9e43e0106d
If CONFIG_PCI_MSI is not set, and a QLE7140 is present, the pointer "dd" is uninitialized. Signed-off-by: Ralph Campbell <ralph.campbell@qlogic.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
1607 lines
42 KiB
C
1607 lines
42 KiB
C
/*
|
|
* Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
|
|
* All rights reserved.
|
|
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/idr.h>
|
|
|
|
#include "qib.h"
|
|
#include "qib_common.h"
|
|
|
|
/*
|
|
* min buffers we want to have per context, after driver
|
|
*/
|
|
#define QIB_MIN_USER_CTXT_BUFCNT 7
|
|
|
|
#define QLOGIC_IB_R_SOFTWARE_MASK 0xFF
|
|
#define QLOGIC_IB_R_SOFTWARE_SHIFT 24
|
|
#define QLOGIC_IB_R_EMULATOR_MASK (1ULL<<62)
|
|
|
|
/*
|
|
* Number of ctxts we are configured to use (to allow for more pio
|
|
* buffers per ctxt, etc.) Zero means use chip value.
|
|
*/
|
|
ushort qib_cfgctxts;
|
|
module_param_named(cfgctxts, qib_cfgctxts, ushort, S_IRUGO);
|
|
MODULE_PARM_DESC(cfgctxts, "Set max number of contexts to use");
|
|
|
|
/*
|
|
* If set, do not write to any regs if avoidable, hack to allow
|
|
* check for deranged default register values.
|
|
*/
|
|
ushort qib_mini_init;
|
|
module_param_named(mini_init, qib_mini_init, ushort, S_IRUGO);
|
|
MODULE_PARM_DESC(mini_init, "If set, do minimal diag init");
|
|
|
|
unsigned qib_n_krcv_queues;
|
|
module_param_named(krcvqs, qib_n_krcv_queues, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(krcvqs, "number of kernel receive queues per IB port");
|
|
|
|
/*
|
|
* qib_wc_pat parameter:
|
|
* 0 is WC via MTRR
|
|
* 1 is WC via PAT
|
|
* If PAT initialization fails, code reverts back to MTRR
|
|
*/
|
|
unsigned qib_wc_pat = 1; /* default (1) is to use PAT, not MTRR */
|
|
module_param_named(wc_pat, qib_wc_pat, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(wc_pat, "enable write-combining via PAT mechanism");
|
|
|
|
struct workqueue_struct *qib_wq;
|
|
struct workqueue_struct *qib_cq_wq;
|
|
|
|
static void verify_interrupt(unsigned long);
|
|
|
|
static struct idr qib_unit_table;
|
|
u32 qib_cpulist_count;
|
|
unsigned long *qib_cpulist;
|
|
|
|
/* set number of contexts we'll actually use */
|
|
void qib_set_ctxtcnt(struct qib_devdata *dd)
|
|
{
|
|
if (!qib_cfgctxts)
|
|
dd->cfgctxts = dd->first_user_ctxt + num_online_cpus();
|
|
else if (qib_cfgctxts < dd->num_pports)
|
|
dd->cfgctxts = dd->ctxtcnt;
|
|
else if (qib_cfgctxts <= dd->ctxtcnt)
|
|
dd->cfgctxts = qib_cfgctxts;
|
|
else
|
|
dd->cfgctxts = dd->ctxtcnt;
|
|
}
|
|
|
|
/*
|
|
* Common code for creating the receive context array.
|
|
*/
|
|
int qib_create_ctxts(struct qib_devdata *dd)
|
|
{
|
|
unsigned i;
|
|
int ret;
|
|
|
|
/*
|
|
* Allocate full ctxtcnt array, rather than just cfgctxts, because
|
|
* cleanup iterates across all possible ctxts.
|
|
*/
|
|
dd->rcd = kzalloc(sizeof(*dd->rcd) * dd->ctxtcnt, GFP_KERNEL);
|
|
if (!dd->rcd) {
|
|
qib_dev_err(dd, "Unable to allocate ctxtdata array, "
|
|
"failing\n");
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
/* create (one or more) kctxt */
|
|
for (i = 0; i < dd->first_user_ctxt; ++i) {
|
|
struct qib_pportdata *ppd;
|
|
struct qib_ctxtdata *rcd;
|
|
|
|
if (dd->skip_kctxt_mask & (1 << i))
|
|
continue;
|
|
|
|
ppd = dd->pport + (i % dd->num_pports);
|
|
rcd = qib_create_ctxtdata(ppd, i);
|
|
if (!rcd) {
|
|
qib_dev_err(dd, "Unable to allocate ctxtdata"
|
|
" for Kernel ctxt, failing\n");
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
rcd->pkeys[0] = QIB_DEFAULT_P_KEY;
|
|
rcd->seq_cnt = 1;
|
|
}
|
|
ret = 0;
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Common code for user and kernel context setup.
|
|
*/
|
|
struct qib_ctxtdata *qib_create_ctxtdata(struct qib_pportdata *ppd, u32 ctxt)
|
|
{
|
|
struct qib_devdata *dd = ppd->dd;
|
|
struct qib_ctxtdata *rcd;
|
|
|
|
rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
|
|
if (rcd) {
|
|
INIT_LIST_HEAD(&rcd->qp_wait_list);
|
|
rcd->ppd = ppd;
|
|
rcd->dd = dd;
|
|
rcd->cnt = 1;
|
|
rcd->ctxt = ctxt;
|
|
dd->rcd[ctxt] = rcd;
|
|
|
|
dd->f_init_ctxt(rcd);
|
|
|
|
/*
|
|
* To avoid wasting a lot of memory, we allocate 32KB chunks
|
|
* of physically contiguous memory, advance through it until
|
|
* used up and then allocate more. Of course, we need
|
|
* memory to store those extra pointers, now. 32KB seems to
|
|
* be the most that is "safe" under memory pressure
|
|
* (creating large files and then copying them over
|
|
* NFS while doing lots of MPI jobs). The OOM killer can
|
|
* get invoked, even though we say we can sleep and this can
|
|
* cause significant system problems....
|
|
*/
|
|
rcd->rcvegrbuf_size = 0x8000;
|
|
rcd->rcvegrbufs_perchunk =
|
|
rcd->rcvegrbuf_size / dd->rcvegrbufsize;
|
|
rcd->rcvegrbuf_chunks = (rcd->rcvegrcnt +
|
|
rcd->rcvegrbufs_perchunk - 1) /
|
|
rcd->rcvegrbufs_perchunk;
|
|
}
|
|
return rcd;
|
|
}
|
|
|
|
/*
|
|
* Common code for initializing the physical port structure.
|
|
*/
|
|
void qib_init_pportdata(struct qib_pportdata *ppd, struct qib_devdata *dd,
|
|
u8 hw_pidx, u8 port)
|
|
{
|
|
ppd->dd = dd;
|
|
ppd->hw_pidx = hw_pidx;
|
|
ppd->port = port; /* IB port number, not index */
|
|
|
|
spin_lock_init(&ppd->sdma_lock);
|
|
spin_lock_init(&ppd->lflags_lock);
|
|
init_waitqueue_head(&ppd->state_wait);
|
|
|
|
init_timer(&ppd->symerr_clear_timer);
|
|
ppd->symerr_clear_timer.function = qib_clear_symerror_on_linkup;
|
|
ppd->symerr_clear_timer.data = (unsigned long)ppd;
|
|
}
|
|
|
|
static int init_pioavailregs(struct qib_devdata *dd)
|
|
{
|
|
int ret, pidx;
|
|
u64 *status_page;
|
|
|
|
dd->pioavailregs_dma = dma_alloc_coherent(
|
|
&dd->pcidev->dev, PAGE_SIZE, &dd->pioavailregs_phys,
|
|
GFP_KERNEL);
|
|
if (!dd->pioavailregs_dma) {
|
|
qib_dev_err(dd, "failed to allocate PIOavail reg area "
|
|
"in memory\n");
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* We really want L2 cache aligned, but for current CPUs of
|
|
* interest, they are the same.
|
|
*/
|
|
status_page = (u64 *)
|
|
((char *) dd->pioavailregs_dma +
|
|
((2 * L1_CACHE_BYTES +
|
|
dd->pioavregs * sizeof(u64)) & ~L1_CACHE_BYTES));
|
|
/* device status comes first, for backwards compatibility */
|
|
dd->devstatusp = status_page;
|
|
*status_page++ = 0;
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
dd->pport[pidx].statusp = status_page;
|
|
*status_page++ = 0;
|
|
}
|
|
|
|
/*
|
|
* Setup buffer to hold freeze and other messages, accessible to
|
|
* apps, following statusp. This is per-unit, not per port.
|
|
*/
|
|
dd->freezemsg = (char *) status_page;
|
|
*dd->freezemsg = 0;
|
|
/* length of msg buffer is "whatever is left" */
|
|
ret = (char *) status_page - (char *) dd->pioavailregs_dma;
|
|
dd->freezelen = PAGE_SIZE - ret;
|
|
|
|
ret = 0;
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* init_shadow_tids - allocate the shadow TID array
|
|
* @dd: the qlogic_ib device
|
|
*
|
|
* allocate the shadow TID array, so we can qib_munlock previous
|
|
* entries. It may make more sense to move the pageshadow to the
|
|
* ctxt data structure, so we only allocate memory for ctxts actually
|
|
* in use, since we at 8k per ctxt, now.
|
|
* We don't want failures here to prevent use of the driver/chip,
|
|
* so no return value.
|
|
*/
|
|
static void init_shadow_tids(struct qib_devdata *dd)
|
|
{
|
|
struct page **pages;
|
|
dma_addr_t *addrs;
|
|
|
|
pages = vmalloc(dd->cfgctxts * dd->rcvtidcnt * sizeof(struct page *));
|
|
if (!pages) {
|
|
qib_dev_err(dd, "failed to allocate shadow page * "
|
|
"array, no expected sends!\n");
|
|
goto bail;
|
|
}
|
|
|
|
addrs = vmalloc(dd->cfgctxts * dd->rcvtidcnt * sizeof(dma_addr_t));
|
|
if (!addrs) {
|
|
qib_dev_err(dd, "failed to allocate shadow dma handle "
|
|
"array, no expected sends!\n");
|
|
goto bail_free;
|
|
}
|
|
|
|
memset(pages, 0, dd->cfgctxts * dd->rcvtidcnt * sizeof(struct page *));
|
|
memset(addrs, 0, dd->cfgctxts * dd->rcvtidcnt * sizeof(dma_addr_t));
|
|
|
|
dd->pageshadow = pages;
|
|
dd->physshadow = addrs;
|
|
return;
|
|
|
|
bail_free:
|
|
vfree(pages);
|
|
bail:
|
|
dd->pageshadow = NULL;
|
|
}
|
|
|
|
/*
|
|
* Do initialization for device that is only needed on
|
|
* first detect, not on resets.
|
|
*/
|
|
static int loadtime_init(struct qib_devdata *dd)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (((dd->revision >> QLOGIC_IB_R_SOFTWARE_SHIFT) &
|
|
QLOGIC_IB_R_SOFTWARE_MASK) != QIB_CHIP_SWVERSION) {
|
|
qib_dev_err(dd, "Driver only handles version %d, "
|
|
"chip swversion is %d (%llx), failng\n",
|
|
QIB_CHIP_SWVERSION,
|
|
(int)(dd->revision >>
|
|
QLOGIC_IB_R_SOFTWARE_SHIFT) &
|
|
QLOGIC_IB_R_SOFTWARE_MASK,
|
|
(unsigned long long) dd->revision);
|
|
ret = -ENOSYS;
|
|
goto done;
|
|
}
|
|
|
|
if (dd->revision & QLOGIC_IB_R_EMULATOR_MASK)
|
|
qib_devinfo(dd->pcidev, "%s", dd->boardversion);
|
|
|
|
spin_lock_init(&dd->pioavail_lock);
|
|
spin_lock_init(&dd->sendctrl_lock);
|
|
spin_lock_init(&dd->uctxt_lock);
|
|
spin_lock_init(&dd->qib_diag_trans_lock);
|
|
spin_lock_init(&dd->eep_st_lock);
|
|
mutex_init(&dd->eep_lock);
|
|
|
|
if (qib_mini_init)
|
|
goto done;
|
|
|
|
ret = init_pioavailregs(dd);
|
|
init_shadow_tids(dd);
|
|
|
|
qib_get_eeprom_info(dd);
|
|
|
|
/* setup time (don't start yet) to verify we got interrupt */
|
|
init_timer(&dd->intrchk_timer);
|
|
dd->intrchk_timer.function = verify_interrupt;
|
|
dd->intrchk_timer.data = (unsigned long) dd;
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* init_after_reset - re-initialize after a reset
|
|
* @dd: the qlogic_ib device
|
|
*
|
|
* sanity check at least some of the values after reset, and
|
|
* ensure no receive or transmit (explictly, in case reset
|
|
* failed
|
|
*/
|
|
static int init_after_reset(struct qib_devdata *dd)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Ensure chip does no sends or receives, tail updates, or
|
|
* pioavail updates while we re-initialize. This is mostly
|
|
* for the driver data structures, not chip registers.
|
|
*/
|
|
for (i = 0; i < dd->num_pports; ++i) {
|
|
/*
|
|
* ctxt == -1 means "all contexts". Only really safe for
|
|
* _dis_abling things, as here.
|
|
*/
|
|
dd->f_rcvctrl(dd->pport + i, QIB_RCVCTRL_CTXT_DIS |
|
|
QIB_RCVCTRL_INTRAVAIL_DIS |
|
|
QIB_RCVCTRL_TAILUPD_DIS, -1);
|
|
/* Redundant across ports for some, but no big deal. */
|
|
dd->f_sendctrl(dd->pport + i, QIB_SENDCTRL_SEND_DIS |
|
|
QIB_SENDCTRL_AVAIL_DIS);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void enable_chip(struct qib_devdata *dd)
|
|
{
|
|
u64 rcvmask;
|
|
int i;
|
|
|
|
/*
|
|
* Enable PIO send, and update of PIOavail regs to memory.
|
|
*/
|
|
for (i = 0; i < dd->num_pports; ++i)
|
|
dd->f_sendctrl(dd->pport + i, QIB_SENDCTRL_SEND_ENB |
|
|
QIB_SENDCTRL_AVAIL_ENB);
|
|
/*
|
|
* Enable kernel ctxts' receive and receive interrupt.
|
|
* Other ctxts done as user opens and inits them.
|
|
*/
|
|
rcvmask = QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_INTRAVAIL_ENB;
|
|
rcvmask |= (dd->flags & QIB_NODMA_RTAIL) ?
|
|
QIB_RCVCTRL_TAILUPD_DIS : QIB_RCVCTRL_TAILUPD_ENB;
|
|
for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
|
|
struct qib_ctxtdata *rcd = dd->rcd[i];
|
|
|
|
if (rcd)
|
|
dd->f_rcvctrl(rcd->ppd, rcvmask, i);
|
|
}
|
|
}
|
|
|
|
static void verify_interrupt(unsigned long opaque)
|
|
{
|
|
struct qib_devdata *dd = (struct qib_devdata *) opaque;
|
|
|
|
if (!dd)
|
|
return; /* being torn down */
|
|
|
|
/*
|
|
* If we don't have a lid or any interrupts, let the user know and
|
|
* don't bother checking again.
|
|
*/
|
|
if (dd->int_counter == 0) {
|
|
if (!dd->f_intr_fallback(dd))
|
|
dev_err(&dd->pcidev->dev, "No interrupts detected, "
|
|
"not usable.\n");
|
|
else /* re-arm the timer to see if fallback works */
|
|
mod_timer(&dd->intrchk_timer, jiffies + HZ/2);
|
|
}
|
|
}
|
|
|
|
static void init_piobuf_state(struct qib_devdata *dd)
|
|
{
|
|
int i, pidx;
|
|
u32 uctxts;
|
|
|
|
/*
|
|
* Ensure all buffers are free, and fifos empty. Buffers
|
|
* are common, so only do once for port 0.
|
|
*
|
|
* After enable and qib_chg_pioavailkernel so we can safely
|
|
* enable pioavail updates and PIOENABLE. After this, packets
|
|
* are ready and able to go out.
|
|
*/
|
|
dd->f_sendctrl(dd->pport, QIB_SENDCTRL_DISARM_ALL);
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx)
|
|
dd->f_sendctrl(dd->pport + pidx, QIB_SENDCTRL_FLUSH);
|
|
|
|
/*
|
|
* If not all sendbufs are used, add the one to each of the lower
|
|
* numbered contexts. pbufsctxt and lastctxt_piobuf are
|
|
* calculated in chip-specific code because it may cause some
|
|
* chip-specific adjustments to be made.
|
|
*/
|
|
uctxts = dd->cfgctxts - dd->first_user_ctxt;
|
|
dd->ctxts_extrabuf = dd->pbufsctxt ?
|
|
dd->lastctxt_piobuf - (dd->pbufsctxt * uctxts) : 0;
|
|
|
|
/*
|
|
* Set up the shadow copies of the piobufavail registers,
|
|
* which we compare against the chip registers for now, and
|
|
* the in memory DMA'ed copies of the registers.
|
|
* By now pioavail updates to memory should have occurred, so
|
|
* copy them into our working/shadow registers; this is in
|
|
* case something went wrong with abort, but mostly to get the
|
|
* initial values of the generation bit correct.
|
|
*/
|
|
for (i = 0; i < dd->pioavregs; i++) {
|
|
__le64 tmp;
|
|
|
|
tmp = dd->pioavailregs_dma[i];
|
|
/*
|
|
* Don't need to worry about pioavailkernel here
|
|
* because we will call qib_chg_pioavailkernel() later
|
|
* in initialization, to busy out buffers as needed.
|
|
*/
|
|
dd->pioavailshadow[i] = le64_to_cpu(tmp);
|
|
}
|
|
while (i < ARRAY_SIZE(dd->pioavailshadow))
|
|
dd->pioavailshadow[i++] = 0; /* for debugging sanity */
|
|
|
|
/* after pioavailshadow is setup */
|
|
qib_chg_pioavailkernel(dd, 0, dd->piobcnt2k + dd->piobcnt4k,
|
|
TXCHK_CHG_TYPE_KERN, NULL);
|
|
dd->f_initvl15_bufs(dd);
|
|
}
|
|
|
|
/**
|
|
* qib_init - do the actual initialization sequence on the chip
|
|
* @dd: the qlogic_ib device
|
|
* @reinit: reinitializing, so don't allocate new memory
|
|
*
|
|
* Do the actual initialization sequence on the chip. This is done
|
|
* both from the init routine called from the PCI infrastructure, and
|
|
* when we reset the chip, or detect that it was reset internally,
|
|
* or it's administratively re-enabled.
|
|
*
|
|
* Memory allocation here and in called routines is only done in
|
|
* the first case (reinit == 0). We have to be careful, because even
|
|
* without memory allocation, we need to re-write all the chip registers
|
|
* TIDs, etc. after the reset or enable has completed.
|
|
*/
|
|
int qib_init(struct qib_devdata *dd, int reinit)
|
|
{
|
|
int ret = 0, pidx, lastfail = 0;
|
|
u32 portok = 0;
|
|
unsigned i;
|
|
struct qib_ctxtdata *rcd;
|
|
struct qib_pportdata *ppd;
|
|
unsigned long flags;
|
|
|
|
/* Set linkstate to unknown, so we can watch for a transition. */
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
ppd = dd->pport + pidx;
|
|
spin_lock_irqsave(&ppd->lflags_lock, flags);
|
|
ppd->lflags &= ~(QIBL_LINKACTIVE | QIBL_LINKARMED |
|
|
QIBL_LINKDOWN | QIBL_LINKINIT |
|
|
QIBL_LINKV);
|
|
spin_unlock_irqrestore(&ppd->lflags_lock, flags);
|
|
}
|
|
|
|
if (reinit)
|
|
ret = init_after_reset(dd);
|
|
else
|
|
ret = loadtime_init(dd);
|
|
if (ret)
|
|
goto done;
|
|
|
|
/* Bypass most chip-init, to get to device creation */
|
|
if (qib_mini_init)
|
|
return 0;
|
|
|
|
ret = dd->f_late_initreg(dd);
|
|
if (ret)
|
|
goto done;
|
|
|
|
/* dd->rcd can be NULL if early init failed */
|
|
for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
|
|
/*
|
|
* Set up the (kernel) rcvhdr queue and egr TIDs. If doing
|
|
* re-init, the simplest way to handle this is to free
|
|
* existing, and re-allocate.
|
|
* Need to re-create rest of ctxt 0 ctxtdata as well.
|
|
*/
|
|
rcd = dd->rcd[i];
|
|
if (!rcd)
|
|
continue;
|
|
|
|
lastfail = qib_create_rcvhdrq(dd, rcd);
|
|
if (!lastfail)
|
|
lastfail = qib_setup_eagerbufs(rcd);
|
|
if (lastfail) {
|
|
qib_dev_err(dd, "failed to allocate kernel ctxt's "
|
|
"rcvhdrq and/or egr bufs\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
int mtu;
|
|
if (lastfail)
|
|
ret = lastfail;
|
|
ppd = dd->pport + pidx;
|
|
mtu = ib_mtu_enum_to_int(qib_ibmtu);
|
|
if (mtu == -1) {
|
|
mtu = QIB_DEFAULT_MTU;
|
|
qib_ibmtu = 0; /* don't leave invalid value */
|
|
}
|
|
/* set max we can ever have for this driver load */
|
|
ppd->init_ibmaxlen = min(mtu > 2048 ?
|
|
dd->piosize4k : dd->piosize2k,
|
|
dd->rcvegrbufsize +
|
|
(dd->rcvhdrentsize << 2));
|
|
/*
|
|
* Have to initialize ibmaxlen, but this will normally
|
|
* change immediately in qib_set_mtu().
|
|
*/
|
|
ppd->ibmaxlen = ppd->init_ibmaxlen;
|
|
qib_set_mtu(ppd, mtu);
|
|
|
|
spin_lock_irqsave(&ppd->lflags_lock, flags);
|
|
ppd->lflags |= QIBL_IB_LINK_DISABLED;
|
|
spin_unlock_irqrestore(&ppd->lflags_lock, flags);
|
|
|
|
lastfail = dd->f_bringup_serdes(ppd);
|
|
if (lastfail) {
|
|
qib_devinfo(dd->pcidev,
|
|
"Failed to bringup IB port %u\n", ppd->port);
|
|
lastfail = -ENETDOWN;
|
|
continue;
|
|
}
|
|
|
|
/* let link come up, and enable IBC */
|
|
spin_lock_irqsave(&ppd->lflags_lock, flags);
|
|
ppd->lflags &= ~QIBL_IB_LINK_DISABLED;
|
|
spin_unlock_irqrestore(&ppd->lflags_lock, flags);
|
|
portok++;
|
|
}
|
|
|
|
if (!portok) {
|
|
/* none of the ports initialized */
|
|
if (!ret && lastfail)
|
|
ret = lastfail;
|
|
else if (!ret)
|
|
ret = -ENETDOWN;
|
|
/* but continue on, so we can debug cause */
|
|
}
|
|
|
|
enable_chip(dd);
|
|
|
|
init_piobuf_state(dd);
|
|
|
|
done:
|
|
if (!ret) {
|
|
/* chip is OK for user apps; mark it as initialized */
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
ppd = dd->pport + pidx;
|
|
/*
|
|
* Set status even if port serdes is not initialized
|
|
* so that diags will work.
|
|
*/
|
|
*ppd->statusp |= QIB_STATUS_CHIP_PRESENT |
|
|
QIB_STATUS_INITTED;
|
|
if (!ppd->link_speed_enabled)
|
|
continue;
|
|
if (dd->flags & QIB_HAS_SEND_DMA)
|
|
ret = qib_setup_sdma(ppd);
|
|
init_timer(&ppd->hol_timer);
|
|
ppd->hol_timer.function = qib_hol_event;
|
|
ppd->hol_timer.data = (unsigned long)ppd;
|
|
ppd->hol_state = QIB_HOL_UP;
|
|
}
|
|
|
|
/* now we can enable all interrupts from the chip */
|
|
dd->f_set_intr_state(dd, 1);
|
|
|
|
/*
|
|
* Setup to verify we get an interrupt, and fallback
|
|
* to an alternate if necessary and possible.
|
|
*/
|
|
mod_timer(&dd->intrchk_timer, jiffies + HZ/2);
|
|
/* start stats retrieval timer */
|
|
mod_timer(&dd->stats_timer, jiffies + HZ * ACTIVITY_TIMER);
|
|
}
|
|
|
|
/* if ret is non-zero, we probably should do some cleanup here... */
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* These next two routines are placeholders in case we don't have per-arch
|
|
* code for controlling write combining. If explicit control of write
|
|
* combining is not available, performance will probably be awful.
|
|
*/
|
|
|
|
int __attribute__((weak)) qib_enable_wc(struct qib_devdata *dd)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
void __attribute__((weak)) qib_disable_wc(struct qib_devdata *dd)
|
|
{
|
|
}
|
|
|
|
static inline struct qib_devdata *__qib_lookup(int unit)
|
|
{
|
|
return idr_find(&qib_unit_table, unit);
|
|
}
|
|
|
|
struct qib_devdata *qib_lookup(int unit)
|
|
{
|
|
struct qib_devdata *dd;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&qib_devs_lock, flags);
|
|
dd = __qib_lookup(unit);
|
|
spin_unlock_irqrestore(&qib_devs_lock, flags);
|
|
|
|
return dd;
|
|
}
|
|
|
|
/*
|
|
* Stop the timers during unit shutdown, or after an error late
|
|
* in initialization.
|
|
*/
|
|
static void qib_stop_timers(struct qib_devdata *dd)
|
|
{
|
|
struct qib_pportdata *ppd;
|
|
int pidx;
|
|
|
|
if (dd->stats_timer.data) {
|
|
del_timer_sync(&dd->stats_timer);
|
|
dd->stats_timer.data = 0;
|
|
}
|
|
if (dd->intrchk_timer.data) {
|
|
del_timer_sync(&dd->intrchk_timer);
|
|
dd->intrchk_timer.data = 0;
|
|
}
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
ppd = dd->pport + pidx;
|
|
if (ppd->hol_timer.data)
|
|
del_timer_sync(&ppd->hol_timer);
|
|
if (ppd->led_override_timer.data) {
|
|
del_timer_sync(&ppd->led_override_timer);
|
|
atomic_set(&ppd->led_override_timer_active, 0);
|
|
}
|
|
if (ppd->symerr_clear_timer.data)
|
|
del_timer_sync(&ppd->symerr_clear_timer);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* qib_shutdown_device - shut down a device
|
|
* @dd: the qlogic_ib device
|
|
*
|
|
* This is called to make the device quiet when we are about to
|
|
* unload the driver, and also when the device is administratively
|
|
* disabled. It does not free any data structures.
|
|
* Everything it does has to be setup again by qib_init(dd, 1)
|
|
*/
|
|
static void qib_shutdown_device(struct qib_devdata *dd)
|
|
{
|
|
struct qib_pportdata *ppd;
|
|
unsigned pidx;
|
|
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
ppd = dd->pport + pidx;
|
|
|
|
spin_lock_irq(&ppd->lflags_lock);
|
|
ppd->lflags &= ~(QIBL_LINKDOWN | QIBL_LINKINIT |
|
|
QIBL_LINKARMED | QIBL_LINKACTIVE |
|
|
QIBL_LINKV);
|
|
spin_unlock_irq(&ppd->lflags_lock);
|
|
*ppd->statusp &= ~(QIB_STATUS_IB_CONF | QIB_STATUS_IB_READY);
|
|
}
|
|
dd->flags &= ~QIB_INITTED;
|
|
|
|
/* mask interrupts, but not errors */
|
|
dd->f_set_intr_state(dd, 0);
|
|
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
ppd = dd->pport + pidx;
|
|
dd->f_rcvctrl(ppd, QIB_RCVCTRL_TAILUPD_DIS |
|
|
QIB_RCVCTRL_CTXT_DIS |
|
|
QIB_RCVCTRL_INTRAVAIL_DIS |
|
|
QIB_RCVCTRL_PKEY_ENB, -1);
|
|
/*
|
|
* Gracefully stop all sends allowing any in progress to
|
|
* trickle out first.
|
|
*/
|
|
dd->f_sendctrl(ppd, QIB_SENDCTRL_CLEAR);
|
|
}
|
|
|
|
/*
|
|
* Enough for anything that's going to trickle out to have actually
|
|
* done so.
|
|
*/
|
|
udelay(20);
|
|
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
ppd = dd->pport + pidx;
|
|
dd->f_setextled(ppd, 0); /* make sure LEDs are off */
|
|
|
|
if (dd->flags & QIB_HAS_SEND_DMA)
|
|
qib_teardown_sdma(ppd);
|
|
|
|
dd->f_sendctrl(ppd, QIB_SENDCTRL_AVAIL_DIS |
|
|
QIB_SENDCTRL_SEND_DIS);
|
|
/*
|
|
* Clear SerdesEnable.
|
|
* We can't count on interrupts since we are stopping.
|
|
*/
|
|
dd->f_quiet_serdes(ppd);
|
|
}
|
|
|
|
qib_update_eeprom_log(dd);
|
|
}
|
|
|
|
/**
|
|
* qib_free_ctxtdata - free a context's allocated data
|
|
* @dd: the qlogic_ib device
|
|
* @rcd: the ctxtdata structure
|
|
*
|
|
* free up any allocated data for a context
|
|
* This should not touch anything that would affect a simultaneous
|
|
* re-allocation of context data, because it is called after qib_mutex
|
|
* is released (and can be called from reinit as well).
|
|
* It should never change any chip state, or global driver state.
|
|
*/
|
|
void qib_free_ctxtdata(struct qib_devdata *dd, struct qib_ctxtdata *rcd)
|
|
{
|
|
if (!rcd)
|
|
return;
|
|
|
|
if (rcd->rcvhdrq) {
|
|
dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
|
|
rcd->rcvhdrq, rcd->rcvhdrq_phys);
|
|
rcd->rcvhdrq = NULL;
|
|
if (rcd->rcvhdrtail_kvaddr) {
|
|
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
|
|
rcd->rcvhdrtail_kvaddr,
|
|
rcd->rcvhdrqtailaddr_phys);
|
|
rcd->rcvhdrtail_kvaddr = NULL;
|
|
}
|
|
}
|
|
if (rcd->rcvegrbuf) {
|
|
unsigned e;
|
|
|
|
for (e = 0; e < rcd->rcvegrbuf_chunks; e++) {
|
|
void *base = rcd->rcvegrbuf[e];
|
|
size_t size = rcd->rcvegrbuf_size;
|
|
|
|
dma_free_coherent(&dd->pcidev->dev, size,
|
|
base, rcd->rcvegrbuf_phys[e]);
|
|
}
|
|
kfree(rcd->rcvegrbuf);
|
|
rcd->rcvegrbuf = NULL;
|
|
kfree(rcd->rcvegrbuf_phys);
|
|
rcd->rcvegrbuf_phys = NULL;
|
|
rcd->rcvegrbuf_chunks = 0;
|
|
}
|
|
|
|
kfree(rcd->tid_pg_list);
|
|
vfree(rcd->user_event_mask);
|
|
vfree(rcd->subctxt_uregbase);
|
|
vfree(rcd->subctxt_rcvegrbuf);
|
|
vfree(rcd->subctxt_rcvhdr_base);
|
|
kfree(rcd);
|
|
}
|
|
|
|
/*
|
|
* Perform a PIO buffer bandwidth write test, to verify proper system
|
|
* configuration. Even when all the setup calls work, occasionally
|
|
* BIOS or other issues can prevent write combining from working, or
|
|
* can cause other bandwidth problems to the chip.
|
|
*
|
|
* This test simply writes the same buffer over and over again, and
|
|
* measures close to the peak bandwidth to the chip (not testing
|
|
* data bandwidth to the wire). On chips that use an address-based
|
|
* trigger to send packets to the wire, this is easy. On chips that
|
|
* use a count to trigger, we want to make sure that the packet doesn't
|
|
* go out on the wire, or trigger flow control checks.
|
|
*/
|
|
static void qib_verify_pioperf(struct qib_devdata *dd)
|
|
{
|
|
u32 pbnum, cnt, lcnt;
|
|
u32 __iomem *piobuf;
|
|
u32 *addr;
|
|
u64 msecs, emsecs;
|
|
|
|
piobuf = dd->f_getsendbuf(dd->pport, 0ULL, &pbnum);
|
|
if (!piobuf) {
|
|
qib_devinfo(dd->pcidev,
|
|
"No PIObufs for checking perf, skipping\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Enough to give us a reasonable test, less than piobuf size, and
|
|
* likely multiple of store buffer length.
|
|
*/
|
|
cnt = 1024;
|
|
|
|
addr = vmalloc(cnt);
|
|
if (!addr) {
|
|
qib_devinfo(dd->pcidev,
|
|
"Couldn't get memory for checking PIO perf,"
|
|
" skipping\n");
|
|
goto done;
|
|
}
|
|
|
|
preempt_disable(); /* we want reasonably accurate elapsed time */
|
|
msecs = 1 + jiffies_to_msecs(jiffies);
|
|
for (lcnt = 0; lcnt < 10000U; lcnt++) {
|
|
/* wait until we cross msec boundary */
|
|
if (jiffies_to_msecs(jiffies) >= msecs)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
dd->f_set_armlaunch(dd, 0);
|
|
|
|
/*
|
|
* length 0, no dwords actually sent
|
|
*/
|
|
writeq(0, piobuf);
|
|
qib_flush_wc();
|
|
|
|
/*
|
|
* This is only roughly accurate, since even with preempt we
|
|
* still take interrupts that could take a while. Running for
|
|
* >= 5 msec seems to get us "close enough" to accurate values.
|
|
*/
|
|
msecs = jiffies_to_msecs(jiffies);
|
|
for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) {
|
|
qib_pio_copy(piobuf + 64, addr, cnt >> 2);
|
|
emsecs = jiffies_to_msecs(jiffies) - msecs;
|
|
}
|
|
|
|
/* 1 GiB/sec, slightly over IB SDR line rate */
|
|
if (lcnt < (emsecs * 1024U))
|
|
qib_dev_err(dd,
|
|
"Performance problem: bandwidth to PIO buffers is "
|
|
"only %u MiB/sec\n",
|
|
lcnt / (u32) emsecs);
|
|
|
|
preempt_enable();
|
|
|
|
vfree(addr);
|
|
|
|
done:
|
|
/* disarm piobuf, so it's available again */
|
|
dd->f_sendctrl(dd->pport, QIB_SENDCTRL_DISARM_BUF(pbnum));
|
|
qib_sendbuf_done(dd, pbnum);
|
|
dd->f_set_armlaunch(dd, 1);
|
|
}
|
|
|
|
|
|
void qib_free_devdata(struct qib_devdata *dd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&qib_devs_lock, flags);
|
|
idr_remove(&qib_unit_table, dd->unit);
|
|
list_del(&dd->list);
|
|
spin_unlock_irqrestore(&qib_devs_lock, flags);
|
|
|
|
ib_dealloc_device(&dd->verbs_dev.ibdev);
|
|
}
|
|
|
|
/*
|
|
* Allocate our primary per-unit data structure. Must be done via verbs
|
|
* allocator, because the verbs cleanup process both does cleanup and
|
|
* free of the data structure.
|
|
* "extra" is for chip-specific data.
|
|
*
|
|
* Use the idr mechanism to get a unit number for this unit.
|
|
*/
|
|
struct qib_devdata *qib_alloc_devdata(struct pci_dev *pdev, size_t extra)
|
|
{
|
|
unsigned long flags;
|
|
struct qib_devdata *dd;
|
|
int ret;
|
|
|
|
if (!idr_pre_get(&qib_unit_table, GFP_KERNEL)) {
|
|
dd = ERR_PTR(-ENOMEM);
|
|
goto bail;
|
|
}
|
|
|
|
dd = (struct qib_devdata *) ib_alloc_device(sizeof(*dd) + extra);
|
|
if (!dd) {
|
|
dd = ERR_PTR(-ENOMEM);
|
|
goto bail;
|
|
}
|
|
|
|
spin_lock_irqsave(&qib_devs_lock, flags);
|
|
ret = idr_get_new(&qib_unit_table, dd, &dd->unit);
|
|
if (ret >= 0)
|
|
list_add(&dd->list, &qib_dev_list);
|
|
spin_unlock_irqrestore(&qib_devs_lock, flags);
|
|
|
|
if (ret < 0) {
|
|
qib_early_err(&pdev->dev,
|
|
"Could not allocate unit ID: error %d\n", -ret);
|
|
ib_dealloc_device(&dd->verbs_dev.ibdev);
|
|
dd = ERR_PTR(ret);
|
|
goto bail;
|
|
}
|
|
|
|
if (!qib_cpulist_count) {
|
|
u32 count = num_online_cpus();
|
|
qib_cpulist = kzalloc(BITS_TO_LONGS(count) *
|
|
sizeof(long), GFP_KERNEL);
|
|
if (qib_cpulist)
|
|
qib_cpulist_count = count;
|
|
else
|
|
qib_early_err(&pdev->dev, "Could not alloc cpulist "
|
|
"info, cpu affinity might be wrong\n");
|
|
}
|
|
|
|
bail:
|
|
return dd;
|
|
}
|
|
|
|
/*
|
|
* Called from freeze mode handlers, and from PCI error
|
|
* reporting code. Should be paranoid about state of
|
|
* system and data structures.
|
|
*/
|
|
void qib_disable_after_error(struct qib_devdata *dd)
|
|
{
|
|
if (dd->flags & QIB_INITTED) {
|
|
u32 pidx;
|
|
|
|
dd->flags &= ~QIB_INITTED;
|
|
if (dd->pport)
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
|
|
struct qib_pportdata *ppd;
|
|
|
|
ppd = dd->pport + pidx;
|
|
if (dd->flags & QIB_PRESENT) {
|
|
qib_set_linkstate(ppd,
|
|
QIB_IB_LINKDOWN_DISABLE);
|
|
dd->f_setextled(ppd, 0);
|
|
}
|
|
*ppd->statusp &= ~QIB_STATUS_IB_READY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark as having had an error for driver, and also
|
|
* for /sys and status word mapped to user programs.
|
|
* This marks unit as not usable, until reset.
|
|
*/
|
|
if (dd->devstatusp)
|
|
*dd->devstatusp |= QIB_STATUS_HWERROR;
|
|
}
|
|
|
|
static void __devexit qib_remove_one(struct pci_dev *);
|
|
static int __devinit qib_init_one(struct pci_dev *,
|
|
const struct pci_device_id *);
|
|
|
|
#define DRIVER_LOAD_MSG "QLogic " QIB_DRV_NAME " loaded: "
|
|
#define PFX QIB_DRV_NAME ": "
|
|
|
|
static const struct pci_device_id qib_pci_tbl[] = {
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_QLOGIC_IB_6120) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_IB_7220) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_IB_7322) },
|
|
{ 0, }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, qib_pci_tbl);
|
|
|
|
struct pci_driver qib_driver = {
|
|
.name = QIB_DRV_NAME,
|
|
.probe = qib_init_one,
|
|
.remove = __devexit_p(qib_remove_one),
|
|
.id_table = qib_pci_tbl,
|
|
.err_handler = &qib_pci_err_handler,
|
|
};
|
|
|
|
/*
|
|
* Do all the generic driver unit- and chip-independent memory
|
|
* allocation and initialization.
|
|
*/
|
|
static int __init qlogic_ib_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = qib_dev_init();
|
|
if (ret)
|
|
goto bail;
|
|
|
|
/*
|
|
* We create our own workqueue mainly because we want to be
|
|
* able to flush it when devices are being removed. We can't
|
|
* use schedule_work()/flush_scheduled_work() because both
|
|
* unregister_netdev() and linkwatch_event take the rtnl lock,
|
|
* so flush_scheduled_work() can deadlock during device
|
|
* removal.
|
|
*/
|
|
qib_wq = create_workqueue("qib");
|
|
if (!qib_wq) {
|
|
ret = -ENOMEM;
|
|
goto bail_dev;
|
|
}
|
|
|
|
qib_cq_wq = create_singlethread_workqueue("qib_cq");
|
|
if (!qib_cq_wq) {
|
|
ret = -ENOMEM;
|
|
goto bail_wq;
|
|
}
|
|
|
|
/*
|
|
* These must be called before the driver is registered with
|
|
* the PCI subsystem.
|
|
*/
|
|
idr_init(&qib_unit_table);
|
|
if (!idr_pre_get(&qib_unit_table, GFP_KERNEL)) {
|
|
printk(KERN_ERR QIB_DRV_NAME ": idr_pre_get() failed\n");
|
|
ret = -ENOMEM;
|
|
goto bail_cq_wq;
|
|
}
|
|
|
|
ret = pci_register_driver(&qib_driver);
|
|
if (ret < 0) {
|
|
printk(KERN_ERR QIB_DRV_NAME
|
|
": Unable to register driver: error %d\n", -ret);
|
|
goto bail_unit;
|
|
}
|
|
|
|
/* not fatal if it doesn't work */
|
|
if (qib_init_qibfs())
|
|
printk(KERN_ERR QIB_DRV_NAME ": Unable to register ipathfs\n");
|
|
goto bail; /* all OK */
|
|
|
|
bail_unit:
|
|
idr_destroy(&qib_unit_table);
|
|
bail_cq_wq:
|
|
destroy_workqueue(qib_cq_wq);
|
|
bail_wq:
|
|
destroy_workqueue(qib_wq);
|
|
bail_dev:
|
|
qib_dev_cleanup();
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
module_init(qlogic_ib_init);
|
|
|
|
/*
|
|
* Do the non-unit driver cleanup, memory free, etc. at unload.
|
|
*/
|
|
static void __exit qlogic_ib_cleanup(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = qib_exit_qibfs();
|
|
if (ret)
|
|
printk(KERN_ERR QIB_DRV_NAME ": "
|
|
"Unable to cleanup counter filesystem: "
|
|
"error %d\n", -ret);
|
|
|
|
pci_unregister_driver(&qib_driver);
|
|
|
|
destroy_workqueue(qib_wq);
|
|
destroy_workqueue(qib_cq_wq);
|
|
|
|
qib_cpulist_count = 0;
|
|
kfree(qib_cpulist);
|
|
|
|
idr_destroy(&qib_unit_table);
|
|
qib_dev_cleanup();
|
|
}
|
|
|
|
module_exit(qlogic_ib_cleanup);
|
|
|
|
/* this can only be called after a successful initialization */
|
|
static void cleanup_device_data(struct qib_devdata *dd)
|
|
{
|
|
int ctxt;
|
|
int pidx;
|
|
struct qib_ctxtdata **tmp;
|
|
unsigned long flags;
|
|
|
|
/* users can't do anything more with chip */
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx)
|
|
if (dd->pport[pidx].statusp)
|
|
*dd->pport[pidx].statusp &= ~QIB_STATUS_CHIP_PRESENT;
|
|
|
|
if (!qib_wc_pat)
|
|
qib_disable_wc(dd);
|
|
|
|
if (dd->pioavailregs_dma) {
|
|
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
|
|
(void *) dd->pioavailregs_dma,
|
|
dd->pioavailregs_phys);
|
|
dd->pioavailregs_dma = NULL;
|
|
}
|
|
|
|
if (dd->pageshadow) {
|
|
struct page **tmpp = dd->pageshadow;
|
|
dma_addr_t *tmpd = dd->physshadow;
|
|
int i, cnt = 0;
|
|
|
|
for (ctxt = 0; ctxt < dd->cfgctxts; ctxt++) {
|
|
int ctxt_tidbase = ctxt * dd->rcvtidcnt;
|
|
int maxtid = ctxt_tidbase + dd->rcvtidcnt;
|
|
|
|
for (i = ctxt_tidbase; i < maxtid; i++) {
|
|
if (!tmpp[i])
|
|
continue;
|
|
pci_unmap_page(dd->pcidev, tmpd[i],
|
|
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
|
qib_release_user_pages(&tmpp[i], 1);
|
|
tmpp[i] = NULL;
|
|
cnt++;
|
|
}
|
|
}
|
|
|
|
tmpp = dd->pageshadow;
|
|
dd->pageshadow = NULL;
|
|
vfree(tmpp);
|
|
}
|
|
|
|
/*
|
|
* Free any resources still in use (usually just kernel contexts)
|
|
* at unload; we do for ctxtcnt, because that's what we allocate.
|
|
* We acquire lock to be really paranoid that rcd isn't being
|
|
* accessed from some interrupt-related code (that should not happen,
|
|
* but best to be sure).
|
|
*/
|
|
spin_lock_irqsave(&dd->uctxt_lock, flags);
|
|
tmp = dd->rcd;
|
|
dd->rcd = NULL;
|
|
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
|
|
for (ctxt = 0; tmp && ctxt < dd->ctxtcnt; ctxt++) {
|
|
struct qib_ctxtdata *rcd = tmp[ctxt];
|
|
|
|
tmp[ctxt] = NULL; /* debugging paranoia */
|
|
qib_free_ctxtdata(dd, rcd);
|
|
}
|
|
kfree(tmp);
|
|
kfree(dd->boardname);
|
|
}
|
|
|
|
/*
|
|
* Clean up on unit shutdown, or error during unit load after
|
|
* successful initialization.
|
|
*/
|
|
static void qib_postinit_cleanup(struct qib_devdata *dd)
|
|
{
|
|
/*
|
|
* Clean up chip-specific stuff.
|
|
* We check for NULL here, because it's outside
|
|
* the kregbase check, and we need to call it
|
|
* after the free_irq. Thus it's possible that
|
|
* the function pointers were never initialized.
|
|
*/
|
|
if (dd->f_cleanup)
|
|
dd->f_cleanup(dd);
|
|
|
|
qib_pcie_ddcleanup(dd);
|
|
|
|
cleanup_device_data(dd);
|
|
|
|
qib_free_devdata(dd);
|
|
}
|
|
|
|
static int __devinit qib_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
int ret, j, pidx, initfail;
|
|
struct qib_devdata *dd = NULL;
|
|
|
|
ret = qib_pcie_init(pdev, ent);
|
|
if (ret)
|
|
goto bail;
|
|
|
|
/*
|
|
* Do device-specific initialiation, function table setup, dd
|
|
* allocation, etc.
|
|
*/
|
|
switch (ent->device) {
|
|
case PCI_DEVICE_ID_QLOGIC_IB_6120:
|
|
#ifdef CONFIG_PCI_MSI
|
|
dd = qib_init_iba6120_funcs(pdev, ent);
|
|
#else
|
|
qib_early_err(&pdev->dev, "QLogic PCIE device 0x%x cannot "
|
|
"work if CONFIG_PCI_MSI is not enabled\n",
|
|
ent->device);
|
|
dd = ERR_PTR(-ENODEV);
|
|
#endif
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_QLOGIC_IB_7220:
|
|
dd = qib_init_iba7220_funcs(pdev, ent);
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_QLOGIC_IB_7322:
|
|
dd = qib_init_iba7322_funcs(pdev, ent);
|
|
break;
|
|
|
|
default:
|
|
qib_early_err(&pdev->dev, "Failing on unknown QLogic "
|
|
"deviceid 0x%x\n", ent->device);
|
|
ret = -ENODEV;
|
|
}
|
|
|
|
if (IS_ERR(dd))
|
|
ret = PTR_ERR(dd);
|
|
if (ret)
|
|
goto bail; /* error already printed */
|
|
|
|
/* do the generic initialization */
|
|
initfail = qib_init(dd, 0);
|
|
|
|
ret = qib_register_ib_device(dd);
|
|
|
|
/*
|
|
* Now ready for use. this should be cleared whenever we
|
|
* detect a reset, or initiate one. If earlier failure,
|
|
* we still create devices, so diags, etc. can be used
|
|
* to determine cause of problem.
|
|
*/
|
|
if (!qib_mini_init && !initfail && !ret)
|
|
dd->flags |= QIB_INITTED;
|
|
|
|
j = qib_device_create(dd);
|
|
if (j)
|
|
qib_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
|
|
j = qibfs_add(dd);
|
|
if (j)
|
|
qib_dev_err(dd, "Failed filesystem setup for counters: %d\n",
|
|
-j);
|
|
|
|
if (qib_mini_init || initfail || ret) {
|
|
qib_stop_timers(dd);
|
|
flush_scheduled_work();
|
|
for (pidx = 0; pidx < dd->num_pports; ++pidx)
|
|
dd->f_quiet_serdes(dd->pport + pidx);
|
|
if (qib_mini_init)
|
|
goto bail;
|
|
if (!j) {
|
|
(void) qibfs_remove(dd);
|
|
qib_device_remove(dd);
|
|
}
|
|
if (!ret)
|
|
qib_unregister_ib_device(dd);
|
|
qib_postinit_cleanup(dd);
|
|
if (initfail)
|
|
ret = initfail;
|
|
goto bail;
|
|
}
|
|
|
|
if (!qib_wc_pat) {
|
|
ret = qib_enable_wc(dd);
|
|
if (ret) {
|
|
qib_dev_err(dd, "Write combining not enabled "
|
|
"(err %d): performance may be poor\n",
|
|
-ret);
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
qib_verify_pioperf(dd);
|
|
bail:
|
|
return ret;
|
|
}
|
|
|
|
static void __devexit qib_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct qib_devdata *dd = pci_get_drvdata(pdev);
|
|
int ret;
|
|
|
|
/* unregister from IB core */
|
|
qib_unregister_ib_device(dd);
|
|
|
|
/*
|
|
* Disable the IB link, disable interrupts on the device,
|
|
* clear dma engines, etc.
|
|
*/
|
|
if (!qib_mini_init)
|
|
qib_shutdown_device(dd);
|
|
|
|
qib_stop_timers(dd);
|
|
|
|
/* wait until all of our (qsfp) schedule_work() calls complete */
|
|
flush_scheduled_work();
|
|
|
|
ret = qibfs_remove(dd);
|
|
if (ret)
|
|
qib_dev_err(dd, "Failed counters filesystem cleanup: %d\n",
|
|
-ret);
|
|
|
|
qib_device_remove(dd);
|
|
|
|
qib_postinit_cleanup(dd);
|
|
}
|
|
|
|
/**
|
|
* qib_create_rcvhdrq - create a receive header queue
|
|
* @dd: the qlogic_ib device
|
|
* @rcd: the context data
|
|
*
|
|
* This must be contiguous memory (from an i/o perspective), and must be
|
|
* DMA'able (which means for some systems, it will go through an IOMMU,
|
|
* or be forced into a low address range).
|
|
*/
|
|
int qib_create_rcvhdrq(struct qib_devdata *dd, struct qib_ctxtdata *rcd)
|
|
{
|
|
unsigned amt;
|
|
|
|
if (!rcd->rcvhdrq) {
|
|
dma_addr_t phys_hdrqtail;
|
|
gfp_t gfp_flags;
|
|
|
|
amt = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize *
|
|
sizeof(u32), PAGE_SIZE);
|
|
gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
|
|
GFP_USER : GFP_KERNEL;
|
|
rcd->rcvhdrq = dma_alloc_coherent(
|
|
&dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
|
|
gfp_flags | __GFP_COMP);
|
|
|
|
if (!rcd->rcvhdrq) {
|
|
qib_dev_err(dd, "attempt to allocate %d bytes "
|
|
"for ctxt %u rcvhdrq failed\n",
|
|
amt, rcd->ctxt);
|
|
goto bail;
|
|
}
|
|
|
|
if (rcd->ctxt >= dd->first_user_ctxt) {
|
|
rcd->user_event_mask = vmalloc_user(PAGE_SIZE);
|
|
if (!rcd->user_event_mask)
|
|
goto bail_free_hdrq;
|
|
}
|
|
|
|
if (!(dd->flags & QIB_NODMA_RTAIL)) {
|
|
rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(
|
|
&dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
|
|
gfp_flags);
|
|
if (!rcd->rcvhdrtail_kvaddr)
|
|
goto bail_free;
|
|
rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
|
|
}
|
|
|
|
rcd->rcvhdrq_size = amt;
|
|
}
|
|
|
|
/* clear for security and sanity on each use */
|
|
memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
|
|
if (rcd->rcvhdrtail_kvaddr)
|
|
memset(rcd->rcvhdrtail_kvaddr, 0, PAGE_SIZE);
|
|
return 0;
|
|
|
|
bail_free:
|
|
qib_dev_err(dd, "attempt to allocate 1 page for ctxt %u "
|
|
"rcvhdrqtailaddr failed\n", rcd->ctxt);
|
|
vfree(rcd->user_event_mask);
|
|
rcd->user_event_mask = NULL;
|
|
bail_free_hdrq:
|
|
dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
|
|
rcd->rcvhdrq_phys);
|
|
rcd->rcvhdrq = NULL;
|
|
bail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* allocate eager buffers, both kernel and user contexts.
|
|
* @rcd: the context we are setting up.
|
|
*
|
|
* Allocate the eager TID buffers and program them into hip.
|
|
* They are no longer completely contiguous, we do multiple allocation
|
|
* calls. Otherwise we get the OOM code involved, by asking for too
|
|
* much per call, with disastrous results on some kernels.
|
|
*/
|
|
int qib_setup_eagerbufs(struct qib_ctxtdata *rcd)
|
|
{
|
|
struct qib_devdata *dd = rcd->dd;
|
|
unsigned e, egrcnt, egrperchunk, chunk, egrsize, egroff;
|
|
size_t size;
|
|
gfp_t gfp_flags;
|
|
|
|
/*
|
|
* GFP_USER, but without GFP_FS, so buffer cache can be
|
|
* coalesced (we hope); otherwise, even at order 4,
|
|
* heavy filesystem activity makes these fail, and we can
|
|
* use compound pages.
|
|
*/
|
|
gfp_flags = __GFP_WAIT | __GFP_IO | __GFP_COMP;
|
|
|
|
egrcnt = rcd->rcvegrcnt;
|
|
egroff = rcd->rcvegr_tid_base;
|
|
egrsize = dd->rcvegrbufsize;
|
|
|
|
chunk = rcd->rcvegrbuf_chunks;
|
|
egrperchunk = rcd->rcvegrbufs_perchunk;
|
|
size = rcd->rcvegrbuf_size;
|
|
if (!rcd->rcvegrbuf) {
|
|
rcd->rcvegrbuf =
|
|
kzalloc(chunk * sizeof(rcd->rcvegrbuf[0]),
|
|
GFP_KERNEL);
|
|
if (!rcd->rcvegrbuf)
|
|
goto bail;
|
|
}
|
|
if (!rcd->rcvegrbuf_phys) {
|
|
rcd->rcvegrbuf_phys =
|
|
kmalloc(chunk * sizeof(rcd->rcvegrbuf_phys[0]),
|
|
GFP_KERNEL);
|
|
if (!rcd->rcvegrbuf_phys)
|
|
goto bail_rcvegrbuf;
|
|
}
|
|
for (e = 0; e < rcd->rcvegrbuf_chunks; e++) {
|
|
if (rcd->rcvegrbuf[e])
|
|
continue;
|
|
rcd->rcvegrbuf[e] =
|
|
dma_alloc_coherent(&dd->pcidev->dev, size,
|
|
&rcd->rcvegrbuf_phys[e],
|
|
gfp_flags);
|
|
if (!rcd->rcvegrbuf[e])
|
|
goto bail_rcvegrbuf_phys;
|
|
}
|
|
|
|
rcd->rcvegr_phys = rcd->rcvegrbuf_phys[0];
|
|
|
|
for (e = chunk = 0; chunk < rcd->rcvegrbuf_chunks; chunk++) {
|
|
dma_addr_t pa = rcd->rcvegrbuf_phys[chunk];
|
|
unsigned i;
|
|
|
|
/* clear for security and sanity on each use */
|
|
memset(rcd->rcvegrbuf[chunk], 0, size);
|
|
|
|
for (i = 0; e < egrcnt && i < egrperchunk; e++, i++) {
|
|
dd->f_put_tid(dd, e + egroff +
|
|
(u64 __iomem *)
|
|
((char __iomem *)
|
|
dd->kregbase +
|
|
dd->rcvegrbase),
|
|
RCVHQ_RCV_TYPE_EAGER, pa);
|
|
pa += egrsize;
|
|
}
|
|
cond_resched(); /* don't hog the cpu */
|
|
}
|
|
|
|
return 0;
|
|
|
|
bail_rcvegrbuf_phys:
|
|
for (e = 0; e < rcd->rcvegrbuf_chunks && rcd->rcvegrbuf[e]; e++)
|
|
dma_free_coherent(&dd->pcidev->dev, size,
|
|
rcd->rcvegrbuf[e], rcd->rcvegrbuf_phys[e]);
|
|
kfree(rcd->rcvegrbuf_phys);
|
|
rcd->rcvegrbuf_phys = NULL;
|
|
bail_rcvegrbuf:
|
|
kfree(rcd->rcvegrbuf);
|
|
rcd->rcvegrbuf = NULL;
|
|
bail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Note: Changes to this routine should be mirrored
|
|
* for the diagnostics routine qib_remap_ioaddr32().
|
|
* There is also related code for VL15 buffers in qib_init_7322_variables().
|
|
* The teardown code that unmaps is in qib_pcie_ddcleanup()
|
|
*/
|
|
int init_chip_wc_pat(struct qib_devdata *dd, u32 vl15buflen)
|
|
{
|
|
u64 __iomem *qib_kregbase = NULL;
|
|
void __iomem *qib_piobase = NULL;
|
|
u64 __iomem *qib_userbase = NULL;
|
|
u64 qib_kreglen;
|
|
u64 qib_pio2koffset = dd->piobufbase & 0xffffffff;
|
|
u64 qib_pio4koffset = dd->piobufbase >> 32;
|
|
u64 qib_pio2klen = dd->piobcnt2k * dd->palign;
|
|
u64 qib_pio4klen = dd->piobcnt4k * dd->align4k;
|
|
u64 qib_physaddr = dd->physaddr;
|
|
u64 qib_piolen;
|
|
u64 qib_userlen = 0;
|
|
|
|
/*
|
|
* Free the old mapping because the kernel will try to reuse the
|
|
* old mapping and not create a new mapping with the
|
|
* write combining attribute.
|
|
*/
|
|
iounmap(dd->kregbase);
|
|
dd->kregbase = NULL;
|
|
|
|
/*
|
|
* Assumes chip address space looks like:
|
|
* - kregs + sregs + cregs + uregs (in any order)
|
|
* - piobufs (2K and 4K bufs in either order)
|
|
* or:
|
|
* - kregs + sregs + cregs (in any order)
|
|
* - piobufs (2K and 4K bufs in either order)
|
|
* - uregs
|
|
*/
|
|
if (dd->piobcnt4k == 0) {
|
|
qib_kreglen = qib_pio2koffset;
|
|
qib_piolen = qib_pio2klen;
|
|
} else if (qib_pio2koffset < qib_pio4koffset) {
|
|
qib_kreglen = qib_pio2koffset;
|
|
qib_piolen = qib_pio4koffset + qib_pio4klen - qib_kreglen;
|
|
} else {
|
|
qib_kreglen = qib_pio4koffset;
|
|
qib_piolen = qib_pio2koffset + qib_pio2klen - qib_kreglen;
|
|
}
|
|
qib_piolen += vl15buflen;
|
|
/* Map just the configured ports (not all hw ports) */
|
|
if (dd->uregbase > qib_kreglen)
|
|
qib_userlen = dd->ureg_align * dd->cfgctxts;
|
|
|
|
/* Sanity checks passed, now create the new mappings */
|
|
qib_kregbase = ioremap_nocache(qib_physaddr, qib_kreglen);
|
|
if (!qib_kregbase)
|
|
goto bail;
|
|
|
|
qib_piobase = ioremap_wc(qib_physaddr + qib_kreglen, qib_piolen);
|
|
if (!qib_piobase)
|
|
goto bail_kregbase;
|
|
|
|
if (qib_userlen) {
|
|
qib_userbase = ioremap_nocache(qib_physaddr + dd->uregbase,
|
|
qib_userlen);
|
|
if (!qib_userbase)
|
|
goto bail_piobase;
|
|
}
|
|
|
|
dd->kregbase = qib_kregbase;
|
|
dd->kregend = (u64 __iomem *)
|
|
((char __iomem *) qib_kregbase + qib_kreglen);
|
|
dd->piobase = qib_piobase;
|
|
dd->pio2kbase = (void __iomem *)
|
|
(((char __iomem *) dd->piobase) +
|
|
qib_pio2koffset - qib_kreglen);
|
|
if (dd->piobcnt4k)
|
|
dd->pio4kbase = (void __iomem *)
|
|
(((char __iomem *) dd->piobase) +
|
|
qib_pio4koffset - qib_kreglen);
|
|
if (qib_userlen)
|
|
/* ureg will now be accessed relative to dd->userbase */
|
|
dd->userbase = qib_userbase;
|
|
return 0;
|
|
|
|
bail_piobase:
|
|
iounmap(qib_piobase);
|
|
bail_kregbase:
|
|
iounmap(qib_kregbase);
|
|
bail:
|
|
return -ENOMEM;
|
|
}
|