linux/arch/x86/kernel/smpboot.c
Linus Torvalds f1d0d14120 Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu offlining patch from Ingo Molnar:
 "This tree includes a single commit that speeds up x86 suspend/resume
  by replacing a naive 100msec sleep based polling loop with proper
  completion notification.

  This gives some real suspend/resume benefit on servers with larger
  core counts"

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/smpboot: Speed up suspend/resume by avoiding 100ms sleep for CPU offline during S3
2014-10-13 18:20:39 +02:00

1490 lines
36 KiB
C

/*
* x86 SMP booting functions
*
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
* (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
* Copyright 2001 Andi Kleen, SuSE Labs.
*
* Much of the core SMP work is based on previous work by Thomas Radke, to
* whom a great many thanks are extended.
*
* Thanks to Intel for making available several different Pentium,
* Pentium Pro and Pentium-II/Xeon MP machines.
* Original development of Linux SMP code supported by Caldera.
*
* This code is released under the GNU General Public License version 2 or
* later.
*
* Fixes
* Felix Koop : NR_CPUS used properly
* Jose Renau : Handle single CPU case.
* Alan Cox : By repeated request 8) - Total BogoMIPS report.
* Greg Wright : Fix for kernel stacks panic.
* Erich Boleyn : MP v1.4 and additional changes.
* Matthias Sattler : Changes for 2.1 kernel map.
* Michel Lespinasse : Changes for 2.1 kernel map.
* Michael Chastain : Change trampoline.S to gnu as.
* Alan Cox : Dumb bug: 'B' step PPro's are fine
* Ingo Molnar : Added APIC timers, based on code
* from Jose Renau
* Ingo Molnar : various cleanups and rewrites
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
* Andi Kleen : Changed for SMP boot into long mode.
* Martin J. Bligh : Added support for multi-quad systems
* Dave Jones : Report invalid combinations of Athlon CPUs.
* Rusty Russell : Hacked into shape for new "hotplug" boot process.
* Andi Kleen : Converted to new state machine.
* Ashok Raj : CPU hotplug support
* Glauber Costa : i386 and x86_64 integration
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/percpu.h>
#include <linux/bootmem.h>
#include <linux/err.h>
#include <linux/nmi.h>
#include <linux/tboot.h>
#include <linux/stackprotector.h>
#include <linux/gfp.h>
#include <linux/cpuidle.h>
#include <asm/acpi.h>
#include <asm/desc.h>
#include <asm/nmi.h>
#include <asm/irq.h>
#include <asm/idle.h>
#include <asm/realmode.h>
#include <asm/cpu.h>
#include <asm/numa.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mtrr.h>
#include <asm/mwait.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/i387.h>
#include <asm/fpu-internal.h>
#include <asm/setup.h>
#include <asm/uv/uv.h>
#include <linux/mc146818rtc.h>
#include <asm/smpboot_hooks.h>
#include <asm/i8259.h>
#include <asm/realmode.h>
#include <asm/misc.h>
/* State of each CPU */
DEFINE_PER_CPU(int, cpu_state) = { 0 };
/* Number of siblings per CPU package */
int smp_num_siblings = 1;
EXPORT_SYMBOL(smp_num_siblings);
/* Last level cache ID of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
/* representing HT siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
/* representing HT and core siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
/* Per CPU bogomips and other parameters */
DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
EXPORT_PER_CPU_SYMBOL(cpu_info);
static DEFINE_PER_CPU(struct completion, die_complete);
atomic_t init_deasserted;
/*
* Report back to the Boot Processor during boot time or to the caller processor
* during CPU online.
*/
static void smp_callin(void)
{
int cpuid, phys_id;
/*
* If waken up by an INIT in an 82489DX configuration
* we may get here before an INIT-deassert IPI reaches
* our local APIC. We have to wait for the IPI or we'll
* lock up on an APIC access.
*
* Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
*/
cpuid = smp_processor_id();
if (apic->wait_for_init_deassert && cpuid)
while (!atomic_read(&init_deasserted))
cpu_relax();
/*
* (This works even if the APIC is not enabled.)
*/
phys_id = read_apic_id();
/*
* the boot CPU has finished the init stage and is spinning
* on callin_map until we finish. We are free to set up this
* CPU, first the APIC. (this is probably redundant on most
* boards)
*/
setup_local_APIC();
end_local_APIC_setup();
/*
* Need to setup vector mappings before we enable interrupts.
*/
setup_vector_irq(smp_processor_id());
/*
* Save our processor parameters. Note: this information
* is needed for clock calibration.
*/
smp_store_cpu_info(cpuid);
/*
* Get our bogomips.
* Update loops_per_jiffy in cpu_data. Previous call to
* smp_store_cpu_info() stored a value that is close but not as
* accurate as the value just calculated.
*/
calibrate_delay();
cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
pr_debug("Stack at about %p\n", &cpuid);
/*
* This must be done before setting cpu_online_mask
* or calling notify_cpu_starting.
*/
set_cpu_sibling_map(raw_smp_processor_id());
wmb();
notify_cpu_starting(cpuid);
/*
* Allow the master to continue.
*/
cpumask_set_cpu(cpuid, cpu_callin_mask);
}
static int cpu0_logical_apicid;
static int enable_start_cpu0;
/*
* Activate a secondary processor.
*/
static void notrace start_secondary(void *unused)
{
/*
* Don't put *anything* before cpu_init(), SMP booting is too
* fragile that we want to limit the things done here to the
* most necessary things.
*/
cpu_init();
x86_cpuinit.early_percpu_clock_init();
preempt_disable();
smp_callin();
enable_start_cpu0 = 0;
#ifdef CONFIG_X86_32
/* switch away from the initial page table */
load_cr3(swapper_pg_dir);
__flush_tlb_all();
#endif
/* otherwise gcc will move up smp_processor_id before the cpu_init */
barrier();
/*
* Check TSC synchronization with the BP:
*/
check_tsc_sync_target();
/*
* Enable the espfix hack for this CPU
*/
#ifdef CONFIG_X86_ESPFIX64
init_espfix_ap();
#endif
/*
* We need to hold vector_lock so there the set of online cpus
* does not change while we are assigning vectors to cpus. Holding
* this lock ensures we don't half assign or remove an irq from a cpu.
*/
lock_vector_lock();
set_cpu_online(smp_processor_id(), true);
unlock_vector_lock();
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
x86_platform.nmi_init();
/* enable local interrupts */
local_irq_enable();
/* to prevent fake stack check failure in clock setup */
boot_init_stack_canary();
x86_cpuinit.setup_percpu_clockev();
wmb();
cpu_startup_entry(CPUHP_ONLINE);
}
void __init smp_store_boot_cpu_info(void)
{
int id = 0; /* CPU 0 */
struct cpuinfo_x86 *c = &cpu_data(id);
*c = boot_cpu_data;
c->cpu_index = id;
}
/*
* The bootstrap kernel entry code has set these up. Save them for
* a given CPU
*/
void smp_store_cpu_info(int id)
{
struct cpuinfo_x86 *c = &cpu_data(id);
*c = boot_cpu_data;
c->cpu_index = id;
/*
* During boot time, CPU0 has this setup already. Save the info when
* bringing up AP or offlined CPU0.
*/
identify_secondary_cpu(c);
}
static bool
topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
}
static bool
topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
return !WARN_ONCE(!topology_same_node(c, o),
"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
"[node: %d != %d]. Ignoring dependency.\n",
cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
}
#define link_mask(_m, c1, c2) \
do { \
cpumask_set_cpu((c1), cpu_##_m##_mask(c2)); \
cpumask_set_cpu((c2), cpu_##_m##_mask(c1)); \
} while (0)
static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (cpu_has_topoext) {
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
if (c->phys_proc_id == o->phys_proc_id &&
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
c->compute_unit_id == o->compute_unit_id)
return topology_sane(c, o, "smt");
} else if (c->phys_proc_id == o->phys_proc_id &&
c->cpu_core_id == o->cpu_core_id) {
return topology_sane(c, o, "smt");
}
return false;
}
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
return topology_sane(c, o, "llc");
return false;
}
/*
* Unlike the other levels, we do not enforce keeping a
* multicore group inside a NUMA node. If this happens, we will
* discard the MC level of the topology later.
*/
static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (c->phys_proc_id == o->phys_proc_id)
return true;
return false;
}
static struct sched_domain_topology_level numa_inside_package_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
{ NULL, },
};
/*
* set_sched_topology() sets the topology internal to a CPU. The
* NUMA topologies are layered on top of it to build the full
* system topology.
*
* If NUMA nodes are observed to occur within a CPU package, this
* function should be called. It forces the sched domain code to
* only use the SMT level for the CPU portion of the topology.
* This essentially falls back to relying on NUMA information
* from the SRAT table to describe the entire system topology
* (except for hyperthreads).
*/
static void primarily_use_numa_for_topology(void)
{
set_sched_topology(numa_inside_package_topology);
}
void set_cpu_sibling_map(int cpu)
{
bool has_smt = smp_num_siblings > 1;
bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct cpuinfo_x86 *o;
int i;
cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
if (!has_mp) {
cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
cpumask_set_cpu(cpu, cpu_core_mask(cpu));
c->booted_cores = 1;
return;
}
for_each_cpu(i, cpu_sibling_setup_mask) {
o = &cpu_data(i);
if ((i == cpu) || (has_smt && match_smt(c, o)))
link_mask(sibling, cpu, i);
if ((i == cpu) || (has_mp && match_llc(c, o)))
link_mask(llc_shared, cpu, i);
}
/*
* This needs a separate iteration over the cpus because we rely on all
* cpu_sibling_mask links to be set-up.
*/
for_each_cpu(i, cpu_sibling_setup_mask) {
o = &cpu_data(i);
if ((i == cpu) || (has_mp && match_die(c, o))) {
link_mask(core, cpu, i);
/*
* Does this new cpu bringup a new core?
*/
if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
/*
* for each core in package, increment
* the booted_cores for this new cpu
*/
if (cpumask_first(cpu_sibling_mask(i)) == i)
c->booted_cores++;
/*
* increment the core count for all
* the other cpus in this package
*/
if (i != cpu)
cpu_data(i).booted_cores++;
} else if (i != cpu && !c->booted_cores)
c->booted_cores = cpu_data(i).booted_cores;
}
if (match_die(c, o) && !topology_same_node(c, o))
primarily_use_numa_for_topology();
}
}
/* maps the cpu to the sched domain representing multi-core */
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return cpu_llc_shared_mask(cpu);
}
static void impress_friends(void)
{
int cpu;
unsigned long bogosum = 0;
/*
* Allow the user to impress friends.
*/
pr_debug("Before bogomips\n");
for_each_possible_cpu(cpu)
if (cpumask_test_cpu(cpu, cpu_callout_mask))
bogosum += cpu_data(cpu).loops_per_jiffy;
pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
num_online_cpus(),
bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
pr_debug("Before bogocount - setting activated=1\n");
}
void __inquire_remote_apic(int apicid)
{
unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
const char * const names[] = { "ID", "VERSION", "SPIV" };
int timeout;
u32 status;
pr_info("Inquiring remote APIC 0x%x...\n", apicid);
for (i = 0; i < ARRAY_SIZE(regs); i++) {
pr_info("... APIC 0x%x %s: ", apicid, names[i]);
/*
* Wait for idle.
*/
status = safe_apic_wait_icr_idle();
if (status)
pr_cont("a previous APIC delivery may have failed\n");
apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
timeout = 0;
do {
udelay(100);
status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
switch (status) {
case APIC_ICR_RR_VALID:
status = apic_read(APIC_RRR);
pr_cont("%08x\n", status);
break;
default:
pr_cont("failed\n");
}
}
}
/*
* Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
* INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
* won't ... remember to clear down the APIC, etc later.
*/
int
wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
{
unsigned long send_status, accept_status = 0;
int maxlvt;
/* Target chip */
/* Boot on the stack */
/* Kick the second */
apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
maxlvt = lapic_get_maxlvt();
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
accept_status = (apic_read(APIC_ESR) & 0xEF);
}
pr_debug("NMI sent\n");
if (send_status)
pr_err("APIC never delivered???\n");
if (accept_status)
pr_err("APIC delivery error (%lx)\n", accept_status);
return (send_status | accept_status);
}
static int
wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
{
unsigned long send_status, accept_status = 0;
int maxlvt, num_starts, j;
maxlvt = lapic_get_maxlvt();
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(apic_version[phys_apicid])) {
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
pr_debug("Asserting INIT\n");
/*
* Turn INIT on target chip
*/
/*
* Send IPI
*/
apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
phys_apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
mdelay(10);
pr_debug("Deasserting INIT\n");
/* Target chip */
/* Send IPI */
apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
mb();
atomic_set(&init_deasserted, 1);
/*
* Should we send STARTUP IPIs ?
*
* Determine this based on the APIC version.
* If we don't have an integrated APIC, don't send the STARTUP IPIs.
*/
if (APIC_INTEGRATED(apic_version[phys_apicid]))
num_starts = 2;
else
num_starts = 0;
/*
* Paravirt / VMI wants a startup IPI hook here to set up the
* target processor state.
*/
startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
stack_start);
/*
* Run STARTUP IPI loop.
*/
pr_debug("#startup loops: %d\n", num_starts);
for (j = 1; j <= num_starts; j++) {
pr_debug("Sending STARTUP #%d\n", j);
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
pr_debug("After apic_write\n");
/*
* STARTUP IPI
*/
/* Target chip */
/* Boot on the stack */
/* Kick the second */
apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
phys_apicid);
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(300);
pr_debug("Startup point 1\n");
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
accept_status = (apic_read(APIC_ESR) & 0xEF);
if (send_status || accept_status)
break;
}
pr_debug("After Startup\n");
if (send_status)
pr_err("APIC never delivered???\n");
if (accept_status)
pr_err("APIC delivery error (%lx)\n", accept_status);
return (send_status | accept_status);
}
void smp_announce(void)
{
int num_nodes = num_online_nodes();
printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
}
/* reduce the number of lines printed when booting a large cpu count system */
static void announce_cpu(int cpu, int apicid)
{
static int current_node = -1;
int node = early_cpu_to_node(cpu);
static int width, node_width;
if (!width)
width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
if (!node_width)
node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
if (cpu == 1)
printk(KERN_INFO "x86: Booting SMP configuration:\n");
if (system_state == SYSTEM_BOOTING) {
if (node != current_node) {
if (current_node > (-1))
pr_cont("\n");
current_node = node;
printk(KERN_INFO ".... node %*s#%d, CPUs: ",
node_width - num_digits(node), " ", node);
}
/* Add padding for the BSP */
if (cpu == 1)
pr_cont("%*s", width + 1, " ");
pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
} else
pr_info("Booting Node %d Processor %d APIC 0x%x\n",
node, cpu, apicid);
}
static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
{
int cpu;
cpu = smp_processor_id();
if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
return NMI_HANDLED;
return NMI_DONE;
}
/*
* Wake up AP by INIT, INIT, STARTUP sequence.
*
* Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
* boot-strap code which is not a desired behavior for waking up BSP. To
* void the boot-strap code, wake up CPU0 by NMI instead.
*
* This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
* (i.e. physically hot removed and then hot added), NMI won't wake it up.
* We'll change this code in the future to wake up hard offlined CPU0 if
* real platform and request are available.
*/
static int
wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
int *cpu0_nmi_registered)
{
int id;
int boot_error;
preempt_disable();
/*
* Wake up AP by INIT, INIT, STARTUP sequence.
*/
if (cpu) {
boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
goto out;
}
/*
* Wake up BSP by nmi.
*
* Register a NMI handler to help wake up CPU0.
*/
boot_error = register_nmi_handler(NMI_LOCAL,
wakeup_cpu0_nmi, 0, "wake_cpu0");
if (!boot_error) {
enable_start_cpu0 = 1;
*cpu0_nmi_registered = 1;
if (apic->dest_logical == APIC_DEST_LOGICAL)
id = cpu0_logical_apicid;
else
id = apicid;
boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
}
out:
preempt_enable();
return boot_error;
}
/*
* NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
* (ie clustered apic addressing mode), this is a LOGICAL apic ID.
* Returns zero if CPU booted OK, else error code from
* ->wakeup_secondary_cpu.
*/
static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
{
volatile u32 *trampoline_status =
(volatile u32 *) __va(real_mode_header->trampoline_status);
/* start_ip had better be page-aligned! */
unsigned long start_ip = real_mode_header->trampoline_start;
unsigned long boot_error = 0;
int cpu0_nmi_registered = 0;
unsigned long timeout;
/* Just in case we booted with a single CPU. */
alternatives_enable_smp();
idle->thread.sp = (unsigned long) (((struct pt_regs *)
(THREAD_SIZE + task_stack_page(idle))) - 1);
per_cpu(current_task, cpu) = idle;
#ifdef CONFIG_X86_32
/* Stack for startup_32 can be just as for start_secondary onwards */
irq_ctx_init(cpu);
#else
clear_tsk_thread_flag(idle, TIF_FORK);
initial_gs = per_cpu_offset(cpu);
#endif
per_cpu(kernel_stack, cpu) =
(unsigned long)task_stack_page(idle) -
KERNEL_STACK_OFFSET + THREAD_SIZE;
early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
initial_code = (unsigned long)start_secondary;
stack_start = idle->thread.sp;
/* So we see what's up */
announce_cpu(cpu, apicid);
/*
* This grunge runs the startup process for
* the targeted processor.
*/
atomic_set(&init_deasserted, 0);
if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
pr_debug("Setting warm reset code and vector.\n");
smpboot_setup_warm_reset_vector(start_ip);
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
}
/*
* AP might wait on cpu_callout_mask in cpu_init() with
* cpu_initialized_mask set if previous attempt to online
* it timed-out. Clear cpu_initialized_mask so that after
* INIT/SIPI it could start with a clean state.
*/
cpumask_clear_cpu(cpu, cpu_initialized_mask);
smp_mb();
/*
* Wake up a CPU in difference cases:
* - Use the method in the APIC driver if it's defined
* Otherwise,
* - Use an INIT boot APIC message for APs or NMI for BSP.
*/
if (apic->wakeup_secondary_cpu)
boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
else
boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
&cpu0_nmi_registered);
if (!boot_error) {
/*
* Wait 10s total for a response from AP
*/
boot_error = -1;
timeout = jiffies + 10*HZ;
while (time_before(jiffies, timeout)) {
if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
/*
* Tell AP to proceed with initialization
*/
cpumask_set_cpu(cpu, cpu_callout_mask);
boot_error = 0;
break;
}
udelay(100);
schedule();
}
}
if (!boot_error) {
/*
* Wait till AP completes initial initialization
*/
while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
/*
* Allow other tasks to run while we wait for the
* AP to come online. This also gives a chance
* for the MTRR work(triggered by the AP coming online)
* to be completed in the stop machine context.
*/
udelay(100);
schedule();
}
}
/* mark "stuck" area as not stuck */
*trampoline_status = 0;
if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
/*
* Cleanup possible dangling ends...
*/
smpboot_restore_warm_reset_vector();
}
/*
* Clean up the nmi handler. Do this after the callin and callout sync
* to avoid impact of possible long unregister time.
*/
if (cpu0_nmi_registered)
unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
return boot_error;
}
int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
{
int apicid = apic->cpu_present_to_apicid(cpu);
unsigned long flags;
int err;
WARN_ON(irqs_disabled());
pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
if (apicid == BAD_APICID ||
!physid_isset(apicid, phys_cpu_present_map) ||
!apic->apic_id_valid(apicid)) {
pr_err("%s: bad cpu %d\n", __func__, cpu);
return -EINVAL;
}
/*
* Already booted CPU?
*/
if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
pr_debug("do_boot_cpu %d Already started\n", cpu);
return -ENOSYS;
}
/*
* Save current MTRR state in case it was changed since early boot
* (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
*/
mtrr_save_state();
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
/* the FPU context is blank, nobody can own it */
__cpu_disable_lazy_restore(cpu);
err = do_boot_cpu(apicid, cpu, tidle);
if (err) {
pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
return -EIO;
}
/*
* Check TSC synchronization with the AP (keep irqs disabled
* while doing so):
*/
local_irq_save(flags);
check_tsc_sync_source(cpu);
local_irq_restore(flags);
while (!cpu_online(cpu)) {
cpu_relax();
touch_nmi_watchdog();
}
return 0;
}
/**
* arch_disable_smp_support() - disables SMP support for x86 at runtime
*/
void arch_disable_smp_support(void)
{
disable_ioapic_support();
}
/*
* Fall back to non SMP mode after errors.
*
* RED-PEN audit/test this more. I bet there is more state messed up here.
*/
static __init void disable_smp(void)
{
init_cpu_present(cpumask_of(0));
init_cpu_possible(cpumask_of(0));
smpboot_clear_io_apic_irqs();
if (smp_found_config)
physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
else
physid_set_mask_of_physid(0, &phys_cpu_present_map);
cpumask_set_cpu(0, cpu_sibling_mask(0));
cpumask_set_cpu(0, cpu_core_mask(0));
}
/*
* Various sanity checks.
*/
static int __init smp_sanity_check(unsigned max_cpus)
{
preempt_disable();
#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
if (def_to_bigsmp && nr_cpu_ids > 8) {
unsigned int cpu;
unsigned nr;
pr_warn("More than 8 CPUs detected - skipping them\n"
"Use CONFIG_X86_BIGSMP\n");
nr = 0;
for_each_present_cpu(cpu) {
if (nr >= 8)
set_cpu_present(cpu, false);
nr++;
}
nr = 0;
for_each_possible_cpu(cpu) {
if (nr >= 8)
set_cpu_possible(cpu, false);
nr++;
}
nr_cpu_ids = 8;
}
#endif
if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
hard_smp_processor_id());
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
}
/*
* If we couldn't find an SMP configuration at boot time,
* get out of here now!
*/
if (!smp_found_config && !acpi_lapic) {
preempt_enable();
pr_notice("SMP motherboard not detected\n");
disable_smp();
if (APIC_init_uniprocessor())
pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
return -1;
}
/*
* Should not be necessary because the MP table should list the boot
* CPU too, but we do it for the sake of robustness anyway.
*/
if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
boot_cpu_physical_apicid);
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
}
preempt_enable();
/*
* If we couldn't find a local APIC, then get out of here now!
*/
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
!cpu_has_apic) {
if (!disable_apic) {
pr_err("BIOS bug, local APIC #%d not detected!...\n",
boot_cpu_physical_apicid);
pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
}
smpboot_clear_io_apic();
disable_ioapic_support();
return -1;
}
verify_local_APIC();
/*
* If SMP should be disabled, then really disable it!
*/
if (!max_cpus) {
pr_info("SMP mode deactivated\n");
smpboot_clear_io_apic();
connect_bsp_APIC();
setup_local_APIC();
bsp_end_local_APIC_setup();
return -1;
}
return 0;
}
static void __init smp_cpu_index_default(void)
{
int i;
struct cpuinfo_x86 *c;
for_each_possible_cpu(i) {
c = &cpu_data(i);
/* mark all to hotplug */
c->cpu_index = nr_cpu_ids;
}
}
/*
* Prepare for SMP bootup. The MP table or ACPI has been read
* earlier. Just do some sanity checking here and enable APIC mode.
*/
void __init native_smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int i;
preempt_disable();
smp_cpu_index_default();
/*
* Setup boot CPU information
*/
smp_store_boot_cpu_info(); /* Final full version of the data */
cpumask_copy(cpu_callin_mask, cpumask_of(0));
mb();
current_thread_info()->cpu = 0; /* needed? */
for_each_possible_cpu(i) {
zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
}
set_cpu_sibling_map(0);
if (smp_sanity_check(max_cpus) < 0) {
pr_info("SMP disabled\n");
disable_smp();
goto out;
}
default_setup_apic_routing();
preempt_disable();
if (read_apic_id() != boot_cpu_physical_apicid) {
panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
read_apic_id(), boot_cpu_physical_apicid);
/* Or can we switch back to PIC here? */
}
preempt_enable();
connect_bsp_APIC();
/*
* Switch from PIC to APIC mode.
*/
setup_local_APIC();
if (x2apic_mode)
cpu0_logical_apicid = apic_read(APIC_LDR);
else
cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
/*
* Enable IO APIC before setting up error vector
*/
if (!skip_ioapic_setup && nr_ioapics)
enable_IO_APIC();
bsp_end_local_APIC_setup();
smpboot_setup_io_apic();
/*
* Set up local APIC timer on boot CPU.
*/
pr_info("CPU%d: ", 0);
print_cpu_info(&cpu_data(0));
x86_init.timers.setup_percpu_clockev();
if (is_uv_system())
uv_system_init();
set_mtrr_aps_delayed_init();
out:
preempt_enable();
}
void arch_enable_nonboot_cpus_begin(void)
{
set_mtrr_aps_delayed_init();
}
void arch_enable_nonboot_cpus_end(void)
{
mtrr_aps_init();
}
/*
* Early setup to make printk work.
*/
void __init native_smp_prepare_boot_cpu(void)
{
int me = smp_processor_id();
switch_to_new_gdt(me);
/* already set me in cpu_online_mask in boot_cpu_init() */
cpumask_set_cpu(me, cpu_callout_mask);
per_cpu(cpu_state, me) = CPU_ONLINE;
}
void __init native_smp_cpus_done(unsigned int max_cpus)
{
pr_debug("Boot done\n");
nmi_selftest();
impress_friends();
#ifdef CONFIG_X86_IO_APIC
setup_ioapic_dest();
#endif
mtrr_aps_init();
}
static int __initdata setup_possible_cpus = -1;
static int __init _setup_possible_cpus(char *str)
{
get_option(&str, &setup_possible_cpus);
return 0;
}
early_param("possible_cpus", _setup_possible_cpus);
/*
* cpu_possible_mask should be static, it cannot change as cpu's
* are onlined, or offlined. The reason is per-cpu data-structures
* are allocated by some modules at init time, and dont expect to
* do this dynamically on cpu arrival/departure.
* cpu_present_mask on the other hand can change dynamically.
* In case when cpu_hotplug is not compiled, then we resort to current
* behaviour, which is cpu_possible == cpu_present.
* - Ashok Raj
*
* Three ways to find out the number of additional hotplug CPUs:
* - If the BIOS specified disabled CPUs in ACPI/mptables use that.
* - The user can overwrite it with possible_cpus=NUM
* - Otherwise don't reserve additional CPUs.
* We do this because additional CPUs waste a lot of memory.
* -AK
*/
__init void prefill_possible_map(void)
{
int i, possible;
/* no processor from mptable or madt */
if (!num_processors)
num_processors = 1;
i = setup_max_cpus ?: 1;
if (setup_possible_cpus == -1) {
possible = num_processors;
#ifdef CONFIG_HOTPLUG_CPU
if (setup_max_cpus)
possible += disabled_cpus;
#else
if (possible > i)
possible = i;
#endif
} else
possible = setup_possible_cpus;
total_cpus = max_t(int, possible, num_processors + disabled_cpus);
/* nr_cpu_ids could be reduced via nr_cpus= */
if (possible > nr_cpu_ids) {
pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
possible, nr_cpu_ids);
possible = nr_cpu_ids;
}
#ifdef CONFIG_HOTPLUG_CPU
if (!setup_max_cpus)
#endif
if (possible > i) {
pr_warn("%d Processors exceeds max_cpus limit of %u\n",
possible, setup_max_cpus);
possible = i;
}
pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
possible, max_t(int, possible - num_processors, 0));
for (i = 0; i < possible; i++)
set_cpu_possible(i, true);
for (; i < NR_CPUS; i++)
set_cpu_possible(i, false);
nr_cpu_ids = possible;
}
#ifdef CONFIG_HOTPLUG_CPU
static void remove_siblinginfo(int cpu)
{
int sibling;
struct cpuinfo_x86 *c = &cpu_data(cpu);
for_each_cpu(sibling, cpu_core_mask(cpu)) {
cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
/*/
* last thread sibling in this cpu core going down
*/
if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
cpu_data(sibling).booted_cores--;
}
for_each_cpu(sibling, cpu_sibling_mask(cpu))
cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
cpumask_clear(cpu_llc_shared_mask(cpu));
cpumask_clear(cpu_sibling_mask(cpu));
cpumask_clear(cpu_core_mask(cpu));
c->phys_proc_id = 0;
c->cpu_core_id = 0;
cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
}
static void __ref remove_cpu_from_maps(int cpu)
{
set_cpu_online(cpu, false);
cpumask_clear_cpu(cpu, cpu_callout_mask);
cpumask_clear_cpu(cpu, cpu_callin_mask);
/* was set by cpu_init() */
cpumask_clear_cpu(cpu, cpu_initialized_mask);
numa_remove_cpu(cpu);
}
void cpu_disable_common(void)
{
int cpu = smp_processor_id();
remove_siblinginfo(cpu);
/* It's now safe to remove this processor from the online map */
lock_vector_lock();
remove_cpu_from_maps(cpu);
unlock_vector_lock();
fixup_irqs();
}
int native_cpu_disable(void)
{
int ret;
ret = check_irq_vectors_for_cpu_disable();
if (ret)
return ret;
clear_local_APIC();
init_completion(&per_cpu(die_complete, smp_processor_id()));
cpu_disable_common();
return 0;
}
void native_cpu_die(unsigned int cpu)
{
/* We don't do anything here: idle task is faking death itself. */
wait_for_completion_timeout(&per_cpu(die_complete, cpu), HZ);
/* They ack this in play_dead() by setting CPU_DEAD */
if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
if (system_state == SYSTEM_RUNNING)
pr_info("CPU %u is now offline\n", cpu);
} else {
pr_err("CPU %u didn't die...\n", cpu);
}
}
void play_dead_common(void)
{
idle_task_exit();
reset_lazy_tlbstate();
amd_e400_remove_cpu(raw_smp_processor_id());
mb();
/* Ack it */
__this_cpu_write(cpu_state, CPU_DEAD);
complete(&per_cpu(die_complete, smp_processor_id()));
/*
* With physical CPU hotplug, we should halt the cpu
*/
local_irq_disable();
}
static bool wakeup_cpu0(void)
{
if (smp_processor_id() == 0 && enable_start_cpu0)
return true;
return false;
}
/*
* We need to flush the caches before going to sleep, lest we have
* dirty data in our caches when we come back up.
*/
static inline void mwait_play_dead(void)
{
unsigned int eax, ebx, ecx, edx;
unsigned int highest_cstate = 0;
unsigned int highest_subcstate = 0;
void *mwait_ptr;
int i;
if (!this_cpu_has(X86_FEATURE_MWAIT))
return;
if (!this_cpu_has(X86_FEATURE_CLFLUSH))
return;
if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
return;
eax = CPUID_MWAIT_LEAF;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
/*
* eax will be 0 if EDX enumeration is not valid.
* Initialized below to cstate, sub_cstate value when EDX is valid.
*/
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
eax = 0;
} else {
edx >>= MWAIT_SUBSTATE_SIZE;
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
if (edx & MWAIT_SUBSTATE_MASK) {
highest_cstate = i;
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
}
}
eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
(highest_subcstate - 1);
}
/*
* This should be a memory location in a cache line which is
* unlikely to be touched by other processors. The actual
* content is immaterial as it is not actually modified in any way.
*/
mwait_ptr = &current_thread_info()->flags;
wbinvd();
while (1) {
/*
* The CLFLUSH is a workaround for erratum AAI65 for
* the Xeon 7400 series. It's not clear it is actually
* needed, but it should be harmless in either case.
* The WBINVD is insufficient due to the spurious-wakeup
* case where we return around the loop.
*/
mb();
clflush(mwait_ptr);
mb();
__monitor(mwait_ptr, 0, 0);
mb();
__mwait(eax, 0);
/*
* If NMI wants to wake up CPU0, start CPU0.
*/
if (wakeup_cpu0())
start_cpu0();
}
}
static inline void hlt_play_dead(void)
{
if (__this_cpu_read(cpu_info.x86) >= 4)
wbinvd();
while (1) {
native_halt();
/*
* If NMI wants to wake up CPU0, start CPU0.
*/
if (wakeup_cpu0())
start_cpu0();
}
}
void native_play_dead(void)
{
play_dead_common();
tboot_shutdown(TB_SHUTDOWN_WFS);
mwait_play_dead(); /* Only returns on failure */
if (cpuidle_play_dead())
hlt_play_dead();
}
#else /* ... !CONFIG_HOTPLUG_CPU */
int native_cpu_disable(void)
{
return -ENOSYS;
}
void native_cpu_die(unsigned int cpu)
{
/* We said "no" in __cpu_disable */
BUG();
}
void native_play_dead(void)
{
BUG();
}
#endif