregister_led(&sc->assoc_led);
|
|
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
|
|
ath_unregister_led(&sc->tx_led);
|
|
ath_unregister_led(&sc->rx_led);
|
|
ath_unregister_led(&sc->radio_led);
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
|
|
}
|
|
|
|
static void ath_init_leds(struct ath_softc *sc)
|
|
{
|
|
char *trigger;
|
|
int ret;
|
|
|
|
/* Configure gpio 1 for output */
|
|
ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
|
|
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
|
|
/* LED off, active low */
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
|
|
|
|
INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
|
|
|
|
trigger = ieee80211_get_radio_led_name(sc->hw);
|
|
snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
|
|
"ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
|
|
ret = ath_register_led(sc, &sc->radio_led, trigger);
|
|
sc->radio_led.led_type = ATH_LED_RADIO;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
trigger = ieee80211_get_assoc_led_name(sc->hw);
|
|
snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
|
|
"ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
|
|
ret = ath_register_led(sc, &sc->assoc_led, trigger);
|
|
sc->assoc_led.led_type = ATH_LED_ASSOC;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
trigger = ieee80211_get_tx_led_name(sc->hw);
|
|
snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
|
|
"ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
|
|
ret = ath_register_led(sc, &sc->tx_led, trigger);
|
|
sc->tx_led.led_type = ATH_LED_TX;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
trigger = ieee80211_get_rx_led_name(sc->hw);
|
|
snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
|
|
"ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
|
|
ret = ath_register_led(sc, &sc->rx_led, trigger);
|
|
sc->rx_led.led_type = ATH_LED_RX;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
ath_deinit_leds(sc);
|
|
}
|
|
|
|
void ath_radio_enable(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ieee80211_channel *channel = sc->hw->conf.channel;
|
|
int r;
|
|
|
|
ath9k_ps_wakeup(sc);
|
|
ath9k_hw_configpcipowersave(ah, 0);
|
|
|
|
if (!ah->curchan)
|
|
ah->curchan = ath_get_curchannel(sc, sc->hw);
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
r = ath9k_hw_reset(ah, ah->curchan, false);
|
|
if (r) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset channel %u (%uMhz) ",
|
|
"reset status %d\n",
|
|
channel->center_freq, r);
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
ath_update_txpow(sc);
|
|
if (ath_startrecv(sc) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to restart recv logic\n");
|
|
return;
|
|
}
|
|
|
|
if (sc->sc_flags & SC_OP_BEACONS)
|
|
ath_beacon_config(sc, NULL); /* restart beacons */
|
|
|
|
/* Re-Enable interrupts */
|
|
ath9k_hw_set_interrupts(ah, sc->imask);
|
|
|
|
/* Enable LED */
|
|
ath9k_hw_cfg_output(ah, ATH_LED_PIN,
|
|
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
|
|
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
|
|
|
|
ieee80211_wake_queues(sc->hw);
|
|
ath9k_ps_restore(sc);
|
|
}
|
|
|
|
void ath_radio_disable(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ieee80211_channel *channel = sc->hw->conf.channel;
|
|
int r;
|
|
|
|
ath9k_ps_wakeup(sc);
|
|
ieee80211_stop_queues(sc->hw);
|
|
|
|
/* Disable LED */
|
|
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
|
|
ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
|
|
|
|
/* Disable interrupts */
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
|
|
ath_drain_all_txq(sc, false); /* clear pending tx frames */
|
|
ath_stoprecv(sc); /* turn off frame recv */
|
|
ath_flushrecv(sc); /* flush recv queue */
|
|
|
|
if (!ah->curchan)
|
|
ah->curchan = ath_get_curchannel(sc, sc->hw);
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
r = ath9k_hw_reset(ah, ah->curchan, false);
|
|
if (r) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset channel %u (%uMhz) "
|
|
"reset status %d\n",
|
|
channel->center_freq, r);
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
ath9k_hw_phy_disable(ah);
|
|
ath9k_hw_configpcipowersave(ah, 1);
|
|
ath9k_ps_restore(sc);
|
|
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
|
|
}
|
|
|
|
/*******************/
|
|
/* Rfkill */
|
|
/*******************/
|
|
|
|
static bool ath_is_rfkill_set(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
|
|
return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
|
|
ah->rfkill_polarity;
|
|
}
|
|
|
|
static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
bool blocked = !!ath_is_rfkill_set(sc);
|
|
|
|
wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
|
|
|
|
if (blocked)
|
|
ath_radio_disable(sc);
|
|
else
|
|
ath_radio_enable(sc);
|
|
}
|
|
|
|
static void ath_start_rfkill_poll(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
|
|
if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
wiphy_rfkill_start_polling(sc->hw->wiphy);
|
|
}
|
|
|
|
void ath_cleanup(struct ath_softc *sc)
|
|
{
|
|
ath_detach(sc);
|
|
free_irq(sc->irq, sc);
|
|
ath_bus_cleanup(sc);
|
|
kfree(sc->sec_wiphy);
|
|
ieee80211_free_hw(sc->hw);
|
|
}
|
|
|
|
void ath_detach(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
int i = 0;
|
|
|
|
ath9k_ps_wakeup(sc);
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
|
|
|
|
ath_deinit_leds(sc);
|
|
cancel_work_sync(&sc->chan_work);
|
|
cancel_delayed_work_sync(&sc->wiphy_work);
|
|
cancel_delayed_work_sync(&sc->tx_complete_work);
|
|
|
|
for (i = 0; i < sc->num_sec_wiphy; i++) {
|
|
struct ath_wiphy *aphy = sc->sec_wiphy[i];
|
|
if (aphy == NULL)
|
|
continue;
|
|
sc->sec_wiphy[i] = NULL;
|
|
ieee80211_unregister_hw(aphy->hw);
|
|
ieee80211_free_hw(aphy->hw);
|
|
}
|
|
ieee80211_unregister_hw(hw);
|
|
ath_rx_cleanup(sc);
|
|
ath_tx_cleanup(sc);
|
|
|
|
tasklet_kill(&sc->intr_tq);
|
|
tasklet_kill(&sc->bcon_tasklet);
|
|
|
|
if (!(sc->sc_flags & SC_OP_INVALID))
|
|
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
|
|
|
|
/* cleanup tx queues */
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
|
|
|
|
ath9k_hw_detach(sc->sc_ah);
|
|
ath9k_exit_debug(sc);
|
|
}
|
|
|
|
static int ath9k_reg_notifier(struct wiphy *wiphy,
|
|
struct regulatory_request *request)
|
|
{
|
|
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ath_regulatory *reg = &sc->sc_ah->regulatory;
|
|
|
|
return ath_reg_notifier_apply(wiphy, request, reg);
|
|
}
|
|
|
|
static int ath_init(u16 devid, struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = NULL;
|
|
int status;
|
|
int error = 0, i;
|
|
int csz = 0;
|
|
|
|
/* XXX: hardware will not be ready until ath_open() being called */
|
|
sc->sc_flags |= SC_OP_INVALID;
|
|
|
|
if (ath9k_init_debug(sc) < 0)
|
|
printk(KERN_ERR "Unable to create debugfs files\n");
|
|
|
|
spin_lock_init(&sc->wiphy_lock);
|
|
spin_lock_init(&sc->sc_resetlock);
|
|
spin_lock_init(&sc->sc_serial_rw);
|
|
spin_lock_init(&sc->ani_lock);
|
|
spin_lock_init(&sc->sc_pm_lock);
|
|
mutex_init(&sc->mutex);
|
|
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
|
|
tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
|
|
(unsigned long)sc);
|
|
|
|
/*
|
|
* Cache line size is used to size and align various
|
|
* structures used to communicate with the hardware.
|
|
*/
|
|
ath_read_cachesize(sc, &csz);
|
|
/* XXX assert csz is non-zero */
|
|
sc->cachelsz = csz << 2; /* convert to bytes */
|
|
|
|
ah = ath9k_hw_attach(devid, sc, &status);
|
|
if (ah == NULL) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to attach hardware; HAL status %d\n", status);
|
|
error = -ENXIO;
|
|
goto bad;
|
|
}
|
|
sc->sc_ah = ah;
|
|
|
|
/* Get the hardware key cache size. */
|
|
sc->keymax = ah->caps.keycache_size;
|
|
if (sc->keymax > ATH_KEYMAX) {
|
|
DPRINTF(sc, ATH_DBG_ANY,
|
|
"Warning, using only %u entries in %u key cache\n",
|
|
ATH_KEYMAX, sc->keymax);
|
|
sc->keymax = ATH_KEYMAX;
|
|
}
|
|
|
|
/*
|
|
* Reset the key cache since some parts do not
|
|
* reset the contents on initial power up.
|
|
*/
|
|
for (i = 0; i < sc->keymax; i++)
|
|
ath9k_hw_keyreset(ah, (u16) i);
|
|
|
|
if (error)
|
|
goto bad;
|
|
|
|
/* default to MONITOR mode */
|
|
sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
|
|
|
|
/* Setup rate tables */
|
|
|
|
ath_rate_attach(sc);
|
|
ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
|
|
ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
|
|
|
|
/*
|
|
* Allocate hardware transmit queues: one queue for
|
|
* beacon frames and one data queue for each QoS
|
|
* priority. Note that the hal handles reseting
|
|
* these queues at the needed time.
|
|
*/
|
|
sc->beacon.beaconq = ath_beaconq_setup(ah);
|
|
if (sc->beacon.beaconq == -1) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup a beacon xmit queue\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
|
|
if (sc->beacon.cabq == NULL) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup CAB xmit queue\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
|
|
ath_cabq_update(sc);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
|
|
sc->tx.hwq_map[i] = -1;
|
|
|
|
/* Setup data queues */
|
|
/* NB: ensure BK queue is the lowest priority h/w queue */
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup xmit queue for BK traffic\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup xmit queue for BE traffic\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup xmit queue for VI traffic\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup xmit queue for VO traffic\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
/* Initializes the noise floor to a reasonable default value.
|
|
* Later on this will be updated during ANI processing. */
|
|
|
|
sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
|
|
setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
|
|
|
|
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_TKIP, NULL)) {
|
|
/*
|
|
* Whether we should enable h/w TKIP MIC.
|
|
* XXX: if we don't support WME TKIP MIC, then we wouldn't
|
|
* report WMM capable, so it's always safe to turn on
|
|
* TKIP MIC in this case.
|
|
*/
|
|
ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
|
|
0, 1, NULL);
|
|
}
|
|
|
|
/*
|
|
* Check whether the separate key cache entries
|
|
* are required to handle both tx+rx MIC keys.
|
|
* With split mic keys the number of stations is limited
|
|
* to 27 otherwise 59.
|
|
*/
|
|
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_TKIP, NULL)
|
|
&& ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_MIC, NULL)
|
|
&& ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
|
|
0, NULL))
|
|
sc->splitmic = 1;
|
|
|
|
/* turn on mcast key search if possible */
|
|
if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
|
|
(void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
|
|
1, NULL);
|
|
|
|
sc->config.txpowlimit = ATH_TXPOWER_MAX;
|
|
|
|
/* 11n Capabilities */
|
|
if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
|
|
sc->sc_flags |= SC_OP_TXAGGR;
|
|
sc->sc_flags |= SC_OP_RXAGGR;
|
|
}
|
|
|
|
sc->tx_chainmask = ah->caps.tx_chainmask;
|
|
sc->rx_chainmask = ah->caps.rx_chainmask;
|
|
|
|
ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
|
|
sc->rx.defant = ath9k_hw_getdefantenna(ah);
|
|
|
|
if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
|
|
memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
|
|
|
|
sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
|
|
|
|
/* initialize beacon slots */
|
|
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
|
|
sc->beacon.bslot[i] = NULL;
|
|
sc->beacon.bslot_aphy[i] = NULL;
|
|
}
|
|
|
|
/* setup channels and rates */
|
|
|
|
sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
|
|
sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
|
|
sc->rates[IEEE80211_BAND_2GHZ];
|
|
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
|
|
sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
|
|
ARRAY_SIZE(ath9k_2ghz_chantable);
|
|
|
|
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
|
|
sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
|
|
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
|
|
sc->rates[IEEE80211_BAND_5GHZ];
|
|
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
|
|
sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
|
|
ARRAY_SIZE(ath9k_5ghz_chantable);
|
|
}
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
|
|
ath9k_hw_btcoex_enable(sc->sc_ah);
|
|
|
|
return 0;
|
|
bad2:
|
|
/* cleanup tx queues */
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
|
|
bad:
|
|
if (ah)
|
|
ath9k_hw_detach(ah);
|
|
ath9k_exit_debug(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
|
|
{
|
|
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
|
|
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
|
|
IEEE80211_HW_SIGNAL_DBM |
|
|
IEEE80211_HW_AMPDU_AGGREGATION |
|
|
IEEE80211_HW_SUPPORTS_PS |
|
|
IEEE80211_HW_PS_NULLFUNC_STACK |
|
|
IEEE80211_HW_SPECTRUM_MGMT;
|
|
|
|
if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
|
|
hw->flags |= IEEE80211_HW_MFP_CAPABLE;
|
|
|
|
hw->wiphy->interface_modes =
|
|
BIT(NL80211_IFTYPE_AP) |
|
|
BIT(NL80211_IFTYPE_STATION) |
|
|
BIT(NL80211_IFTYPE_ADHOC) |
|
|
BIT(NL80211_IFTYPE_MESH_POINT);
|
|
|
|
hw->queues = 4;
|
|
hw->max_rates = 4;
|
|
hw->channel_change_time = 5000;
|
|
hw->max_listen_interval = 10;
|
|
/* Hardware supports 10 but we use 4 */
|
|
hw->max_rate_tries = 4;
|
|
hw->sta_data_size = sizeof(struct ath_node);
|
|
hw->vif_data_size = sizeof(struct ath_vif);
|
|
|
|
hw->rate_control_algorithm = "ath9k_rate_control";
|
|
|
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
|
|
&sc->sbands[IEEE80211_BAND_2GHZ];
|
|
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
|
|
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
|
|
&sc->sbands[IEEE80211_BAND_5GHZ];
|
|
}
|
|
|
|
int ath_attach(u16 devid, struct ath_softc *sc)
|
|
{
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
int error = 0, i;
|
|
struct ath_regulatory *reg;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
|
|
|
|
error = ath_init(devid, sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* get mac address from hardware and set in mac80211 */
|
|
|
|
SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
|
|
|
|
ath_set_hw_capab(sc, hw);
|
|
|
|
error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
|
|
ath9k_reg_notifier);
|
|
if (error)
|
|
return error;
|
|
|
|
reg = &sc->sc_ah->regulatory;
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
|
|
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
|
|
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
|
|
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
|
|
}
|
|
|
|
/* initialize tx/rx engine */
|
|
error = ath_tx_init(sc, ATH_TXBUF);
|
|
if (error != 0)
|
|
goto error_attach;
|
|
|
|
error = ath_rx_init(sc, ATH_RXBUF);
|
|
if (error != 0)
|
|
goto error_attach;
|
|
|
|
INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
|
|
INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
|
|
sc->wiphy_scheduler_int = msecs_to_jiffies(500);
|
|
|
|
error = ieee80211_register_hw(hw);
|
|
|
|
if (!ath_is_world_regd(reg)) {
|
|
error = regulatory_hint(hw->wiphy, reg->alpha2);
|
|
if (error)
|
|
goto error_attach;
|
|
}
|
|
|
|
/* Initialize LED control */
|
|
ath_init_leds(sc);
|
|
|
|
ath_start_rfkill_poll(sc);
|
|
|
|
return 0;
|
|
|
|
error_attach:
|
|
/* cleanup tx queues */
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
|
|
|
|
ath9k_hw_detach(sc->sc_ah);
|
|
ath9k_exit_debug(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
int ath_reset(struct ath_softc *sc, bool retry_tx)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
int r;
|
|
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
ath_drain_all_txq(sc, retry_tx);
|
|
ath_stoprecv(sc);
|
|
ath_flushrecv(sc);
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
|
|
if (r)
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset hardware; reset status %d\n", r);
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
if (ath_startrecv(sc) != 0)
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
|
|
|
|
/*
|
|
* We may be doing a reset in response to a request
|
|
* that changes the channel so update any state that
|
|
* might change as a result.
|
|
*/
|
|
ath_cache_conf_rate(sc, &hw->conf);
|
|
|
|
ath_update_txpow(sc);
|
|
|
|
if (sc->sc_flags & SC_OP_BEACONS)
|
|
ath_beacon_config(sc, NULL); /* restart beacons */
|
|
|
|
ath9k_hw_set_interrupts(ah, sc->imask);
|
|
|
|
if (retry_tx) {
|
|
int i;
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
spin_lock_bh(&sc->tx.txq[i].axq_lock);
|
|
ath_txq_schedule(sc, &sc->tx.txq[i]);
|
|
spin_unlock_bh(&sc->tx.txq[i].axq_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* This function will allocate both the DMA descriptor structure, and the
|
|
* buffers it contains. These are used to contain the descriptors used
|
|
* by the system.
|
|
*/
|
|
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
|
|
struct list_head *head, const char *name,
|
|
int nbuf, int ndesc)
|
|
{
|
|
#define DS2PHYS(_dd, _ds) \
|
|
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
|
|
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
|
|
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
|
|
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
int i, bsize, error;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
|
|
name, nbuf, ndesc);
|
|
|
|
INIT_LIST_HEAD(head);
|
|
/* ath_desc must be a multiple of DWORDs */
|
|
if ((sizeof(struct ath_desc) % 4) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
|
|
ASSERT((sizeof(struct ath_desc) % 4) == 0);
|
|
error = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
|
|
|
|
/*
|
|
* Need additional DMA memory because we can't use
|
|
* descriptors that cross the 4K page boundary. Assume
|
|
* one skipped descriptor per 4K page.
|
|
*/
|
|
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
|
|
u32 ndesc_skipped =
|
|
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
|
|
u32 dma_len;
|
|
|
|
while (ndesc_skipped) {
|
|
dma_len = ndesc_skipped * sizeof(struct ath_desc);
|
|
dd->dd_desc_len += dma_len;
|
|
|
|
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
|
|
};
|
|
}
|
|
|
|
/* allocate descriptors */
|
|
dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
|
|
&dd->dd_desc_paddr, GFP_KERNEL);
|
|
if (dd->dd_desc == NULL) {
|
|
error = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
ds = dd->dd_desc;
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
|
|
name, ds, (u32) dd->dd_desc_len,
|
|
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
|
|
|
|
/* allocate buffers */
|
|
bsize = sizeof(struct ath_buf) * nbuf;
|
|
bf = kzalloc(bsize, GFP_KERNEL);
|
|
if (bf == NULL) {
|
|
error = -ENOMEM;
|
|
goto fail2;
|
|
}
|
|
dd->dd_bufptr = bf;
|
|
|
|
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(dd, ds);
|
|
|
|
if (!(sc->sc_ah->caps.hw_caps &
|
|
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
|
|
/*
|
|
* Skip descriptor addresses which can cause 4KB
|
|
* boundary crossing (addr + length) with a 32 dword
|
|
* descriptor fetch.
|
|
*/
|
|
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
|
|
ASSERT((caddr_t) bf->bf_desc <
|
|
((caddr_t) dd->dd_desc +
|
|
dd->dd_desc_len));
|
|
|
|
ds += ndesc;
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(dd, ds);
|
|
}
|
|
}
|
|
list_add_tail(&bf->list, head);
|
|
}
|
|
return 0;
|
|
fail2:
|
|
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
|
|
dd->dd_desc_paddr);
|
|
fail:
|
|
memset(dd, 0, sizeof(*dd));
|
|
return error;
|
|
#undef ATH_DESC_4KB_BOUND_CHECK
|
|
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
|
|
#undef DS2PHYS
|
|
}
|
|
|
|
void ath_descdma_cleanup(struct ath_softc *sc,
|
|
struct ath_descdma *dd,
|
|
struct list_head *head)
|
|
{
|
|
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
|
|
dd->dd_desc_paddr);
|
|
|
|
INIT_LIST_HEAD(head);
|
|
kfree(dd->dd_bufptr);
|
|
memset(dd, 0, sizeof(*dd));
|
|
}
|
|
|
|
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
|
|
{
|
|
int qnum;
|
|
|
|
switch (queue) {
|
|
case 0:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
|
|
break;
|
|
case 1:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
|
|
break;
|
|
case 2:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
|
|
break;
|
|
case 3:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
|
|
break;
|
|
default:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
|
|
break;
|
|
}
|
|
|
|
return qnum;
|
|
}
|
|
|
|
int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
|
|
{
|
|
int qnum;
|
|
|
|
switch (queue) {
|
|
case ATH9K_WME_AC_VO:
|
|
qnum = 0;
|
|
break;
|
|
case ATH9K_WME_AC_VI:
|
|
qnum = 1;
|
|
break;
|
|
case ATH9K_WME_AC_BE:
|
|
qnum = 2;
|
|
break;
|
|
case ATH9K_WME_AC_BK:
|
|
qnum = 3;
|
|
break;
|
|
default:
|
|
qnum = -1;
|
|
break;
|
|
}
|
|
|
|
return qnum;
|
|
}
|
|
|
|
/* XXX: Remove me once we don't depend on ath9k_channel for all
|
|
* this redundant data */
|
|
void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
|
|
struct ath9k_channel *ichan)
|
|
{
|
|
struct ieee80211_channel *chan = hw->conf.channel;
|
|
struct ieee80211_conf *conf = &hw->conf;
|
|
|
|
ichan->channel = chan->center_freq;
|
|
ichan->chan = chan;
|
|
|
|
if (chan->band == IEEE80211_BAND_2GHZ) {
|
|
ichan->chanmode = CHANNEL_G;
|
|
ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
|
|
} else {
|
|
ichan->chanmode = CHANNEL_A;
|
|
ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
|
|
}
|
|
|
|
sc->tx_chan_width = ATH9K_HT_MACMODE_20;
|
|
|
|
if (conf_is_ht(conf)) {
|
|
if (conf_is_ht40(conf))
|
|
sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
|
|
|
|
ichan->chanmode = ath_get_extchanmode(sc, chan,
|
|
conf->channel_type);
|
|
}
|
|
}
|
|
|
|
/**********************/
|
|
/* mac80211 callbacks */
|
|
/**********************/
|
|
|
|
static int ath9k_start(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ieee80211_channel *curchan = hw->conf.channel;
|
|
struct ath9k_channel *init_channel;
|
|
int r;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
|
|
"initial channel: %d MHz\n", curchan->center_freq);
|
|
|
|
mutex_lock(&sc->mutex);
|
|
|
|
if (ath9k_wiphy_started(sc)) {
|
|
if (sc->chan_idx == curchan->hw_value) {
|
|
/*
|
|
* Already on the operational channel, the new wiphy
|
|
* can be marked active.
|
|
*/
|
|
aphy->state = ATH_WIPHY_ACTIVE;
|
|
ieee80211_wake_queues(hw);
|
|
} else {
|
|
/*
|
|
* Another wiphy is on another channel, start the new
|
|
* wiphy in paused state.
|
|
*/
|
|
aphy->state = ATH_WIPHY_PAUSED;
|
|
ieee80211_stop_queues(hw);
|
|
}
|
|
mutex_unlock(&sc->mutex);
|
|
return 0;
|
|
}
|
|
aphy->state = ATH_WIPHY_ACTIVE;
|
|
|
|
/* setup initial channel */
|
|
|
|
sc->chan_idx = curchan->hw_value;
|
|
|
|
init_channel = ath_get_curchannel(sc, hw);
|
|
|
|
/* Reset SERDES registers */
|
|
ath9k_hw_configpcipowersave(sc->sc_ah, 0);
|
|
|
|
/*
|
|
* The basic interface to setting the hardware in a good
|
|
* state is ``reset''. On return the hardware is known to
|
|
* be powered up and with interrupts disabled. This must
|
|
* be followed by initialization of the appropriate bits
|
|
* and then setup of the interrupt mask.
|
|
*/
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
|
|
if (r) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset hardware; reset status %d "
|
|
"(freq %u MHz)\n", r,
|
|
curchan->center_freq);
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
goto mutex_unlock;
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
/*
|
|
* This is needed only to setup initial state
|
|
* but it's best done after a reset.
|
|
*/
|
|
ath_update_txpow(sc);
|
|
|
|
/*
|
|
* Setup the hardware after reset:
|
|
* The receive engine is set going.
|
|
* Frame transmit is handled entirely
|
|
* in the frame output path; there's nothing to do
|
|
* here except setup the interrupt mask.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
|
|
r = -EIO;
|
|
goto mutex_unlock;
|
|
}
|
|
|
|
/* Setup our intr mask. */
|
|
sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
|
|
| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
|
|
| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
|
|
sc->imask |= ATH9K_INT_GTT;
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
|
|
sc->imask |= ATH9K_INT_CST;
|
|
|
|
ath_cache_conf_rate(sc, &hw->conf);
|
|
|
|
sc->sc_flags &= ~SC_OP_INVALID;
|
|
|
|
/* Disable BMISS interrupt when we're not associated */
|
|
sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
|
|
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
|
|
|
|
ieee80211_wake_queues(hw);
|
|
|
|
queue_delayed_work(sc->hw->workqueue, &sc->tx_complete_work, 0);
|
|
|
|
mutex_unlock:
|
|
mutex_unlock(&sc->mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int ath9k_tx(struct ieee80211_hw *hw,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ath_tx_control txctl;
|
|
int hdrlen, padsize;
|
|
|
|
if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
|
|
printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
|
|
"%d\n", wiphy_name(hw->wiphy), aphy->state);
|
|
goto exit;
|
|
}
|
|
|
|
if (sc->hw->conf.flags & IEEE80211_CONF_PS) {
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
/*
|
|
* mac80211 does not set PM field for normal data frames, so we
|
|
* need to update that based on the current PS mode.
|
|
*/
|
|
if (ieee80211_is_data(hdr->frame_control) &&
|
|
!ieee80211_is_nullfunc(hdr->frame_control) &&
|
|
!ieee80211_has_pm(hdr->frame_control)) {
|
|
DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
|
|
"while in PS mode\n");
|
|
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
|
|
}
|
|
}
|
|
|
|
if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
|
|
/*
|
|
* We are using PS-Poll and mac80211 can request TX while in
|
|
* power save mode. Need to wake up hardware for the TX to be
|
|
* completed and if needed, also for RX of buffered frames.
|
|
*/
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
ath9k_ps_wakeup(sc);
|
|
ath9k_hw_setrxabort(sc->sc_ah, 0);
|
|
if (ieee80211_is_pspoll(hdr->frame_control)) {
|
|
DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
|
|
"buffered frame\n");
|
|
sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
|
|
sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
|
|
}
|
|
/*
|
|
* The actual restore operation will happen only after
|
|
* the sc_flags bit is cleared. We are just dropping
|
|
* the ps_usecount here.
|
|
*/
|
|
ath9k_ps_restore(sc);
|
|
}
|
|
|
|
memset(&txctl, 0, sizeof(struct ath_tx_control));
|
|
|
|
/*
|
|
* As a temporary workaround, assign seq# here; this will likely need
|
|
* to be cleaned up to work better with Beacon transmission and virtual
|
|
* BSSes.
|
|
*/
|
|
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
|
|
sc->tx.seq_no += 0x10;
|
|
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
|
|
hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
|
|
}
|
|
|
|
/* Add the padding after the header if this is not already done */
|
|
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
|
|
if (hdrlen & 3) {
|
|
padsize = hdrlen % 4;
|
|
if (skb_headroom(skb) < padsize)
|
|
return -1;
|
|
skb_push(skb, padsize);
|
|
memmove(skb->data, skb->data + padsize, hdrlen);
|
|
}
|
|
|
|
/* Check if a tx queue is available */
|
|
|
|
txctl.txq = ath_test_get_txq(sc, skb);
|
|
if (!txctl.txq)
|
|
goto exit;
|
|
|
|
DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
|
|
|
|
if (ath_tx_start(hw, skb, &txctl) != 0) {
|
|
DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
|
|
goto exit;
|
|
}
|
|
|
|
return 0;
|
|
exit:
|
|
dev_kfree_skb_any(skb);
|
|
return 0;
|
|
}
|
|
|
|
static void ath9k_stop(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
|
|
aphy->state = ATH_WIPHY_INACTIVE;
|
|
|
|
if (sc->sc_flags & SC_OP_INVALID) {
|
|
DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&sc->mutex);
|
|
|
|
if (ath9k_wiphy_started(sc)) {
|
|
mutex_unlock(&sc->mutex);
|
|
return; /* another wiphy still in use */
|
|
}
|
|
|
|
/* make sure h/w will not generate any interrupt
|
|
* before setting the invalid flag. */
|
|
ath9k_hw_set_interrupts(sc->sc_ah, 0);
|
|
|
|
if (!(sc->sc_flags & SC_OP_INVALID)) {
|
|
ath_drain_all_txq(sc, false);
|
|
ath_stoprecv(sc);
|
|
ath9k_hw_phy_disable(sc->sc_ah);
|
|
} else
|
|
sc->rx.rxlink = NULL;
|
|
|
|
wiphy_rfkill_stop_polling(sc->hw->wiphy);
|
|
|
|
/* disable HAL and put h/w to sleep */
|
|
ath9k_hw_disable(sc->sc_ah);
|
|
ath9k_hw_configpcipowersave(sc->sc_ah, 1);
|
|
|
|
sc->sc_flags |= SC_OP_INVALID;
|
|
|
|
mutex_unlock(&sc->mutex);
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
|
|
}
|
|
|
|
static int ath9k_add_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_if_init_conf *conf)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ath_vif *avp = (void *)conf->vif->drv_priv;
|
|
enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
|
|
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
|
|
sc->nvifs > 0) {
|
|
ret = -ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
switch (conf->type) {
|
|
case NL80211_IFTYPE_STATION:
|
|
ic_opmode = NL80211_IFTYPE_STATION;
|
|
break;
|
|
case NL80211_IFTYPE_ADHOC:
|
|
case NL80211_IFTYPE_AP:
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
if (sc->nbcnvifs >= ATH_BCBUF) {
|
|
ret = -ENOBUFS;
|
|
goto out;
|
|
}
|
|
ic_opmode = conf->type;
|
|
break;
|
|
default:
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Interface type %d not yet supported\n", conf->type);
|
|
ret = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
|
|
|
|
/* Set the VIF opmode */
|
|
avp->av_opmode = ic_opmode;
|
|
avp->av_bslot = -1;
|
|
|
|
sc->nvifs++;
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
|
|
ath9k_set_bssid_mask(hw);
|
|
|
|
if (sc->nvifs > 1)
|
|
goto out; /* skip global settings for secondary vif */
|
|
|
|
if (ic_opmode == NL80211_IFTYPE_AP) {
|
|
ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
|
|
sc->sc_flags |= SC_OP_TSF_RESET;
|
|
}
|
|
|
|
/* Set the device opmode */
|
|
sc->sc_ah->opmode = ic_opmode;
|
|
|
|
/*
|
|
* Enable MIB interrupts when there are hardware phy counters.
|
|
* Note we only do this (at the moment) for station mode.
|
|
*/
|
|
if ((conf->type == NL80211_IFTYPE_STATION) ||
|
|
(conf->type == NL80211_IFTYPE_ADHOC) ||
|
|
(conf->type == NL80211_IFTYPE_MESH_POINT)) {
|
|
if (ath9k_hw_phycounters(sc->sc_ah))
|
|
sc->imask |= ATH9K_INT_MIB;
|
|
sc->imask |= ATH9K_INT_TSFOOR;
|
|
}
|
|
|
|
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
|
|
|
|
if (conf->type == NL80211_IFTYPE_AP ||
|
|
conf->type == NL80211_IFTYPE_ADHOC ||
|
|
conf->type == NL80211_IFTYPE_MONITOR)
|
|
ath_start_ani(sc);
|
|
|
|
out:
|
|
mutex_unlock(&sc->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void ath9k_remove_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_if_init_conf *conf)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ath_vif *avp = (void *)conf->vif->drv_priv;
|
|
int i;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
|
|
|
|
mutex_lock(&sc->mutex);
|
|
|
|
/* Stop ANI */
|
|
del_timer_sync(&sc->ani.timer);
|
|
|
|
/* Reclaim beacon resources */
|
|
if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
|
|
(sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
|
|
(sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
|
|
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
|
|
ath_beacon_return(sc, avp);
|
|
}
|
|
|
|
sc->sc_flags &= ~SC_OP_BEACONS;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
|
|
if (sc->beacon.bslot[i] == conf->vif) {
|
|
printk(KERN_DEBUG "%s: vif had allocated beacon "
|
|
"slot\n", __func__);
|
|
sc->beacon.bslot[i] = NULL;
|
|
sc->beacon.bslot_aphy[i] = NULL;
|
|
}
|
|
}
|
|
|
|
sc->nvifs--;
|
|
|
|
mutex_unlock(&sc->mutex);
|
|
}
|
|
|
|
static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ieee80211_conf *conf = &hw->conf;
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
bool all_wiphys_idle = false, disable_radio = false;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
|
|
/* Leave this as the first check */
|
|
if (changed & IEEE80211_CONF_CHANGE_IDLE) {
|
|
|
|
spin_lock_bh(&sc->wiphy_lock);
|
|
all_wiphys_idle = ath9k_all_wiphys_idle(sc);
|
|
spin_unlock_bh(&sc->wiphy_lock);
|
|
|
|
if (conf->flags & IEEE80211_CONF_IDLE){
|
|
if (all_wiphys_idle)
|
|
disable_radio = true;
|
|
}
|
|
else if (all_wiphys_idle) {
|
|
ath_radio_enable(sc);
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"not-idle: enabling radio\n");
|
|
}
|
|
}
|
|
|
|
if (changed & IEEE80211_CONF_CHANGE_PS) {
|
|
if (conf->flags & IEEE80211_CONF_PS) {
|
|
if (!(ah->caps.hw_caps &
|
|
ATH9K_HW_CAP_AUTOSLEEP)) {
|
|
if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
|
|
sc->imask |= ATH9K_INT_TIM_TIMER;
|
|
ath9k_hw_set_interrupts(sc->sc_ah,
|
|
sc->imask);
|
|
}
|
|
ath9k_hw_setrxabort(sc->sc_ah, 1);
|
|
}
|
|
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
|
|
} else {
|
|
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
|
|
if (!(ah->caps.hw_caps &
|
|
ATH9K_HW_CAP_AUTOSLEEP)) {
|
|
ath9k_hw_setrxabort(sc->sc_ah, 0);
|
|
sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
|
|
SC_OP_WAIT_FOR_CAB |
|
|
SC_OP_WAIT_FOR_PSPOLL_DATA |
|
|
SC_OP_WAIT_FOR_TX_ACK);
|
|
if (sc->imask & ATH9K_INT_TIM_TIMER) {
|
|
sc->imask &= ~ATH9K_INT_TIM_TIMER;
|
|
ath9k_hw_set_interrupts(sc->sc_ah,
|
|
sc->imask);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
|
|
struct ieee80211_channel *curchan = hw->conf.channel;
|
|
int pos = curchan->hw_value;
|
|
|
|
aphy->chan_idx = pos;
|
|
aphy->chan_is_ht = conf_is_ht(conf);
|
|
|
|
if (aphy->state == ATH_WIPHY_SCAN ||
|
|
aphy->state == ATH_WIPHY_ACTIVE)
|
|
ath9k_wiphy_pause_all_forced(sc, aphy);
|
|
else {
|
|
/*
|
|
* Do not change operational channel based on a paused
|
|
* wiphy changes.
|
|
*/
|
|
goto skip_chan_change;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
|
|
curchan->center_freq);
|
|
|
|
/* XXX: remove me eventualy */
|
|
ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
|
|
|
|
ath_update_chainmask(sc, conf_is_ht(conf));
|
|
|
|
if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
|
|
mutex_unlock(&sc->mutex);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
skip_chan_change:
|
|
if (changed & IEEE80211_CONF_CHANGE_POWER)
|
|
sc->config.txpowlimit = 2 * conf->power_level;
|
|
|
|
if (disable_radio) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
|
|
ath_radio_disable(sc);
|
|
}
|
|
|
|
mutex_unlock(&sc->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SUPPORTED_FILTERS \
|
|
(FIF_PROMISC_IN_BSS | \
|
|
FIF_ALLMULTI | \
|
|
FIF_CONTROL | \
|
|
FIF_OTHER_BSS | \
|
|
FIF_BCN_PRBRESP_PROMISC | \
|
|
FIF_FCSFAIL)
|
|
|
|
/* FIXME: sc->sc_full_reset ? */
|
|
static void ath9k_configure_filter(struct ieee80211_hw *hw,
|
|
unsigned int changed_flags,
|
|
unsigned int *total_flags,
|
|
int mc_count,
|
|
struct dev_mc_list *mclist)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
u32 rfilt;
|
|
|
|
changed_flags &= SUPPORTED_FILTERS;
|
|
*total_flags &= SUPPORTED_FILTERS;
|
|
|
|
sc->rx.rxfilter = *total_flags;
|
|
ath9k_ps_wakeup(sc);
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
|
|
ath9k_ps_restore(sc);
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
|
|
}
|
|
|
|
static void ath9k_sta_notify(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
enum sta_notify_cmd cmd,
|
|
struct ieee80211_sta *sta)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
|
|
switch (cmd) {
|
|
case STA_NOTIFY_ADD:
|
|
ath_node_attach(sc, sta);
|
|
break;
|
|
case STA_NOTIFY_REMOVE:
|
|
ath_node_detach(sc, sta);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
|
|
const struct ieee80211_tx_queue_params *params)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ath9k_tx_queue_info qi;
|
|
int ret = 0, qnum;
|
|
|
|
if (queue >= WME_NUM_AC)
|
|
return 0;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
|
|
memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
|
|
|
|
qi.tqi_aifs = params->aifs;
|
|
qi.tqi_cwmin = params->cw_min;
|
|
qi.tqi_cwmax = params->cw_max;
|
|
qi.tqi_burstTime = params->txop;
|
|
qnum = ath_get_hal_qnum(queue, sc);
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"Configure tx [queue/halq] [%d/%d], "
|
|
"aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
|
|
queue, qnum, params->aifs, params->cw_min,
|
|
params->cw_max, params->txop);
|
|
|
|
ret = ath_txq_update(sc, qnum, &qi);
|
|
if (ret)
|
|
DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
|
|
|
|
mutex_unlock(&sc->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ath9k_set_key(struct ieee80211_hw *hw,
|
|
enum set_key_cmd cmd,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_sta *sta,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
int ret = 0;
|
|
|
|
if (modparam_nohwcrypt)
|
|
return -ENOSPC;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
ath9k_ps_wakeup(sc);
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
|
|
|
|
switch (cmd) {
|
|
case SET_KEY:
|
|
ret = ath_key_config(sc, vif, sta, key);
|
|
if (ret >= 0) {
|
|
key->hw_key_idx = ret;
|
|
/* push IV and Michael MIC generation to stack */
|
|
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
|
|
if (key->alg == ALG_TKIP)
|
|
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
|
|
if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
|
|
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
|
|
ret = 0;
|
|
}
|
|
break;
|
|
case DISABLE_KEY:
|
|
ath_key_delete(sc, key);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
ath9k_ps_restore(sc);
|
|
mutex_unlock(&sc->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_bss_conf *bss_conf,
|
|
u32 changed)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_vif *avp = (void *)vif->drv_priv;
|
|
u32 rfilt = 0;
|
|
int error, i;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
|
|
/*
|
|
* TODO: Need to decide which hw opmode to use for
|
|
* multi-interface cases
|
|
* XXX: This belongs into add_interface!
|
|
*/
|
|
if (vif->type == NL80211_IFTYPE_AP &&
|
|
ah->opmode != NL80211_IFTYPE_AP) {
|
|
ah->opmode = NL80211_IFTYPE_STATION;
|
|
ath9k_hw_setopmode(ah);
|
|
memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
|
|
sc->curaid = 0;
|
|
ath9k_hw_write_associd(sc);
|
|
/* Request full reset to get hw opmode changed properly */
|
|
sc->sc_flags |= SC_OP_FULL_RESET;
|
|
}
|
|
|
|
if ((changed & BSS_CHANGED_BSSID) &&
|
|
!is_zero_ether_addr(bss_conf->bssid)) {
|
|
switch (vif->type) {
|
|
case NL80211_IFTYPE_STATION:
|
|
case NL80211_IFTYPE_ADHOC:
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
/* Set BSSID */
|
|
memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
|
|
memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
|
|
sc->curaid = 0;
|
|
ath9k_hw_write_associd(sc);
|
|
|
|
/* Set aggregation protection mode parameters */
|
|
sc->config.ath_aggr_prot = 0;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"RX filter 0x%x bssid %pM aid 0x%x\n",
|
|
rfilt, sc->curbssid, sc->curaid);
|
|
|
|
/* need to reconfigure the beacon */
|
|
sc->sc_flags &= ~SC_OP_BEACONS ;
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((vif->type == NL80211_IFTYPE_ADHOC) ||
|
|
(vif->type == NL80211_IFTYPE_AP) ||
|
|
(vif->type == NL80211_IFTYPE_MESH_POINT)) {
|
|
if ((changed & BSS_CHANGED_BEACON) ||
|
|
(changed & BSS_CHANGED_BEACON_ENABLED &&
|
|
bss_conf->enable_beacon)) {
|
|
/*
|
|
* Allocate and setup the beacon frame.
|
|
*
|
|
* Stop any previous beacon DMA. This may be
|
|
* necessary, for example, when an ibss merge
|
|
* causes reconfiguration; we may be called
|
|
* with beacon transmission active.
|
|
*/
|
|
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
|
|
|
|
error = ath_beacon_alloc(aphy, vif);
|
|
if (!error)
|
|
ath_beacon_config(sc, vif);
|
|
}
|
|
}
|
|
|
|
/* Check for WLAN_CAPABILITY_PRIVACY ? */
|
|
if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
|
|
ath9k_hw_keysetmac(sc->sc_ah,
|
|
(u16)i,
|
|
sc->curbssid);
|
|
}
|
|
|
|
/* Only legacy IBSS for now */
|
|
if (vif->type == NL80211_IFTYPE_ADHOC)
|
|
ath_update_chainmask(sc, 0);
|
|
|
|
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
|
|
bss_conf->use_short_preamble);
|
|
if (bss_conf->use_short_preamble)
|
|
sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
|
|
else
|
|
sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
|
|
bss_conf->use_cts_prot);
|
|
if (bss_conf->use_cts_prot &&
|
|
hw->conf.channel->band != IEEE80211_BAND_5GHZ)
|
|
sc->sc_flags |= SC_OP_PROTECT_ENABLE;
|
|
else
|
|
sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_ASSOC) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
|
|
bss_conf->assoc);
|
|
ath9k_bss_assoc_info(sc, vif, bss_conf);
|
|
}
|
|
|
|
/*
|
|
* The HW TSF has to be reset when the beacon interval changes.
|
|
* We set the flag here, and ath_beacon_config_ap() would take this
|
|
* into account when it gets called through the subsequent
|
|
* config_interface() call - with IFCC_BEACON in the changed field.
|
|
*/
|
|
|
|
if (changed & BSS_CHANGED_BEACON_INT) {
|
|
sc->sc_flags |= SC_OP_TSF_RESET;
|
|
sc->beacon_interval = bss_conf->beacon_int;
|
|
}
|
|
|
|
mutex_unlock(&sc->mutex);
|
|
}
|
|
|
|
static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
u64 tsf;
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
tsf = ath9k_hw_gettsf64(sc->sc_ah);
|
|
mutex_unlock(&sc->mutex);
|
|
|
|
return tsf;
|
|
}
|
|
|
|
static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
ath9k_hw_settsf64(sc->sc_ah, tsf);
|
|
mutex_unlock(&sc->mutex);
|
|
}
|
|
|
|
static void ath9k_reset_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
ath9k_hw_reset_tsf(sc->sc_ah);
|
|
mutex_unlock(&sc->mutex);
|
|
}
|
|
|
|
static int ath9k_ampdu_action(struct ieee80211_hw *hw,
|
|
enum ieee80211_ampdu_mlme_action action,
|
|
struct ieee80211_sta *sta,
|
|
u16 tid, u16 *ssn)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
int ret = 0;
|
|
|
|
switch (action) {
|
|
case IEEE80211_AMPDU_RX_START:
|
|
if (!(sc->sc_flags & SC_OP_RXAGGR))
|
|
ret = -ENOTSUPP;
|
|
break;
|
|
case IEEE80211_AMPDU_RX_STOP:
|
|
break;
|
|
case IEEE80211_AMPDU_TX_START:
|
|
ret = ath_tx_aggr_start(sc, sta, tid, ssn);
|
|
if (ret < 0)
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to start TX aggregation\n");
|
|
else
|
|
ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
|
|
break;
|
|
case IEEE80211_AMPDU_TX_STOP:
|
|
ret = ath_tx_aggr_stop(sc, sta, tid);
|
|
if (ret < 0)
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to stop TX aggregation\n");
|
|
|
|
ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
|
|
break;
|
|
case IEEE80211_AMPDU_TX_OPERATIONAL:
|
|
ath_tx_aggr_resume(sc, sta, tid);
|
|
break;
|
|
default:
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
|
|
if (ath9k_wiphy_scanning(sc)) {
|
|
printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
|
|
"same time\n");
|
|
/*
|
|
* Do not allow the concurrent scanning state for now. This
|
|
* could be improved with scanning control moved into ath9k.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
aphy->state = ATH_WIPHY_SCAN;
|
|
ath9k_wiphy_pause_all_forced(sc, aphy);
|
|
|
|
spin_lock_bh(&sc->ani_lock);
|
|
sc->sc_flags |= SC_OP_SCANNING;
|
|
spin_unlock_bh(&sc->ani_lock);
|
|
}
|
|
|
|
static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
|
|
spin_lock_bh(&sc->ani_lock);
|
|
aphy->state = ATH_WIPHY_ACTIVE;
|
|
sc->sc_flags &= ~SC_OP_SCANNING;
|
|
sc->sc_flags |= SC_OP_FULL_RESET;
|
|
spin_unlock_bh(&sc->ani_lock);
|
|
}
|
|
|
|
struct ieee80211_ops ath9k_ops = {
|
|
.tx = ath9k_tx,
|
|
.start = ath9k_start,
|
|
.stop = ath9k_stop,
|
|
.add_interface = ath9k_add_interface,
|
|
.remove_interface = ath9k_remove_interface,
|
|
.config = ath9k_config,
|
|
.configure_filter = ath9k_configure_filter,
|
|
.sta_notify = ath9k_sta_notify,
|
|
.conf_tx = ath9k_conf_tx,
|
|
.bss_info_changed = ath9k_bss_info_changed,
|
|
.set_key = ath9k_set_key,
|
|
.get_tsf = ath9k_get_tsf,
|
|
.set_tsf = ath9k_set_tsf,
|
|
.reset_tsf = ath9k_reset_tsf,
|
|
.ampdu_action = ath9k_ampdu_action,
|
|
.sw_scan_start = ath9k_sw_scan_start,
|
|
.sw_scan_complete = ath9k_sw_scan_complete,
|
|
.rfkill_poll = ath9k_rfkill_poll_state,
|
|
};
|
|
|
|
static struct {
|
|
u32 version;
|
|
const char * name;
|
|
} ath_mac_bb_names[] = {
|
|
{ AR_SREV_VERSION_5416_PCI, "5416" },
|
|
{ AR_SREV_VERSION_5416_PCIE, "5418" },
|
|
{ AR_SREV_VERSION_9100, "9100" },
|
|
{ AR_SREV_VERSION_9160, "9160" },
|
|
{ AR_SREV_VERSION_9280, "9280" },
|
|
{ AR_SREV_VERSION_9285, "9285" }
|
|
};
|
|
|
|
static struct {
|
|
u16 version;
|
|
const char * name;
|
|
} ath_rf_names[] = {
|
|
{ 0, "5133" },
|
|
{ AR_RAD5133_SREV_MAJOR, "5133" },
|
|
{ AR_RAD5122_SREV_MAJOR, "5122" },
|
|
{ AR_RAD2133_SREV_MAJOR, "2133" },
|
|
{ AR_RAD2122_SREV_MAJOR, "2122" }
|
|
};
|
|
|
|
/*
|
|
* Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
|
|
*/
|
|
const char *
|
|
ath_mac_bb_name(u32 mac_bb_version)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
|
|
if (ath_mac_bb_names[i].version == mac_bb_version) {
|
|
return ath_mac_bb_names[i].name;
|
|
}
|
|
}
|
|
|
|
return "????";
|
|
}
|
|
|
|
/*
|
|
* Return the RF name. "????" is returned if the RF is unknown.
|
|
*/
|
|
const char *
|
|
ath_rf_name(u16 rf_version)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
|
|
if (ath_rf_names[i].version == rf_version) {
|
|
return ath_rf_names[i].name;
|
|
}
|
|
}
|
|
|
|
return "????";
|
|
}
|
|
|
|
static int __init ath9k_init(void)
|
|
{
|
|
int error;
|
|
|
|
/* Register rate control algorithm */
|
|
error = ath_rate_control_register();
|
|
if (error != 0) {
|
|
printk(KERN_ERR
|
|
"ath9k: Unable to register rate control "
|
|
"algorithm: %d\n",
|
|
error);
|
|
goto err_out;
|
|
}
|
|
|
|
error = ath9k_debug_create_root();
|
|
if (error) {
|
|
printk(KERN_ERR
|
|
"ath9k: Unable to create debugfs root: %d\n",
|
|
error);
|
|
goto err_rate_unregister;
|
|
}
|
|
|
|
error = ath_pci_init();
|
|
if (error < 0) {
|
|
printk(KERN_ERR
|
|
"ath9k: No PCI devices found, driver not installed.\n");
|
|
error = -ENODEV;
|
|
goto err_remove_root;
|
|
}
|
|
|
|
error = ath_ahb_init();
|
|
if (error < 0) {
|
|
error = -ENODEV;
|
|
goto err_pci_exit;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_pci_exit:
|
|
ath_pci_exit();
|
|
|
|
err_remove_root:
|
|
ath9k_debug_remove_root();
|
|
err_rate_unregister:
|
|
ath_rate_control_unregister();
|
|
err_out:
|
|
return error;
|
|
}
|
|
module_init(ath9k_init);
|
|
|
|
static void __exit ath9k_exit(void)
|
|
{
|
|
ath_ahb_exit();
|
|
ath_pci_exit();
|
|
ath9k_debug_remove_root();
|
|
ath_rate_control_unregister();
|
|
printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
|
|
}
|
|
module_exit(ath9k_exit);
|