14328aa58c
KFD (kernel fusion driver) is the kernel driver for the compute backend for usermode compute stack. v2: squash in updates (Alex) v3: squash in rebase fixes (Alex) Signed-off-by: Oak Zeng <Oak.Zeng@amd.com> Signed-off-by: Philip Cox <Philip.Cox@amd.com> Acked-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Hawking Zhang <Hawking.Zhang@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1397 lines
41 KiB
C
1397 lines
41 KiB
C
/*
|
|
* Copyright 2015-2017 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/acpi.h>
|
|
#include "kfd_crat.h"
|
|
#include "kfd_priv.h"
|
|
#include "kfd_topology.h"
|
|
#include "kfd_iommu.h"
|
|
#include "amdgpu_amdkfd.h"
|
|
|
|
/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
|
|
* GPU processor ID are expressed with Bit[31]=1.
|
|
* The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
|
|
* used in the CRAT.
|
|
*/
|
|
static uint32_t gpu_processor_id_low = 0x80001000;
|
|
|
|
/* Return the next available gpu_processor_id and increment it for next GPU
|
|
* @total_cu_count - Total CUs present in the GPU including ones
|
|
* masked off
|
|
*/
|
|
static inline unsigned int get_and_inc_gpu_processor_id(
|
|
unsigned int total_cu_count)
|
|
{
|
|
int current_id = gpu_processor_id_low;
|
|
|
|
gpu_processor_id_low += total_cu_count;
|
|
return current_id;
|
|
}
|
|
|
|
/* Static table to describe GPU Cache information */
|
|
struct kfd_gpu_cache_info {
|
|
uint32_t cache_size;
|
|
uint32_t cache_level;
|
|
uint32_t flags;
|
|
/* Indicates how many Compute Units share this cache
|
|
* Value = 1 indicates the cache is not shared
|
|
*/
|
|
uint32_t num_cu_shared;
|
|
};
|
|
|
|
static struct kfd_gpu_cache_info kaveri_cache_info[] = {
|
|
{
|
|
/* TCP L1 Cache per CU */
|
|
.cache_size = 16,
|
|
.cache_level = 1,
|
|
.flags = (CRAT_CACHE_FLAGS_ENABLED |
|
|
CRAT_CACHE_FLAGS_DATA_CACHE |
|
|
CRAT_CACHE_FLAGS_SIMD_CACHE),
|
|
.num_cu_shared = 1,
|
|
|
|
},
|
|
{
|
|
/* Scalar L1 Instruction Cache (in SQC module) per bank */
|
|
.cache_size = 16,
|
|
.cache_level = 1,
|
|
.flags = (CRAT_CACHE_FLAGS_ENABLED |
|
|
CRAT_CACHE_FLAGS_INST_CACHE |
|
|
CRAT_CACHE_FLAGS_SIMD_CACHE),
|
|
.num_cu_shared = 2,
|
|
},
|
|
{
|
|
/* Scalar L1 Data Cache (in SQC module) per bank */
|
|
.cache_size = 8,
|
|
.cache_level = 1,
|
|
.flags = (CRAT_CACHE_FLAGS_ENABLED |
|
|
CRAT_CACHE_FLAGS_DATA_CACHE |
|
|
CRAT_CACHE_FLAGS_SIMD_CACHE),
|
|
.num_cu_shared = 2,
|
|
},
|
|
|
|
/* TODO: Add L2 Cache information */
|
|
};
|
|
|
|
|
|
static struct kfd_gpu_cache_info carrizo_cache_info[] = {
|
|
{
|
|
/* TCP L1 Cache per CU */
|
|
.cache_size = 16,
|
|
.cache_level = 1,
|
|
.flags = (CRAT_CACHE_FLAGS_ENABLED |
|
|
CRAT_CACHE_FLAGS_DATA_CACHE |
|
|
CRAT_CACHE_FLAGS_SIMD_CACHE),
|
|
.num_cu_shared = 1,
|
|
},
|
|
{
|
|
/* Scalar L1 Instruction Cache (in SQC module) per bank */
|
|
.cache_size = 8,
|
|
.cache_level = 1,
|
|
.flags = (CRAT_CACHE_FLAGS_ENABLED |
|
|
CRAT_CACHE_FLAGS_INST_CACHE |
|
|
CRAT_CACHE_FLAGS_SIMD_CACHE),
|
|
.num_cu_shared = 4,
|
|
},
|
|
{
|
|
/* Scalar L1 Data Cache (in SQC module) per bank. */
|
|
.cache_size = 4,
|
|
.cache_level = 1,
|
|
.flags = (CRAT_CACHE_FLAGS_ENABLED |
|
|
CRAT_CACHE_FLAGS_DATA_CACHE |
|
|
CRAT_CACHE_FLAGS_SIMD_CACHE),
|
|
.num_cu_shared = 4,
|
|
},
|
|
|
|
/* TODO: Add L2 Cache information */
|
|
};
|
|
|
|
/* NOTE: In future if more information is added to struct kfd_gpu_cache_info
|
|
* the following ASICs may need a separate table.
|
|
*/
|
|
#define hawaii_cache_info kaveri_cache_info
|
|
#define tonga_cache_info carrizo_cache_info
|
|
#define fiji_cache_info carrizo_cache_info
|
|
#define polaris10_cache_info carrizo_cache_info
|
|
#define polaris11_cache_info carrizo_cache_info
|
|
#define polaris12_cache_info carrizo_cache_info
|
|
#define vegam_cache_info carrizo_cache_info
|
|
/* TODO - check & update Vega10 cache details */
|
|
#define vega10_cache_info carrizo_cache_info
|
|
#define raven_cache_info carrizo_cache_info
|
|
/* TODO - check & update Navi10 cache details */
|
|
#define navi10_cache_info carrizo_cache_info
|
|
|
|
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
|
|
struct crat_subtype_computeunit *cu)
|
|
{
|
|
dev->node_props.cpu_cores_count = cu->num_cpu_cores;
|
|
dev->node_props.cpu_core_id_base = cu->processor_id_low;
|
|
if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
|
|
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
|
|
|
|
pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
|
|
cu->processor_id_low);
|
|
}
|
|
|
|
static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
|
|
struct crat_subtype_computeunit *cu)
|
|
{
|
|
dev->node_props.simd_id_base = cu->processor_id_low;
|
|
dev->node_props.simd_count = cu->num_simd_cores;
|
|
dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
|
|
dev->node_props.max_waves_per_simd = cu->max_waves_simd;
|
|
dev->node_props.wave_front_size = cu->wave_front_size;
|
|
dev->node_props.array_count = cu->array_count;
|
|
dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
|
|
dev->node_props.simd_per_cu = cu->num_simd_per_cu;
|
|
dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
|
|
if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
|
|
dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
|
|
pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
|
|
}
|
|
|
|
/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
|
|
* topology device present in the device_list
|
|
*/
|
|
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
|
|
struct list_head *device_list)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
|
|
pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
|
|
cu->proximity_domain, cu->hsa_capability);
|
|
list_for_each_entry(dev, device_list, list) {
|
|
if (cu->proximity_domain == dev->proximity_domain) {
|
|
if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
|
|
kfd_populated_cu_info_cpu(dev, cu);
|
|
|
|
if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
|
|
kfd_populated_cu_info_gpu(dev, cu);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kfd_mem_properties *
|
|
find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
|
|
struct kfd_topology_device *dev)
|
|
{
|
|
struct kfd_mem_properties *props;
|
|
|
|
list_for_each_entry(props, &dev->mem_props, list) {
|
|
if (props->heap_type == heap_type
|
|
&& props->flags == flags
|
|
&& props->width == width)
|
|
return props;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
|
|
* topology device present in the device_list
|
|
*/
|
|
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
|
|
struct list_head *device_list)
|
|
{
|
|
struct kfd_mem_properties *props;
|
|
struct kfd_topology_device *dev;
|
|
uint32_t heap_type;
|
|
uint64_t size_in_bytes;
|
|
uint32_t flags = 0;
|
|
uint32_t width;
|
|
|
|
pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
|
|
mem->proximity_domain);
|
|
list_for_each_entry(dev, device_list, list) {
|
|
if (mem->proximity_domain == dev->proximity_domain) {
|
|
/* We're on GPU node */
|
|
if (dev->node_props.cpu_cores_count == 0) {
|
|
/* APU */
|
|
if (mem->visibility_type == 0)
|
|
heap_type =
|
|
HSA_MEM_HEAP_TYPE_FB_PRIVATE;
|
|
/* dGPU */
|
|
else
|
|
heap_type = mem->visibility_type;
|
|
} else
|
|
heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
|
|
|
|
if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
|
|
flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
|
|
if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
|
|
flags |= HSA_MEM_FLAGS_NON_VOLATILE;
|
|
|
|
size_in_bytes =
|
|
((uint64_t)mem->length_high << 32) +
|
|
mem->length_low;
|
|
width = mem->width;
|
|
|
|
/* Multiple banks of the same type are aggregated into
|
|
* one. User mode doesn't care about multiple physical
|
|
* memory segments. It's managed as a single virtual
|
|
* heap for user mode.
|
|
*/
|
|
props = find_subtype_mem(heap_type, flags, width, dev);
|
|
if (props) {
|
|
props->size_in_bytes += size_in_bytes;
|
|
break;
|
|
}
|
|
|
|
props = kfd_alloc_struct(props);
|
|
if (!props)
|
|
return -ENOMEM;
|
|
|
|
props->heap_type = heap_type;
|
|
props->flags = flags;
|
|
props->size_in_bytes = size_in_bytes;
|
|
props->width = width;
|
|
|
|
dev->node_props.mem_banks_count++;
|
|
list_add_tail(&props->list, &dev->mem_props);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
|
|
* topology device present in the device_list
|
|
*/
|
|
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
|
|
struct list_head *device_list)
|
|
{
|
|
struct kfd_cache_properties *props;
|
|
struct kfd_topology_device *dev;
|
|
uint32_t id;
|
|
uint32_t total_num_of_cu;
|
|
|
|
id = cache->processor_id_low;
|
|
|
|
pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
|
|
list_for_each_entry(dev, device_list, list) {
|
|
total_num_of_cu = (dev->node_props.array_count *
|
|
dev->node_props.cu_per_simd_array);
|
|
|
|
/* Cache infomration in CRAT doesn't have proximity_domain
|
|
* information as it is associated with a CPU core or GPU
|
|
* Compute Unit. So map the cache using CPU core Id or SIMD
|
|
* (GPU) ID.
|
|
* TODO: This works because currently we can safely assume that
|
|
* Compute Units are parsed before caches are parsed. In
|
|
* future, remove this dependency
|
|
*/
|
|
if ((id >= dev->node_props.cpu_core_id_base &&
|
|
id <= dev->node_props.cpu_core_id_base +
|
|
dev->node_props.cpu_cores_count) ||
|
|
(id >= dev->node_props.simd_id_base &&
|
|
id < dev->node_props.simd_id_base +
|
|
total_num_of_cu)) {
|
|
props = kfd_alloc_struct(props);
|
|
if (!props)
|
|
return -ENOMEM;
|
|
|
|
props->processor_id_low = id;
|
|
props->cache_level = cache->cache_level;
|
|
props->cache_size = cache->cache_size;
|
|
props->cacheline_size = cache->cache_line_size;
|
|
props->cachelines_per_tag = cache->lines_per_tag;
|
|
props->cache_assoc = cache->associativity;
|
|
props->cache_latency = cache->cache_latency;
|
|
memcpy(props->sibling_map, cache->sibling_map,
|
|
sizeof(props->sibling_map));
|
|
|
|
if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
|
|
props->cache_type |= HSA_CACHE_TYPE_DATA;
|
|
if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
|
|
props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
|
|
if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
|
|
props->cache_type |= HSA_CACHE_TYPE_CPU;
|
|
if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
|
|
props->cache_type |= HSA_CACHE_TYPE_HSACU;
|
|
|
|
dev->cache_count++;
|
|
dev->node_props.caches_count++;
|
|
list_add_tail(&props->list, &dev->cache_props);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
|
|
* topology device present in the device_list
|
|
*/
|
|
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
|
|
struct list_head *device_list)
|
|
{
|
|
struct kfd_iolink_properties *props = NULL, *props2;
|
|
struct kfd_topology_device *dev, *to_dev;
|
|
uint32_t id_from;
|
|
uint32_t id_to;
|
|
|
|
id_from = iolink->proximity_domain_from;
|
|
id_to = iolink->proximity_domain_to;
|
|
|
|
pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
|
|
id_from, id_to);
|
|
list_for_each_entry(dev, device_list, list) {
|
|
if (id_from == dev->proximity_domain) {
|
|
props = kfd_alloc_struct(props);
|
|
if (!props)
|
|
return -ENOMEM;
|
|
|
|
props->node_from = id_from;
|
|
props->node_to = id_to;
|
|
props->ver_maj = iolink->version_major;
|
|
props->ver_min = iolink->version_minor;
|
|
props->iolink_type = iolink->io_interface_type;
|
|
|
|
if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
|
|
props->weight = 20;
|
|
else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
|
|
props->weight = 15 * iolink->num_hops_xgmi;
|
|
else
|
|
props->weight = node_distance(id_from, id_to);
|
|
|
|
props->min_latency = iolink->minimum_latency;
|
|
props->max_latency = iolink->maximum_latency;
|
|
props->min_bandwidth = iolink->minimum_bandwidth_mbs;
|
|
props->max_bandwidth = iolink->maximum_bandwidth_mbs;
|
|
props->rec_transfer_size =
|
|
iolink->recommended_transfer_size;
|
|
|
|
dev->io_link_count++;
|
|
dev->node_props.io_links_count++;
|
|
list_add_tail(&props->list, &dev->io_link_props);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* CPU topology is created before GPUs are detected, so CPU->GPU
|
|
* links are not built at that time. If a PCIe type is discovered, it
|
|
* means a GPU is detected and we are adding GPU->CPU to the topology.
|
|
* At this time, also add the corresponded CPU->GPU link if GPU
|
|
* is large bar.
|
|
* For xGMI, we only added the link with one direction in the crat
|
|
* table, add corresponded reversed direction link now.
|
|
*/
|
|
if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
|
|
to_dev = kfd_topology_device_by_proximity_domain(id_to);
|
|
if (!to_dev)
|
|
return -ENODEV;
|
|
/* same everything but the other direction */
|
|
props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
|
|
props2->node_from = id_to;
|
|
props2->node_to = id_from;
|
|
props2->kobj = NULL;
|
|
to_dev->io_link_count++;
|
|
to_dev->node_props.io_links_count++;
|
|
list_add_tail(&props2->list, &to_dev->io_link_props);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
|
|
* present in the device_list
|
|
* @sub_type_hdr - subtype section of crat_image
|
|
* @device_list - list of topology devices present in this crat_image
|
|
*/
|
|
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
|
|
struct list_head *device_list)
|
|
{
|
|
struct crat_subtype_computeunit *cu;
|
|
struct crat_subtype_memory *mem;
|
|
struct crat_subtype_cache *cache;
|
|
struct crat_subtype_iolink *iolink;
|
|
int ret = 0;
|
|
|
|
switch (sub_type_hdr->type) {
|
|
case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
|
|
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
|
|
ret = kfd_parse_subtype_cu(cu, device_list);
|
|
break;
|
|
case CRAT_SUBTYPE_MEMORY_AFFINITY:
|
|
mem = (struct crat_subtype_memory *)sub_type_hdr;
|
|
ret = kfd_parse_subtype_mem(mem, device_list);
|
|
break;
|
|
case CRAT_SUBTYPE_CACHE_AFFINITY:
|
|
cache = (struct crat_subtype_cache *)sub_type_hdr;
|
|
ret = kfd_parse_subtype_cache(cache, device_list);
|
|
break;
|
|
case CRAT_SUBTYPE_TLB_AFFINITY:
|
|
/*
|
|
* For now, nothing to do here
|
|
*/
|
|
pr_debug("Found TLB entry in CRAT table (not processing)\n");
|
|
break;
|
|
case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
|
|
/*
|
|
* For now, nothing to do here
|
|
*/
|
|
pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
|
|
break;
|
|
case CRAT_SUBTYPE_IOLINK_AFFINITY:
|
|
iolink = (struct crat_subtype_iolink *)sub_type_hdr;
|
|
ret = kfd_parse_subtype_iolink(iolink, device_list);
|
|
break;
|
|
default:
|
|
pr_warn("Unknown subtype %d in CRAT\n",
|
|
sub_type_hdr->type);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
|
|
* create a kfd_topology_device and add in to device_list. Also parse
|
|
* CRAT subtypes and attach it to appropriate kfd_topology_device
|
|
* @crat_image - input image containing CRAT
|
|
* @device_list - [OUT] list of kfd_topology_device generated after
|
|
* parsing crat_image
|
|
* @proximity_domain - Proximity domain of the first device in the table
|
|
*
|
|
* Return - 0 if successful else -ve value
|
|
*/
|
|
int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
|
|
uint32_t proximity_domain)
|
|
{
|
|
struct kfd_topology_device *top_dev = NULL;
|
|
struct crat_subtype_generic *sub_type_hdr;
|
|
uint16_t node_id;
|
|
int ret = 0;
|
|
struct crat_header *crat_table = (struct crat_header *)crat_image;
|
|
uint16_t num_nodes;
|
|
uint32_t image_len;
|
|
|
|
if (!crat_image)
|
|
return -EINVAL;
|
|
|
|
if (!list_empty(device_list)) {
|
|
pr_warn("Error device list should be empty\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
num_nodes = crat_table->num_domains;
|
|
image_len = crat_table->length;
|
|
|
|
pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
|
|
|
|
for (node_id = 0; node_id < num_nodes; node_id++) {
|
|
top_dev = kfd_create_topology_device(device_list);
|
|
if (!top_dev)
|
|
break;
|
|
top_dev->proximity_domain = proximity_domain++;
|
|
}
|
|
|
|
if (!top_dev) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
|
|
memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
|
|
CRAT_OEMTABLEID_LENGTH);
|
|
top_dev->oem_revision = crat_table->oem_revision;
|
|
|
|
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
|
|
while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
|
|
((char *)crat_image) + image_len) {
|
|
if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
|
|
ret = kfd_parse_subtype(sub_type_hdr, device_list);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
|
|
sub_type_hdr->length);
|
|
}
|
|
|
|
err:
|
|
if (ret)
|
|
kfd_release_topology_device_list(device_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
|
|
static int fill_in_pcache(struct crat_subtype_cache *pcache,
|
|
struct kfd_gpu_cache_info *pcache_info,
|
|
struct kfd_cu_info *cu_info,
|
|
int mem_available,
|
|
int cu_bitmask,
|
|
int cache_type, unsigned int cu_processor_id,
|
|
int cu_block)
|
|
{
|
|
unsigned int cu_sibling_map_mask;
|
|
int first_active_cu;
|
|
|
|
/* First check if enough memory is available */
|
|
if (sizeof(struct crat_subtype_cache) > mem_available)
|
|
return -ENOMEM;
|
|
|
|
cu_sibling_map_mask = cu_bitmask;
|
|
cu_sibling_map_mask >>= cu_block;
|
|
cu_sibling_map_mask &=
|
|
((1 << pcache_info[cache_type].num_cu_shared) - 1);
|
|
first_active_cu = ffs(cu_sibling_map_mask);
|
|
|
|
/* CU could be inactive. In case of shared cache find the first active
|
|
* CU. and incase of non-shared cache check if the CU is inactive. If
|
|
* inactive active skip it
|
|
*/
|
|
if (first_active_cu) {
|
|
memset(pcache, 0, sizeof(struct crat_subtype_cache));
|
|
pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
|
|
pcache->length = sizeof(struct crat_subtype_cache);
|
|
pcache->flags = pcache_info[cache_type].flags;
|
|
pcache->processor_id_low = cu_processor_id
|
|
+ (first_active_cu - 1);
|
|
pcache->cache_level = pcache_info[cache_type].cache_level;
|
|
pcache->cache_size = pcache_info[cache_type].cache_size;
|
|
|
|
/* Sibling map is w.r.t processor_id_low, so shift out
|
|
* inactive CU
|
|
*/
|
|
cu_sibling_map_mask =
|
|
cu_sibling_map_mask >> (first_active_cu - 1);
|
|
|
|
pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
|
|
pcache->sibling_map[1] =
|
|
(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
|
|
pcache->sibling_map[2] =
|
|
(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
|
|
pcache->sibling_map[3] =
|
|
(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
|
|
* tables
|
|
*
|
|
* @kdev - [IN] GPU device
|
|
* @gpu_processor_id - [IN] GPU processor ID to which these caches
|
|
* associate
|
|
* @available_size - [IN] Amount of memory available in pcache
|
|
* @cu_info - [IN] Compute Unit info obtained from KGD
|
|
* @pcache - [OUT] memory into which cache data is to be filled in.
|
|
* @size_filled - [OUT] amount of data used up in pcache.
|
|
* @num_of_entries - [OUT] number of caches added
|
|
*/
|
|
static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
|
|
int gpu_processor_id,
|
|
int available_size,
|
|
struct kfd_cu_info *cu_info,
|
|
struct crat_subtype_cache *pcache,
|
|
int *size_filled,
|
|
int *num_of_entries)
|
|
{
|
|
struct kfd_gpu_cache_info *pcache_info;
|
|
int num_of_cache_types = 0;
|
|
int i, j, k;
|
|
int ct = 0;
|
|
int mem_available = available_size;
|
|
unsigned int cu_processor_id;
|
|
int ret;
|
|
|
|
switch (kdev->device_info->asic_family) {
|
|
case CHIP_KAVERI:
|
|
pcache_info = kaveri_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
|
|
break;
|
|
case CHIP_HAWAII:
|
|
pcache_info = hawaii_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
|
|
break;
|
|
case CHIP_CARRIZO:
|
|
pcache_info = carrizo_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
|
|
break;
|
|
case CHIP_TONGA:
|
|
pcache_info = tonga_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
|
|
break;
|
|
case CHIP_FIJI:
|
|
pcache_info = fiji_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
|
|
break;
|
|
case CHIP_POLARIS10:
|
|
pcache_info = polaris10_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
|
|
break;
|
|
case CHIP_POLARIS11:
|
|
pcache_info = polaris11_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
|
|
break;
|
|
case CHIP_POLARIS12:
|
|
pcache_info = polaris12_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
|
|
break;
|
|
case CHIP_VEGAM:
|
|
pcache_info = vegam_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
|
|
break;
|
|
case CHIP_VEGA10:
|
|
case CHIP_VEGA12:
|
|
case CHIP_VEGA20:
|
|
pcache_info = vega10_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
|
|
break;
|
|
case CHIP_RAVEN:
|
|
pcache_info = raven_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(raven_cache_info);
|
|
case CHIP_NAVI10:
|
|
pcache_info = navi10_cache_info;
|
|
num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
*size_filled = 0;
|
|
*num_of_entries = 0;
|
|
|
|
/* For each type of cache listed in the kfd_gpu_cache_info table,
|
|
* go through all available Compute Units.
|
|
* The [i,j,k] loop will
|
|
* if kfd_gpu_cache_info.num_cu_shared = 1
|
|
* will parse through all available CU
|
|
* If (kfd_gpu_cache_info.num_cu_shared != 1)
|
|
* then it will consider only one CU from
|
|
* the shared unit
|
|
*/
|
|
|
|
for (ct = 0; ct < num_of_cache_types; ct++) {
|
|
cu_processor_id = gpu_processor_id;
|
|
for (i = 0; i < cu_info->num_shader_engines; i++) {
|
|
for (j = 0; j < cu_info->num_shader_arrays_per_engine;
|
|
j++) {
|
|
for (k = 0; k < cu_info->num_cu_per_sh;
|
|
k += pcache_info[ct].num_cu_shared) {
|
|
|
|
ret = fill_in_pcache(pcache,
|
|
pcache_info,
|
|
cu_info,
|
|
mem_available,
|
|
cu_info->cu_bitmap[i][j],
|
|
ct,
|
|
cu_processor_id,
|
|
k);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
|
|
if (!ret) {
|
|
pcache++;
|
|
(*num_of_entries)++;
|
|
mem_available -=
|
|
sizeof(*pcache);
|
|
(*size_filled) +=
|
|
sizeof(*pcache);
|
|
}
|
|
|
|
/* Move to next CU block */
|
|
cu_processor_id +=
|
|
pcache_info[ct].num_cu_shared;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* kfd_create_crat_image_acpi - Allocates memory for CRAT image and
|
|
* copies CRAT from ACPI (if available).
|
|
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
|
|
*
|
|
* @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
|
|
* crat_image will be NULL
|
|
* @size: [OUT] size of crat_image
|
|
*
|
|
* Return 0 if successful else return error code
|
|
*/
|
|
int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
|
|
{
|
|
struct acpi_table_header *crat_table;
|
|
acpi_status status;
|
|
void *pcrat_image;
|
|
|
|
if (!crat_image)
|
|
return -EINVAL;
|
|
|
|
*crat_image = NULL;
|
|
|
|
/* Fetch the CRAT table from ACPI */
|
|
status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
|
|
if (status == AE_NOT_FOUND) {
|
|
pr_warn("CRAT table not found\n");
|
|
return -ENODATA;
|
|
} else if (ACPI_FAILURE(status)) {
|
|
const char *err = acpi_format_exception(status);
|
|
|
|
pr_err("CRAT table error: %s\n", err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ignore_crat) {
|
|
pr_info("CRAT table disabled by module option\n");
|
|
return -ENODATA;
|
|
}
|
|
|
|
pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL);
|
|
if (!pcrat_image)
|
|
return -ENOMEM;
|
|
|
|
*crat_image = pcrat_image;
|
|
*size = crat_table->length;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Memory required to create Virtual CRAT.
|
|
* Since there is no easy way to predict the amount of memory required, the
|
|
* following amount are allocated for CPU and GPU Virtual CRAT. This is
|
|
* expected to cover all known conditions. But to be safe additional check
|
|
* is put in the code to ensure we don't overwrite.
|
|
*/
|
|
#define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE)
|
|
#define VCRAT_SIZE_FOR_GPU (3 * PAGE_SIZE)
|
|
|
|
/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
|
|
*
|
|
* @numa_node_id: CPU NUMA node id
|
|
* @avail_size: Available size in the memory
|
|
* @sub_type_hdr: Memory into which compute info will be filled in
|
|
*
|
|
* Return 0 if successful else return -ve value
|
|
*/
|
|
static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
|
|
int proximity_domain,
|
|
struct crat_subtype_computeunit *sub_type_hdr)
|
|
{
|
|
const struct cpumask *cpumask;
|
|
|
|
*avail_size -= sizeof(struct crat_subtype_computeunit);
|
|
if (*avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
|
|
|
|
/* Fill in subtype header data */
|
|
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
|
|
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
|
|
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
|
|
|
|
cpumask = cpumask_of_node(numa_node_id);
|
|
|
|
/* Fill in CU data */
|
|
sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
|
|
sub_type_hdr->proximity_domain = proximity_domain;
|
|
sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
|
|
if (sub_type_hdr->processor_id_low == -1)
|
|
return -EINVAL;
|
|
|
|
sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
|
|
*
|
|
* @numa_node_id: CPU NUMA node id
|
|
* @avail_size: Available size in the memory
|
|
* @sub_type_hdr: Memory into which compute info will be filled in
|
|
*
|
|
* Return 0 if successful else return -ve value
|
|
*/
|
|
static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
|
|
int proximity_domain,
|
|
struct crat_subtype_memory *sub_type_hdr)
|
|
{
|
|
uint64_t mem_in_bytes = 0;
|
|
pg_data_t *pgdat;
|
|
int zone_type;
|
|
|
|
*avail_size -= sizeof(struct crat_subtype_memory);
|
|
if (*avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
|
|
|
|
/* Fill in subtype header data */
|
|
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
|
|
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
|
|
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
|
|
|
|
/* Fill in Memory Subunit data */
|
|
|
|
/* Unlike si_meminfo, si_meminfo_node is not exported. So
|
|
* the following lines are duplicated from si_meminfo_node
|
|
* function
|
|
*/
|
|
pgdat = NODE_DATA(numa_node_id);
|
|
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
|
|
mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
|
|
mem_in_bytes <<= PAGE_SHIFT;
|
|
|
|
sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
|
|
sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
|
|
sub_type_hdr->proximity_domain = proximity_domain;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
|
|
uint32_t *num_entries,
|
|
struct crat_subtype_iolink *sub_type_hdr)
|
|
{
|
|
int nid;
|
|
struct cpuinfo_x86 *c = &cpu_data(0);
|
|
uint8_t link_type;
|
|
|
|
if (c->x86_vendor == X86_VENDOR_AMD)
|
|
link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
|
|
else
|
|
link_type = CRAT_IOLINK_TYPE_QPI_1_1;
|
|
|
|
*num_entries = 0;
|
|
|
|
/* Create IO links from this node to other CPU nodes */
|
|
for_each_online_node(nid) {
|
|
if (nid == numa_node_id) /* node itself */
|
|
continue;
|
|
|
|
*avail_size -= sizeof(struct crat_subtype_iolink);
|
|
if (*avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
|
|
|
|
/* Fill in subtype header data */
|
|
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
|
|
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
|
|
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
|
|
|
|
/* Fill in IO link data */
|
|
sub_type_hdr->proximity_domain_from = numa_node_id;
|
|
sub_type_hdr->proximity_domain_to = nid;
|
|
sub_type_hdr->io_interface_type = link_type;
|
|
|
|
(*num_entries)++;
|
|
sub_type_hdr++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
|
|
*
|
|
* @pcrat_image: Fill in VCRAT for CPU
|
|
* @size: [IN] allocated size of crat_image.
|
|
* [OUT] actual size of data filled in crat_image
|
|
*/
|
|
static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
|
|
{
|
|
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
|
|
struct acpi_table_header *acpi_table;
|
|
acpi_status status;
|
|
struct crat_subtype_generic *sub_type_hdr;
|
|
int avail_size = *size;
|
|
int numa_node_id;
|
|
#ifdef CONFIG_X86_64
|
|
uint32_t entries = 0;
|
|
#endif
|
|
int ret = 0;
|
|
|
|
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
|
|
return -EINVAL;
|
|
|
|
/* Fill in CRAT Header.
|
|
* Modify length and total_entries as subunits are added.
|
|
*/
|
|
avail_size -= sizeof(struct crat_header);
|
|
if (avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
memset(crat_table, 0, sizeof(struct crat_header));
|
|
memcpy(&crat_table->signature, CRAT_SIGNATURE,
|
|
sizeof(crat_table->signature));
|
|
crat_table->length = sizeof(struct crat_header);
|
|
|
|
status = acpi_get_table("DSDT", 0, &acpi_table);
|
|
if (status != AE_OK)
|
|
pr_warn("DSDT table not found for OEM information\n");
|
|
else {
|
|
crat_table->oem_revision = acpi_table->revision;
|
|
memcpy(crat_table->oem_id, acpi_table->oem_id,
|
|
CRAT_OEMID_LENGTH);
|
|
memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
|
|
CRAT_OEMTABLEID_LENGTH);
|
|
}
|
|
crat_table->total_entries = 0;
|
|
crat_table->num_domains = 0;
|
|
|
|
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
|
|
|
|
for_each_online_node(numa_node_id) {
|
|
if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
|
|
continue;
|
|
|
|
/* Fill in Subtype: Compute Unit */
|
|
ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
|
|
crat_table->num_domains,
|
|
(struct crat_subtype_computeunit *)sub_type_hdr);
|
|
if (ret < 0)
|
|
return ret;
|
|
crat_table->length += sub_type_hdr->length;
|
|
crat_table->total_entries++;
|
|
|
|
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
|
|
sub_type_hdr->length);
|
|
|
|
/* Fill in Subtype: Memory */
|
|
ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
|
|
crat_table->num_domains,
|
|
(struct crat_subtype_memory *)sub_type_hdr);
|
|
if (ret < 0)
|
|
return ret;
|
|
crat_table->length += sub_type_hdr->length;
|
|
crat_table->total_entries++;
|
|
|
|
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
|
|
sub_type_hdr->length);
|
|
|
|
/* Fill in Subtype: IO Link */
|
|
#ifdef CONFIG_X86_64
|
|
ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
|
|
&entries,
|
|
(struct crat_subtype_iolink *)sub_type_hdr);
|
|
if (ret < 0)
|
|
return ret;
|
|
crat_table->length += (sub_type_hdr->length * entries);
|
|
crat_table->total_entries += entries;
|
|
|
|
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
|
|
sub_type_hdr->length * entries);
|
|
#else
|
|
pr_info("IO link not available for non x86 platforms\n");
|
|
#endif
|
|
|
|
crat_table->num_domains++;
|
|
}
|
|
|
|
/* TODO: Add cache Subtype for CPU.
|
|
* Currently, CPU cache information is available in function
|
|
* detect_cache_attributes(cpu) defined in the file
|
|
* ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
|
|
* exported and to get the same information the code needs to be
|
|
* duplicated.
|
|
*/
|
|
|
|
*size = crat_table->length;
|
|
pr_info("Virtual CRAT table created for CPU\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kfd_fill_gpu_memory_affinity(int *avail_size,
|
|
struct kfd_dev *kdev, uint8_t type, uint64_t size,
|
|
struct crat_subtype_memory *sub_type_hdr,
|
|
uint32_t proximity_domain,
|
|
const struct kfd_local_mem_info *local_mem_info)
|
|
{
|
|
*avail_size -= sizeof(struct crat_subtype_memory);
|
|
if (*avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
|
|
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
|
|
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
|
|
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
|
|
|
|
sub_type_hdr->proximity_domain = proximity_domain;
|
|
|
|
pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
|
|
type, size);
|
|
|
|
sub_type_hdr->length_low = lower_32_bits(size);
|
|
sub_type_hdr->length_high = upper_32_bits(size);
|
|
|
|
sub_type_hdr->width = local_mem_info->vram_width;
|
|
sub_type_hdr->visibility_type = type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
|
|
* to its NUMA node
|
|
* @avail_size: Available size in the memory
|
|
* @kdev - [IN] GPU device
|
|
* @sub_type_hdr: Memory into which io link info will be filled in
|
|
* @proximity_domain - proximity domain of the GPU node
|
|
*
|
|
* Return 0 if successful else return -ve value
|
|
*/
|
|
static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
|
|
struct kfd_dev *kdev,
|
|
struct crat_subtype_iolink *sub_type_hdr,
|
|
uint32_t proximity_domain)
|
|
{
|
|
*avail_size -= sizeof(struct crat_subtype_iolink);
|
|
if (*avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
|
|
|
|
/* Fill in subtype header data */
|
|
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
|
|
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
|
|
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
|
|
if (kfd_dev_is_large_bar(kdev))
|
|
sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
|
|
|
|
/* Fill in IOLINK subtype.
|
|
* TODO: Fill-in other fields of iolink subtype
|
|
*/
|
|
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
|
|
sub_type_hdr->proximity_domain_from = proximity_domain;
|
|
#ifdef CONFIG_NUMA
|
|
if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
|
|
sub_type_hdr->proximity_domain_to = 0;
|
|
else
|
|
sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
|
|
#else
|
|
sub_type_hdr->proximity_domain_to = 0;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
|
|
struct kfd_dev *kdev,
|
|
struct kfd_dev *peer_kdev,
|
|
struct crat_subtype_iolink *sub_type_hdr,
|
|
uint32_t proximity_domain_from,
|
|
uint32_t proximity_domain_to)
|
|
{
|
|
*avail_size -= sizeof(struct crat_subtype_iolink);
|
|
if (*avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
|
|
|
|
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
|
|
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
|
|
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
|
|
CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
|
|
|
|
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
|
|
sub_type_hdr->proximity_domain_from = proximity_domain_from;
|
|
sub_type_hdr->proximity_domain_to = proximity_domain_to;
|
|
sub_type_hdr->num_hops_xgmi =
|
|
amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
|
|
return 0;
|
|
}
|
|
|
|
/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
|
|
*
|
|
* @pcrat_image: Fill in VCRAT for GPU
|
|
* @size: [IN] allocated size of crat_image.
|
|
* [OUT] actual size of data filled in crat_image
|
|
*/
|
|
static int kfd_create_vcrat_image_gpu(void *pcrat_image,
|
|
size_t *size, struct kfd_dev *kdev,
|
|
uint32_t proximity_domain)
|
|
{
|
|
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
|
|
struct crat_subtype_generic *sub_type_hdr;
|
|
struct kfd_local_mem_info local_mem_info;
|
|
struct kfd_topology_device *peer_dev;
|
|
struct crat_subtype_computeunit *cu;
|
|
struct kfd_cu_info cu_info;
|
|
int avail_size = *size;
|
|
uint32_t total_num_of_cu;
|
|
int num_of_cache_entries = 0;
|
|
int cache_mem_filled = 0;
|
|
uint32_t nid = 0;
|
|
int ret = 0;
|
|
|
|
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
|
|
return -EINVAL;
|
|
|
|
/* Fill the CRAT Header.
|
|
* Modify length and total_entries as subunits are added.
|
|
*/
|
|
avail_size -= sizeof(struct crat_header);
|
|
if (avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
memset(crat_table, 0, sizeof(struct crat_header));
|
|
|
|
memcpy(&crat_table->signature, CRAT_SIGNATURE,
|
|
sizeof(crat_table->signature));
|
|
/* Change length as we add more subtypes*/
|
|
crat_table->length = sizeof(struct crat_header);
|
|
crat_table->num_domains = 1;
|
|
crat_table->total_entries = 0;
|
|
|
|
/* Fill in Subtype: Compute Unit
|
|
* First fill in the sub type header and then sub type data
|
|
*/
|
|
avail_size -= sizeof(struct crat_subtype_computeunit);
|
|
if (avail_size < 0)
|
|
return -ENOMEM;
|
|
|
|
sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
|
|
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
|
|
|
|
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
|
|
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
|
|
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
|
|
|
|
/* Fill CU subtype data */
|
|
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
|
|
cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
|
|
cu->proximity_domain = proximity_domain;
|
|
|
|
amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
|
|
cu->num_simd_per_cu = cu_info.simd_per_cu;
|
|
cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
|
|
cu->max_waves_simd = cu_info.max_waves_per_simd;
|
|
|
|
cu->wave_front_size = cu_info.wave_front_size;
|
|
cu->array_count = cu_info.num_shader_arrays_per_engine *
|
|
cu_info.num_shader_engines;
|
|
total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
|
|
cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
|
|
cu->num_cu_per_array = cu_info.num_cu_per_sh;
|
|
cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
|
|
cu->num_banks = cu_info.num_shader_engines;
|
|
cu->lds_size_in_kb = cu_info.lds_size;
|
|
|
|
cu->hsa_capability = 0;
|
|
|
|
/* Check if this node supports IOMMU. During parsing this flag will
|
|
* translate to HSA_CAP_ATS_PRESENT
|
|
*/
|
|
if (!kfd_iommu_check_device(kdev))
|
|
cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
|
|
|
|
crat_table->length += sub_type_hdr->length;
|
|
crat_table->total_entries++;
|
|
|
|
/* Fill in Subtype: Memory. Only on systems with large BAR (no
|
|
* private FB), report memory as public. On other systems
|
|
* report the total FB size (public+private) as a single
|
|
* private heap.
|
|
*/
|
|
amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
|
|
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
|
|
sub_type_hdr->length);
|
|
|
|
if (debug_largebar)
|
|
local_mem_info.local_mem_size_private = 0;
|
|
|
|
if (local_mem_info.local_mem_size_private == 0)
|
|
ret = kfd_fill_gpu_memory_affinity(&avail_size,
|
|
kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
|
|
local_mem_info.local_mem_size_public,
|
|
(struct crat_subtype_memory *)sub_type_hdr,
|
|
proximity_domain,
|
|
&local_mem_info);
|
|
else
|
|
ret = kfd_fill_gpu_memory_affinity(&avail_size,
|
|
kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
|
|
local_mem_info.local_mem_size_public +
|
|
local_mem_info.local_mem_size_private,
|
|
(struct crat_subtype_memory *)sub_type_hdr,
|
|
proximity_domain,
|
|
&local_mem_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
crat_table->length += sizeof(struct crat_subtype_memory);
|
|
crat_table->total_entries++;
|
|
|
|
/* TODO: Fill in cache information. This information is NOT readily
|
|
* available in KGD
|
|
*/
|
|
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
|
|
sub_type_hdr->length);
|
|
ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
|
|
avail_size,
|
|
&cu_info,
|
|
(struct crat_subtype_cache *)sub_type_hdr,
|
|
&cache_mem_filled,
|
|
&num_of_cache_entries);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
crat_table->length += cache_mem_filled;
|
|
crat_table->total_entries += num_of_cache_entries;
|
|
avail_size -= cache_mem_filled;
|
|
|
|
/* Fill in Subtype: IO_LINKS
|
|
* Only direct links are added here which is Link from GPU to
|
|
* to its NUMA node. Indirect links are added by userspace.
|
|
*/
|
|
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
|
|
cache_mem_filled);
|
|
ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
|
|
(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
crat_table->length += sub_type_hdr->length;
|
|
crat_table->total_entries++;
|
|
|
|
|
|
/* Fill in Subtype: IO_LINKS
|
|
* Direct links from GPU to other GPUs through xGMI.
|
|
* We will loop GPUs that already be processed (with lower value
|
|
* of proximity_domain), add the link for the GPUs with same
|
|
* hive id (from this GPU to other GPU) . The reversed iolink
|
|
* (from other GPU to this GPU) will be added
|
|
* in kfd_parse_subtype_iolink.
|
|
*/
|
|
if (kdev->hive_id) {
|
|
for (nid = 0; nid < proximity_domain; ++nid) {
|
|
peer_dev = kfd_topology_device_by_proximity_domain(nid);
|
|
if (!peer_dev->gpu)
|
|
continue;
|
|
if (peer_dev->gpu->hive_id != kdev->hive_id)
|
|
continue;
|
|
sub_type_hdr = (typeof(sub_type_hdr))(
|
|
(char *)sub_type_hdr +
|
|
sizeof(struct crat_subtype_iolink));
|
|
ret = kfd_fill_gpu_xgmi_link_to_gpu(
|
|
&avail_size, kdev, peer_dev->gpu,
|
|
(struct crat_subtype_iolink *)sub_type_hdr,
|
|
proximity_domain, nid);
|
|
if (ret < 0)
|
|
return ret;
|
|
crat_table->length += sub_type_hdr->length;
|
|
crat_table->total_entries++;
|
|
}
|
|
}
|
|
*size = crat_table->length;
|
|
pr_info("Virtual CRAT table created for GPU\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
|
|
* creates a Virtual CRAT (VCRAT) image
|
|
*
|
|
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
|
|
*
|
|
* @crat_image: VCRAT image created because ACPI does not have a
|
|
* CRAT for this device
|
|
* @size: [OUT] size of virtual crat_image
|
|
* @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
|
|
* COMPUTE_UNIT_GPU - Create VCRAT for GPU
|
|
* (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
|
|
* -- this option is not currently implemented.
|
|
* The assumption is that all AMD APUs will have CRAT
|
|
* @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
|
|
*
|
|
* Return 0 if successful else return -ve value
|
|
*/
|
|
int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
|
|
int flags, struct kfd_dev *kdev,
|
|
uint32_t proximity_domain)
|
|
{
|
|
void *pcrat_image = NULL;
|
|
int ret = 0;
|
|
|
|
if (!crat_image)
|
|
return -EINVAL;
|
|
|
|
*crat_image = NULL;
|
|
|
|
/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
|
|
* VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
|
|
* all the current conditions. A check is put not to overwrite beyond
|
|
* allocated size
|
|
*/
|
|
switch (flags) {
|
|
case COMPUTE_UNIT_CPU:
|
|
pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
|
|
if (!pcrat_image)
|
|
return -ENOMEM;
|
|
*size = VCRAT_SIZE_FOR_CPU;
|
|
ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
|
|
break;
|
|
case COMPUTE_UNIT_GPU:
|
|
if (!kdev)
|
|
return -EINVAL;
|
|
pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
|
|
if (!pcrat_image)
|
|
return -ENOMEM;
|
|
*size = VCRAT_SIZE_FOR_GPU;
|
|
ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
|
|
proximity_domain);
|
|
break;
|
|
case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
|
|
/* TODO: */
|
|
ret = -EINVAL;
|
|
pr_err("VCRAT not implemented for APU\n");
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (!ret)
|
|
*crat_image = pcrat_image;
|
|
else
|
|
kfree(pcrat_image);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* kfd_destroy_crat_image
|
|
*
|
|
* @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
|
|
*
|
|
*/
|
|
void kfd_destroy_crat_image(void *crat_image)
|
|
{
|
|
kfree(crat_image);
|
|
}
|