linux/arch/powerpc/platforms/powernv/opal.c
Mahesh Salgaonkar c74dd88e77 powerpc/book3s: Fix MCE console messages for unrecoverable MCE.
When machine check occurs with MSR(RI=0), it means MC interrupt is
unrecoverable and kernel goes down to panic path. But the console
message still shows it as recovered. This patch fixes the MCE console
messages.

Fixes: 36df96f8ac ("powerpc/book3s: Decode and save machine check event.")
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-08-09 19:46:54 +10:00

899 lines
22 KiB
C

/*
* PowerNV OPAL high level interfaces
*
* Copyright 2011 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) "opal: " fmt
#include <linux/printk.h>
#include <linux/types.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/kobject.h>
#include <linux/delay.h>
#include <linux/memblock.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <asm/machdep.h>
#include <asm/opal.h>
#include <asm/firmware.h>
#include <asm/mce.h>
#include "powernv.h"
/* /sys/firmware/opal */
struct kobject *opal_kobj;
struct opal {
u64 base;
u64 entry;
u64 size;
} opal;
struct mcheck_recoverable_range {
u64 start_addr;
u64 end_addr;
u64 recover_addr;
};
static struct mcheck_recoverable_range *mc_recoverable_range;
static int mc_recoverable_range_len;
struct device_node *opal_node;
static DEFINE_SPINLOCK(opal_write_lock);
static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
static uint32_t opal_heartbeat;
static struct task_struct *kopald_tsk;
void opal_configure_cores(void)
{
/* Do the actual re-init, This will clobber all FPRs, VRs, etc...
*
* It will preserve non volatile GPRs and HSPRG0/1. It will
* also restore HIDs and other SPRs to their original value
* but it might clobber a bunch.
*/
#ifdef __BIG_ENDIAN__
opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_BE);
#else
opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_LE);
#endif
/* Restore some bits */
if (cur_cpu_spec->cpu_restore)
cur_cpu_spec->cpu_restore();
}
int __init early_init_dt_scan_opal(unsigned long node,
const char *uname, int depth, void *data)
{
const void *basep, *entryp, *sizep;
int basesz, entrysz, runtimesz;
if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
return 0;
basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
if (!basep || !entryp || !sizep)
return 1;
opal.base = of_read_number(basep, basesz/4);
opal.entry = of_read_number(entryp, entrysz/4);
opal.size = of_read_number(sizep, runtimesz/4);
pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n",
opal.base, basep, basesz);
pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
opal.entry, entryp, entrysz);
pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
opal.size, sizep, runtimesz);
if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
powerpc_firmware_features |= FW_FEATURE_OPAL;
pr_info("OPAL detected !\n");
} else {
panic("OPAL != V3 detected, no longer supported.\n");
}
return 1;
}
int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
const char *uname, int depth, void *data)
{
int i, psize, size;
const __be32 *prop;
if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
return 0;
prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
if (!prop)
return 1;
pr_debug("Found machine check recoverable ranges.\n");
/*
* Calculate number of available entries.
*
* Each recoverable address range entry is (start address, len,
* recovery address), 2 cells each for start and recovery address,
* 1 cell for len, totalling 5 cells per entry.
*/
mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
/* Sanity check */
if (!mc_recoverable_range_len)
return 1;
/* Size required to hold all the entries. */
size = mc_recoverable_range_len *
sizeof(struct mcheck_recoverable_range);
/*
* Allocate a buffer to hold the MC recoverable ranges. We would be
* accessing them in real mode, hence it needs to be within
* RMO region.
*/
mc_recoverable_range =__va(memblock_alloc_base(size, __alignof__(u64),
ppc64_rma_size));
memset(mc_recoverable_range, 0, size);
for (i = 0; i < mc_recoverable_range_len; i++) {
mc_recoverable_range[i].start_addr =
of_read_number(prop + (i * 5) + 0, 2);
mc_recoverable_range[i].end_addr =
mc_recoverable_range[i].start_addr +
of_read_number(prop + (i * 5) + 2, 1);
mc_recoverable_range[i].recover_addr =
of_read_number(prop + (i * 5) + 3, 2);
pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
mc_recoverable_range[i].start_addr,
mc_recoverable_range[i].end_addr,
mc_recoverable_range[i].recover_addr);
}
return 1;
}
static int __init opal_register_exception_handlers(void)
{
#ifdef __BIG_ENDIAN__
u64 glue;
if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
return -ENODEV;
/* Hookup some exception handlers except machine check. We use the
* fwnmi area at 0x7000 to provide the glue space to OPAL
*/
glue = 0x7000;
/*
* Check if we are running on newer firmware that exports
* OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch
* the HMI interrupt and we catch it directly in Linux.
*
* For older firmware (i.e currently released POWER8 System Firmware
* as of today <= SV810_087), we fallback to old behavior and let OPAL
* patch the HMI vector and handle it inside OPAL firmware.
*
* For newer firmware (in development/yet to be released) we will
* start catching/handling HMI directly in Linux.
*/
if (!opal_check_token(OPAL_HANDLE_HMI)) {
pr_info("Old firmware detected, OPAL handles HMIs.\n");
opal_register_exception_handler(
OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
0, glue);
glue += 128;
}
opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
#endif
return 0;
}
machine_early_initcall(powernv, opal_register_exception_handlers);
/*
* Opal message notifier based on message type. Allow subscribers to get
* notified for specific messgae type.
*/
int opal_message_notifier_register(enum opal_msg_type msg_type,
struct notifier_block *nb)
{
if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
pr_warning("%s: Invalid arguments, msg_type:%d\n",
__func__, msg_type);
return -EINVAL;
}
return atomic_notifier_chain_register(
&opal_msg_notifier_head[msg_type], nb);
}
EXPORT_SYMBOL_GPL(opal_message_notifier_register);
int opal_message_notifier_unregister(enum opal_msg_type msg_type,
struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(
&opal_msg_notifier_head[msg_type], nb);
}
EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
static void opal_message_do_notify(uint32_t msg_type, void *msg)
{
/* notify subscribers */
atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
msg_type, msg);
}
static void opal_handle_message(void)
{
s64 ret;
/*
* TODO: pre-allocate a message buffer depending on opal-msg-size
* value in /proc/device-tree.
*/
static struct opal_msg msg;
u32 type;
ret = opal_get_msg(__pa(&msg), sizeof(msg));
/* No opal message pending. */
if (ret == OPAL_RESOURCE)
return;
/* check for errors. */
if (ret) {
pr_warning("%s: Failed to retrieve opal message, err=%lld\n",
__func__, ret);
return;
}
type = be32_to_cpu(msg.msg_type);
/* Sanity check */
if (type >= OPAL_MSG_TYPE_MAX) {
pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
return;
}
opal_message_do_notify(type, (void *)&msg);
}
static irqreturn_t opal_message_notify(int irq, void *data)
{
opal_handle_message();
return IRQ_HANDLED;
}
static int __init opal_message_init(void)
{
int ret, i, irq;
for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
if (!irq) {
pr_err("%s: Can't register OPAL event irq (%d)\n",
__func__, irq);
return irq;
}
ret = request_irq(irq, opal_message_notify,
IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
if (ret) {
pr_err("%s: Can't request OPAL event irq (%d)\n",
__func__, ret);
return ret;
}
return 0;
}
int opal_get_chars(uint32_t vtermno, char *buf, int count)
{
s64 rc;
__be64 evt, len;
if (!opal.entry)
return -ENODEV;
opal_poll_events(&evt);
if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
return 0;
len = cpu_to_be64(count);
rc = opal_console_read(vtermno, &len, buf);
if (rc == OPAL_SUCCESS)
return be64_to_cpu(len);
return 0;
}
int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
{
int written = 0;
__be64 olen;
s64 len, rc;
unsigned long flags;
__be64 evt;
if (!opal.entry)
return -ENODEV;
/* We want put_chars to be atomic to avoid mangling of hvsi
* packets. To do that, we first test for room and return
* -EAGAIN if there isn't enough.
*
* Unfortunately, opal_console_write_buffer_space() doesn't
* appear to work on opal v1, so we just assume there is
* enough room and be done with it
*/
spin_lock_irqsave(&opal_write_lock, flags);
rc = opal_console_write_buffer_space(vtermno, &olen);
len = be64_to_cpu(olen);
if (rc || len < total_len) {
spin_unlock_irqrestore(&opal_write_lock, flags);
/* Closed -> drop characters */
if (rc)
return total_len;
opal_poll_events(NULL);
return -EAGAIN;
}
/* We still try to handle partial completions, though they
* should no longer happen.
*/
rc = OPAL_BUSY;
while(total_len > 0 && (rc == OPAL_BUSY ||
rc == OPAL_BUSY_EVENT || rc == OPAL_SUCCESS)) {
olen = cpu_to_be64(total_len);
rc = opal_console_write(vtermno, &olen, data);
len = be64_to_cpu(olen);
/* Closed or other error drop */
if (rc != OPAL_SUCCESS && rc != OPAL_BUSY &&
rc != OPAL_BUSY_EVENT) {
written = total_len;
break;
}
if (rc == OPAL_SUCCESS) {
total_len -= len;
data += len;
written += len;
}
/* This is a bit nasty but we need that for the console to
* flush when there aren't any interrupts. We will clean
* things a bit later to limit that to synchronous path
* such as the kernel console and xmon/udbg
*/
do
opal_poll_events(&evt);
while(rc == OPAL_SUCCESS &&
(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT));
}
spin_unlock_irqrestore(&opal_write_lock, flags);
return written;
}
static int opal_recover_mce(struct pt_regs *regs,
struct machine_check_event *evt)
{
int recovered = 0;
uint64_t ea = get_mce_fault_addr(evt);
if (!(regs->msr & MSR_RI)) {
/* If MSR_RI isn't set, we cannot recover */
pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
recovered = 0;
} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
/* Platform corrected itself */
recovered = 1;
} else if (ea && !is_kernel_addr(ea)) {
/*
* Faulting address is not in kernel text. We should be fine.
* We need to find which process uses this address.
* For now, kill the task if we have received exception when
* in userspace.
*
* TODO: Queue up this address for hwpoisioning later.
*/
if (user_mode(regs) && !is_global_init(current)) {
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
recovered = 1;
} else
recovered = 0;
} else if (user_mode(regs) && !is_global_init(current) &&
evt->severity == MCE_SEV_ERROR_SYNC) {
/*
* If we have received a synchronous error when in userspace
* kill the task.
*/
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
recovered = 1;
}
return recovered;
}
int opal_machine_check(struct pt_regs *regs)
{
struct machine_check_event evt;
int ret;
if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
return 0;
/* Print things out */
if (evt.version != MCE_V1) {
pr_err("Machine Check Exception, Unknown event version %d !\n",
evt.version);
return 0;
}
machine_check_print_event_info(&evt);
if (opal_recover_mce(regs, &evt))
return 1;
/*
* Unrecovered machine check, we are heading to panic path.
*
* We may have hit this MCE in very early stage of kernel
* initialization even before opal-prd has started running. If
* this is the case then this MCE error may go un-noticed or
* un-analyzed if we go down panic path. We need to inform
* BMC/OCC about this error so that they can collect relevant
* data for error analysis before rebooting.
* Use opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR) to do so.
* This function may not return on BMC based system.
*/
ret = opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR,
"Unrecoverable Machine Check exception");
if (ret == OPAL_UNSUPPORTED) {
pr_emerg("Reboot type %d not supported\n",
OPAL_REBOOT_PLATFORM_ERROR);
}
/*
* We reached here. There can be three possibilities:
* 1. We are running on a firmware level that do not support
* opal_cec_reboot2()
* 2. We are running on a firmware level that do not support
* OPAL_REBOOT_PLATFORM_ERROR reboot type.
* 3. We are running on FSP based system that does not need opal
* to trigger checkstop explicitly for error analysis. The FSP
* PRD component would have already got notified about this
* error through other channels.
*
* If hardware marked this as an unrecoverable MCE, we are
* going to panic anyway. Even if it didn't, it's not safe to
* continue at this point, so we should explicitly panic.
*/
panic("PowerNV Unrecovered Machine Check");
return 0;
}
/* Early hmi handler called in real mode. */
int opal_hmi_exception_early(struct pt_regs *regs)
{
s64 rc;
/*
* call opal hmi handler. Pass paca address as token.
* The return value OPAL_SUCCESS is an indication that there is
* an HMI event generated waiting to pull by Linux.
*/
rc = opal_handle_hmi();
if (rc == OPAL_SUCCESS) {
local_paca->hmi_event_available = 1;
return 1;
}
return 0;
}
/* HMI exception handler called in virtual mode during check_irq_replay. */
int opal_handle_hmi_exception(struct pt_regs *regs)
{
s64 rc;
__be64 evt = 0;
/*
* Check if HMI event is available.
* if Yes, then call opal_poll_events to pull opal messages and
* process them.
*/
if (!local_paca->hmi_event_available)
return 0;
local_paca->hmi_event_available = 0;
rc = opal_poll_events(&evt);
if (rc == OPAL_SUCCESS && evt)
opal_handle_events(be64_to_cpu(evt));
return 1;
}
static uint64_t find_recovery_address(uint64_t nip)
{
int i;
for (i = 0; i < mc_recoverable_range_len; i++)
if ((nip >= mc_recoverable_range[i].start_addr) &&
(nip < mc_recoverable_range[i].end_addr))
return mc_recoverable_range[i].recover_addr;
return 0;
}
bool opal_mce_check_early_recovery(struct pt_regs *regs)
{
uint64_t recover_addr = 0;
if (!opal.base || !opal.size)
goto out;
if ((regs->nip >= opal.base) &&
(regs->nip < (opal.base + opal.size)))
recover_addr = find_recovery_address(regs->nip);
/*
* Setup regs->nip to rfi into fixup address.
*/
if (recover_addr)
regs->nip = recover_addr;
out:
return !!recover_addr;
}
static int opal_sysfs_init(void)
{
opal_kobj = kobject_create_and_add("opal", firmware_kobj);
if (!opal_kobj) {
pr_warn("kobject_create_and_add opal failed\n");
return -ENOMEM;
}
return 0;
}
static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
return memory_read_from_buffer(buf, count, &off, bin_attr->private,
bin_attr->size);
}
static BIN_ATTR_RO(symbol_map, 0);
static void opal_export_symmap(void)
{
const __be64 *syms;
unsigned int size;
struct device_node *fw;
int rc;
fw = of_find_node_by_path("/ibm,opal/firmware");
if (!fw)
return;
syms = of_get_property(fw, "symbol-map", &size);
if (!syms || size != 2 * sizeof(__be64))
return;
/* Setup attributes */
bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0]));
bin_attr_symbol_map.size = be64_to_cpu(syms[1]);
rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map);
if (rc)
pr_warn("Error %d creating OPAL symbols file\n", rc);
}
static void __init opal_dump_region_init(void)
{
void *addr;
uint64_t size;
int rc;
if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
return;
/* Register kernel log buffer */
addr = log_buf_addr_get();
if (addr == NULL)
return;
size = log_buf_len_get();
if (size == 0)
return;
rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
__pa(addr), size);
/* Don't warn if this is just an older OPAL that doesn't
* know about that call
*/
if (rc && rc != OPAL_UNSUPPORTED)
pr_warn("DUMP: Failed to register kernel log buffer. "
"rc = %d\n", rc);
}
static void opal_pdev_init(struct device_node *opal_node,
const char *compatible)
{
struct device_node *np;
for_each_child_of_node(opal_node, np)
if (of_device_is_compatible(np, compatible))
of_platform_device_create(np, NULL, NULL);
}
static void opal_i2c_create_devs(void)
{
struct device_node *np;
for_each_compatible_node(np, NULL, "ibm,opal-i2c")
of_platform_device_create(np, NULL, NULL);
}
static int kopald(void *unused)
{
unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
__be64 events;
set_freezable();
do {
try_to_freeze();
opal_poll_events(&events);
opal_handle_events(be64_to_cpu(events));
schedule_timeout_interruptible(timeout);
} while (!kthread_should_stop());
return 0;
}
void opal_wake_poller(void)
{
if (kopald_tsk)
wake_up_process(kopald_tsk);
}
static void opal_init_heartbeat(void)
{
/* Old firwmware, we assume the HVC heartbeat is sufficient */
if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
&opal_heartbeat) != 0)
opal_heartbeat = 0;
if (opal_heartbeat)
kopald_tsk = kthread_run(kopald, NULL, "kopald");
}
static int __init opal_init(void)
{
struct device_node *np, *consoles, *leds;
int rc;
opal_node = of_find_node_by_path("/ibm,opal");
if (!opal_node) {
pr_warn("Device node not found\n");
return -ENODEV;
}
/* Register OPAL consoles if any ports */
consoles = of_find_node_by_path("/ibm,opal/consoles");
if (consoles) {
for_each_child_of_node(consoles, np) {
if (strcmp(np->name, "serial"))
continue;
of_platform_device_create(np, NULL, NULL);
}
of_node_put(consoles);
}
/* Initialise OPAL messaging system */
opal_message_init();
/* Initialise OPAL asynchronous completion interface */
opal_async_comp_init();
/* Initialise OPAL sensor interface */
opal_sensor_init();
/* Initialise OPAL hypervisor maintainence interrupt handling */
opal_hmi_handler_init();
/* Create i2c platform devices */
opal_i2c_create_devs();
/* Setup a heatbeat thread if requested by OPAL */
opal_init_heartbeat();
/* Create leds platform devices */
leds = of_find_node_by_path("/ibm,opal/leds");
if (leds) {
of_platform_device_create(leds, "opal_leds", NULL);
of_node_put(leds);
}
/* Initialise OPAL message log interface */
opal_msglog_init();
/* Create "opal" kobject under /sys/firmware */
rc = opal_sysfs_init();
if (rc == 0) {
/* Export symbol map to userspace */
opal_export_symmap();
/* Setup dump region interface */
opal_dump_region_init();
/* Setup error log interface */
rc = opal_elog_init();
/* Setup code update interface */
opal_flash_update_init();
/* Setup platform dump extract interface */
opal_platform_dump_init();
/* Setup system parameters interface */
opal_sys_param_init();
/* Setup message log sysfs interface. */
opal_msglog_sysfs_init();
}
/* Initialize platform devices: IPMI backend, PRD & flash interface */
opal_pdev_init(opal_node, "ibm,opal-ipmi");
opal_pdev_init(opal_node, "ibm,opal-flash");
opal_pdev_init(opal_node, "ibm,opal-prd");
/* Initialise platform device: oppanel interface */
opal_pdev_init(opal_node, "ibm,opal-oppanel");
/* Initialise OPAL kmsg dumper for flushing console on panic */
opal_kmsg_init();
return 0;
}
machine_subsys_initcall(powernv, opal_init);
void opal_shutdown(void)
{
long rc = OPAL_BUSY;
opal_event_shutdown();
/*
* Then sync with OPAL which ensure anything that can
* potentially write to our memory has completed such
* as an ongoing dump retrieval
*/
while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
rc = opal_sync_host_reboot();
if (rc == OPAL_BUSY)
opal_poll_events(NULL);
else
mdelay(10);
}
/* Unregister memory dump region */
if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
}
/* Export this so that test modules can use it */
EXPORT_SYMBOL_GPL(opal_invalid_call);
EXPORT_SYMBOL_GPL(opal_xscom_read);
EXPORT_SYMBOL_GPL(opal_xscom_write);
EXPORT_SYMBOL_GPL(opal_ipmi_send);
EXPORT_SYMBOL_GPL(opal_ipmi_recv);
EXPORT_SYMBOL_GPL(opal_flash_read);
EXPORT_SYMBOL_GPL(opal_flash_write);
EXPORT_SYMBOL_GPL(opal_flash_erase);
EXPORT_SYMBOL_GPL(opal_prd_msg);
/* Convert a region of vmalloc memory to an opal sg list */
struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
unsigned long vmalloc_size)
{
struct opal_sg_list *sg, *first = NULL;
unsigned long i = 0;
sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!sg)
goto nomem;
first = sg;
while (vmalloc_size > 0) {
uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
uint64_t length = min(vmalloc_size, PAGE_SIZE);
sg->entry[i].data = cpu_to_be64(data);
sg->entry[i].length = cpu_to_be64(length);
i++;
if (i >= SG_ENTRIES_PER_NODE) {
struct opal_sg_list *next;
next = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!next)
goto nomem;
sg->length = cpu_to_be64(
i * sizeof(struct opal_sg_entry) + 16);
i = 0;
sg->next = cpu_to_be64(__pa(next));
sg = next;
}
vmalloc_addr += length;
vmalloc_size -= length;
}
sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
return first;
nomem:
pr_err("%s : Failed to allocate memory\n", __func__);
opal_free_sg_list(first);
return NULL;
}
void opal_free_sg_list(struct opal_sg_list *sg)
{
while (sg) {
uint64_t next = be64_to_cpu(sg->next);
kfree(sg);
if (next)
sg = __va(next);
else
sg = NULL;
}
}
int opal_error_code(int rc)
{
switch (rc) {
case OPAL_SUCCESS: return 0;
case OPAL_PARAMETER: return -EINVAL;
case OPAL_ASYNC_COMPLETION: return -EINPROGRESS;
case OPAL_BUSY_EVENT: return -EBUSY;
case OPAL_NO_MEM: return -ENOMEM;
case OPAL_PERMISSION: return -EPERM;
case OPAL_UNSUPPORTED: return -EIO;
case OPAL_HARDWARE: return -EIO;
case OPAL_INTERNAL_ERROR: return -EIO;
default:
pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
return -EIO;
}
}
EXPORT_SYMBOL_GPL(opal_poll_events);
EXPORT_SYMBOL_GPL(opal_rtc_read);
EXPORT_SYMBOL_GPL(opal_rtc_write);
EXPORT_SYMBOL_GPL(opal_tpo_read);
EXPORT_SYMBOL_GPL(opal_tpo_write);
EXPORT_SYMBOL_GPL(opal_i2c_request);
/* Export these symbols for PowerNV LED class driver */
EXPORT_SYMBOL_GPL(opal_leds_get_ind);
EXPORT_SYMBOL_GPL(opal_leds_set_ind);
/* Export this symbol for PowerNV Operator Panel class driver */
EXPORT_SYMBOL_GPL(opal_write_oppanel_async);