linux/drivers/gpu/drm/i915/i915_gem_execbuffer.c
Daniel Vetter f99d70690e drm/i915: Track frontbuffer invalidation/flushing
So these are the guts of the new beast. This tracks when a frontbuffer
gets invalidated (due to frontbuffer rendering) and hence should be
constantly scaned out, and when it's flushed again and can be
compressed/one-shot-upload.

Rules for flushing are simple: The frontbuffer needs one more full
upload starting from the next vblank. Which means that the flushing
can _only_ be called once the frontbuffer update has been latched.

But this poses a problem for pageflips: We can't just delay the
flushing until the pageflip is latched, since that would pose the risk
that we override frontbuffer rendering that has been scheduled
in-between the pageflip ioctl and the actual latching.

To handle this track asynchronous invalidations (and also pageflip)
state per-ring and delay any in-between flushing until the rendering
has completed. And also cancel any delayed flushing if we get a new
invalidation request (whether delayed or not).

Also call intel_mark_fb_busy in both cases in all cases to make sure
that we keep the screen at the highest refresh rate both on flips,
synchronous plane updates and for frontbuffer rendering.

v2: Lots of improvements

Suggestions from Chris:
- Move invalidate/flush in flush_*_domain and set_to_*_domain.
- Drop the flush in busy_ioctl since it's redundant. Was a leftover
  from an earlier concept to track flips/delayed flushes.
- Don't forget about the initial modeset enable/final disable.
  Suggested by Chris.

Track flips accurately, too. Since flips complete independently of
rendering we need to track pending flips in a separate mask. Again if
an invalidate happens we need to cancel the evenutal flush to avoid
races.

v3:
Provide correct header declarations for flip functions. Currently not
needed outside of intel_display.c, but part of the proper interface.

v4: Add proper domain management to fbcon so that the fbcon buffer is
also tracked correctly.

v5: Fixup locking around the fbcon set_to_gtt_domain call.

v6: More comments from Chris:
- Split out fbcon changes.
- Drop superflous checks for potential scanout before calling intel_fb
  functions - we can micro-optimize this later.
- s/intel_fb_/intel_fb_obj_/ to make it clear that this deals in gem
  object. We already have precedence for fb_obj in the pin_and_fence
  functions.

v7: Clarify the semantics of the flip flush handling by renaming
things a bit:
- Don't go through a gem object but take the relevant frontbuffer bits
  directly. These functions center on the plane, the actual object is
  irrelevant - even a flip to the same object as already active should
  cause a flush.
- Add a new intel_frontbuffer_flip for synchronous plane updates. It
  currently just calls intel_frontbuffer_flush since the implemenation
  differs.

This way we achieve a clear split between one-shot update events on
one side and frontbuffer rendering with potentially a very long delay
between the invalidate and flush.

Chris and I also had some discussions about mark_busy and whether it
is appropriate to call from flush. But mark busy is a state which
should be derived from the 3 events (invalidate, flush, flip) we now
have by the users, like psr does by tracking relevant information in
psr.busy_frontbuffer_bits. DRRS (the only real use of mark_busy for
frontbuffer) needs to have similar logic. With that the overall
mark_busy in the core could be removed.

v8: Only when retiring gpu buffers only flush frontbuffer bits we
actually invalidated in a batch. Just for safety since before any
additional usage/invalidate we should always retire current rendering.
Suggested by Chris Wilson.

v9: Actually use intel_frontbuffer_flip in all appropriate places.
Spotted by Chris.

v10: Address more comments from Chris:
- Don't call _flip in set_base when the crtc is inactive, avoids redunancy
  in the modeset case with the initial enabling of all planes.
- Add comments explaining that the initial/final plane enable/disable
  still has work left to do before it's fully generic.

v11: Only invalidate for gtt/cpu access when writing. Spotted by Chris.

v12: s/_flush/_flip/ in intel_overlay.c per Chris' comment.

Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-19 18:14:47 +02:00

1547 lines
40 KiB
C

/*
* Copyright © 2008,2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/dma_remapping.h>
#define __EXEC_OBJECT_HAS_PIN (1<<31)
#define __EXEC_OBJECT_HAS_FENCE (1<<30)
#define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
#define BATCH_OFFSET_BIAS (256*1024)
struct eb_vmas {
struct list_head vmas;
int and;
union {
struct i915_vma *lut[0];
struct hlist_head buckets[0];
};
};
static struct eb_vmas *
eb_create(struct drm_i915_gem_execbuffer2 *args)
{
struct eb_vmas *eb = NULL;
if (args->flags & I915_EXEC_HANDLE_LUT) {
unsigned size = args->buffer_count;
size *= sizeof(struct i915_vma *);
size += sizeof(struct eb_vmas);
eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
}
if (eb == NULL) {
unsigned size = args->buffer_count;
unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
while (count > 2*size)
count >>= 1;
eb = kzalloc(count*sizeof(struct hlist_head) +
sizeof(struct eb_vmas),
GFP_TEMPORARY);
if (eb == NULL)
return eb;
eb->and = count - 1;
} else
eb->and = -args->buffer_count;
INIT_LIST_HEAD(&eb->vmas);
return eb;
}
static void
eb_reset(struct eb_vmas *eb)
{
if (eb->and >= 0)
memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}
static int
eb_lookup_vmas(struct eb_vmas *eb,
struct drm_i915_gem_exec_object2 *exec,
const struct drm_i915_gem_execbuffer2 *args,
struct i915_address_space *vm,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = vm->dev->dev_private;
struct drm_i915_gem_object *obj;
struct list_head objects;
int i, ret;
INIT_LIST_HEAD(&objects);
spin_lock(&file->table_lock);
/* Grab a reference to the object and release the lock so we can lookup
* or create the VMA without using GFP_ATOMIC */
for (i = 0; i < args->buffer_count; i++) {
obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
if (obj == NULL) {
spin_unlock(&file->table_lock);
DRM_DEBUG("Invalid object handle %d at index %d\n",
exec[i].handle, i);
ret = -ENOENT;
goto err;
}
if (!list_empty(&obj->obj_exec_link)) {
spin_unlock(&file->table_lock);
DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
obj, exec[i].handle, i);
ret = -EINVAL;
goto err;
}
drm_gem_object_reference(&obj->base);
list_add_tail(&obj->obj_exec_link, &objects);
}
spin_unlock(&file->table_lock);
i = 0;
while (!list_empty(&objects)) {
struct i915_vma *vma;
struct i915_address_space *bind_vm = vm;
if (exec[i].flags & EXEC_OBJECT_NEEDS_GTT &&
USES_FULL_PPGTT(vm->dev)) {
ret = -EINVAL;
goto err;
}
/* If we have secure dispatch, or the userspace assures us that
* they know what they're doing, use the GGTT VM.
*/
if (((args->flags & I915_EXEC_SECURE) &&
(i == (args->buffer_count - 1))))
bind_vm = &dev_priv->gtt.base;
obj = list_first_entry(&objects,
struct drm_i915_gem_object,
obj_exec_link);
/*
* NOTE: We can leak any vmas created here when something fails
* later on. But that's no issue since vma_unbind can deal with
* vmas which are not actually bound. And since only
* lookup_or_create exists as an interface to get at the vma
* from the (obj, vm) we don't run the risk of creating
* duplicated vmas for the same vm.
*/
vma = i915_gem_obj_lookup_or_create_vma(obj, bind_vm);
if (IS_ERR(vma)) {
DRM_DEBUG("Failed to lookup VMA\n");
ret = PTR_ERR(vma);
goto err;
}
/* Transfer ownership from the objects list to the vmas list. */
list_add_tail(&vma->exec_list, &eb->vmas);
list_del_init(&obj->obj_exec_link);
vma->exec_entry = &exec[i];
if (eb->and < 0) {
eb->lut[i] = vma;
} else {
uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
vma->exec_handle = handle;
hlist_add_head(&vma->exec_node,
&eb->buckets[handle & eb->and]);
}
++i;
}
return 0;
err:
while (!list_empty(&objects)) {
obj = list_first_entry(&objects,
struct drm_i915_gem_object,
obj_exec_link);
list_del_init(&obj->obj_exec_link);
drm_gem_object_unreference(&obj->base);
}
/*
* Objects already transfered to the vmas list will be unreferenced by
* eb_destroy.
*/
return ret;
}
static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
{
if (eb->and < 0) {
if (handle >= -eb->and)
return NULL;
return eb->lut[handle];
} else {
struct hlist_head *head;
struct hlist_node *node;
head = &eb->buckets[handle & eb->and];
hlist_for_each(node, head) {
struct i915_vma *vma;
vma = hlist_entry(node, struct i915_vma, exec_node);
if (vma->exec_handle == handle)
return vma;
}
return NULL;
}
}
static void
i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry;
struct drm_i915_gem_object *obj = vma->obj;
if (!drm_mm_node_allocated(&vma->node))
return;
entry = vma->exec_entry;
if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
i915_gem_object_unpin_fence(obj);
if (entry->flags & __EXEC_OBJECT_HAS_PIN)
vma->pin_count--;
entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
}
static void eb_destroy(struct eb_vmas *eb)
{
while (!list_empty(&eb->vmas)) {
struct i915_vma *vma;
vma = list_first_entry(&eb->vmas,
struct i915_vma,
exec_list);
list_del_init(&vma->exec_list);
i915_gem_execbuffer_unreserve_vma(vma);
drm_gem_object_unreference(&vma->obj->base);
}
kfree(eb);
}
static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
{
return (HAS_LLC(obj->base.dev) ||
obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
!obj->map_and_fenceable ||
obj->cache_level != I915_CACHE_NONE);
}
static int
relocate_entry_cpu(struct drm_i915_gem_object *obj,
struct drm_i915_gem_relocation_entry *reloc,
uint64_t target_offset)
{
struct drm_device *dev = obj->base.dev;
uint32_t page_offset = offset_in_page(reloc->offset);
uint64_t delta = reloc->delta + target_offset;
char *vaddr;
int ret;
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret)
return ret;
vaddr = kmap_atomic(i915_gem_object_get_page(obj,
reloc->offset >> PAGE_SHIFT));
*(uint32_t *)(vaddr + page_offset) = lower_32_bits(delta);
if (INTEL_INFO(dev)->gen >= 8) {
page_offset = offset_in_page(page_offset + sizeof(uint32_t));
if (page_offset == 0) {
kunmap_atomic(vaddr);
vaddr = kmap_atomic(i915_gem_object_get_page(obj,
(reloc->offset + sizeof(uint32_t)) >> PAGE_SHIFT));
}
*(uint32_t *)(vaddr + page_offset) = upper_32_bits(delta);
}
kunmap_atomic(vaddr);
return 0;
}
static int
relocate_entry_gtt(struct drm_i915_gem_object *obj,
struct drm_i915_gem_relocation_entry *reloc,
uint64_t target_offset)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint64_t delta = reloc->delta + target_offset;
uint32_t __iomem *reloc_entry;
void __iomem *reloc_page;
int ret;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
return ret;
ret = i915_gem_object_put_fence(obj);
if (ret)
return ret;
/* Map the page containing the relocation we're going to perform. */
reloc->offset += i915_gem_obj_ggtt_offset(obj);
reloc_page = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
reloc->offset & PAGE_MASK);
reloc_entry = (uint32_t __iomem *)
(reloc_page + offset_in_page(reloc->offset));
iowrite32(lower_32_bits(delta), reloc_entry);
if (INTEL_INFO(dev)->gen >= 8) {
reloc_entry += 1;
if (offset_in_page(reloc->offset + sizeof(uint32_t)) == 0) {
io_mapping_unmap_atomic(reloc_page);
reloc_page = io_mapping_map_atomic_wc(
dev_priv->gtt.mappable,
reloc->offset + sizeof(uint32_t));
reloc_entry = reloc_page;
}
iowrite32(upper_32_bits(delta), reloc_entry);
}
io_mapping_unmap_atomic(reloc_page);
return 0;
}
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
struct eb_vmas *eb,
struct drm_i915_gem_relocation_entry *reloc)
{
struct drm_device *dev = obj->base.dev;
struct drm_gem_object *target_obj;
struct drm_i915_gem_object *target_i915_obj;
struct i915_vma *target_vma;
uint64_t target_offset;
int ret;
/* we've already hold a reference to all valid objects */
target_vma = eb_get_vma(eb, reloc->target_handle);
if (unlikely(target_vma == NULL))
return -ENOENT;
target_i915_obj = target_vma->obj;
target_obj = &target_vma->obj->base;
target_offset = target_vma->node.start;
/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
* pipe_control writes because the gpu doesn't properly redirect them
* through the ppgtt for non_secure batchbuffers. */
if (unlikely(IS_GEN6(dev) &&
reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
!target_i915_obj->has_global_gtt_mapping)) {
struct i915_vma *vma =
list_first_entry(&target_i915_obj->vma_list,
typeof(*vma), vma_link);
vma->bind_vma(vma, target_i915_obj->cache_level, GLOBAL_BIND);
}
/* Validate that the target is in a valid r/w GPU domain */
if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
DRM_DEBUG("reloc with multiple write domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return -EINVAL;
}
if (unlikely((reloc->write_domain | reloc->read_domains)
& ~I915_GEM_GPU_DOMAINS)) {
DRM_DEBUG("reloc with read/write non-GPU domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return -EINVAL;
}
target_obj->pending_read_domains |= reloc->read_domains;
target_obj->pending_write_domain |= reloc->write_domain;
/* If the relocation already has the right value in it, no
* more work needs to be done.
*/
if (target_offset == reloc->presumed_offset)
return 0;
/* Check that the relocation address is valid... */
if (unlikely(reloc->offset >
obj->base.size - (INTEL_INFO(dev)->gen >= 8 ? 8 : 4))) {
DRM_DEBUG("Relocation beyond object bounds: "
"obj %p target %d offset %d size %d.\n",
obj, reloc->target_handle,
(int) reloc->offset,
(int) obj->base.size);
return -EINVAL;
}
if (unlikely(reloc->offset & 3)) {
DRM_DEBUG("Relocation not 4-byte aligned: "
"obj %p target %d offset %d.\n",
obj, reloc->target_handle,
(int) reloc->offset);
return -EINVAL;
}
/* We can't wait for rendering with pagefaults disabled */
if (obj->active && in_atomic())
return -EFAULT;
if (use_cpu_reloc(obj))
ret = relocate_entry_cpu(obj, reloc, target_offset);
else
ret = relocate_entry_gtt(obj, reloc, target_offset);
if (ret)
return ret;
/* and update the user's relocation entry */
reloc->presumed_offset = target_offset;
return 0;
}
static int
i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
struct eb_vmas *eb)
{
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
struct drm_i915_gem_relocation_entry __user *user_relocs;
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
int remain, ret;
user_relocs = to_user_ptr(entry->relocs_ptr);
remain = entry->relocation_count;
while (remain) {
struct drm_i915_gem_relocation_entry *r = stack_reloc;
int count = remain;
if (count > ARRAY_SIZE(stack_reloc))
count = ARRAY_SIZE(stack_reloc);
remain -= count;
if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
return -EFAULT;
do {
u64 offset = r->presumed_offset;
ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r);
if (ret)
return ret;
if (r->presumed_offset != offset &&
__copy_to_user_inatomic(&user_relocs->presumed_offset,
&r->presumed_offset,
sizeof(r->presumed_offset))) {
return -EFAULT;
}
user_relocs++;
r++;
} while (--count);
}
return 0;
#undef N_RELOC
}
static int
i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
struct eb_vmas *eb,
struct drm_i915_gem_relocation_entry *relocs)
{
const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
int i, ret;
for (i = 0; i < entry->relocation_count; i++) {
ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i]);
if (ret)
return ret;
}
return 0;
}
static int
i915_gem_execbuffer_relocate(struct eb_vmas *eb)
{
struct i915_vma *vma;
int ret = 0;
/* This is the fast path and we cannot handle a pagefault whilst
* holding the struct mutex lest the user pass in the relocations
* contained within a mmaped bo. For in such a case we, the page
* fault handler would call i915_gem_fault() and we would try to
* acquire the struct mutex again. Obviously this is bad and so
* lockdep complains vehemently.
*/
pagefault_disable();
list_for_each_entry(vma, &eb->vmas, exec_list) {
ret = i915_gem_execbuffer_relocate_vma(vma, eb);
if (ret)
break;
}
pagefault_enable();
return ret;
}
static int
need_reloc_mappable(struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
return entry->relocation_count && !use_cpu_reloc(vma->obj) &&
i915_is_ggtt(vma->vm);
}
static int
i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
struct intel_engine_cs *ring,
bool *need_reloc)
{
struct drm_i915_gem_object *obj = vma->obj;
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
bool need_fence;
uint64_t flags;
int ret;
flags = 0;
need_fence =
has_fenced_gpu_access &&
entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode != I915_TILING_NONE;
if (need_fence || need_reloc_mappable(vma))
flags |= PIN_MAPPABLE;
if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
flags |= PIN_GLOBAL;
if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
ret = i915_gem_object_pin(obj, vma->vm, entry->alignment, flags);
if (ret)
return ret;
entry->flags |= __EXEC_OBJECT_HAS_PIN;
if (has_fenced_gpu_access) {
if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
ret = i915_gem_object_get_fence(obj);
if (ret)
return ret;
if (i915_gem_object_pin_fence(obj))
entry->flags |= __EXEC_OBJECT_HAS_FENCE;
obj->pending_fenced_gpu_access = true;
}
}
if (entry->offset != vma->node.start) {
entry->offset = vma->node.start;
*need_reloc = true;
}
if (entry->flags & EXEC_OBJECT_WRITE) {
obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
}
return 0;
}
static bool
eb_vma_misplaced(struct i915_vma *vma, bool has_fenced_gpu_access)
{
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
struct drm_i915_gem_object *obj = vma->obj;
bool need_fence, need_mappable;
need_fence =
has_fenced_gpu_access &&
entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode != I915_TILING_NONE;
need_mappable = need_fence || need_reloc_mappable(vma);
WARN_ON((need_mappable || need_fence) &&
!i915_is_ggtt(vma->vm));
if (entry->alignment &&
vma->node.start & (entry->alignment - 1))
return true;
if (need_mappable && !obj->map_and_fenceable)
return true;
if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
vma->node.start < BATCH_OFFSET_BIAS)
return true;
return false;
}
static int
i915_gem_execbuffer_reserve(struct intel_engine_cs *ring,
struct list_head *vmas,
bool *need_relocs)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
struct i915_address_space *vm;
struct list_head ordered_vmas;
bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
int retry;
if (list_empty(vmas))
return 0;
i915_gem_retire_requests_ring(ring);
vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
INIT_LIST_HEAD(&ordered_vmas);
while (!list_empty(vmas)) {
struct drm_i915_gem_exec_object2 *entry;
bool need_fence, need_mappable;
vma = list_first_entry(vmas, struct i915_vma, exec_list);
obj = vma->obj;
entry = vma->exec_entry;
need_fence =
has_fenced_gpu_access &&
entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode != I915_TILING_NONE;
need_mappable = need_fence || need_reloc_mappable(vma);
if (need_mappable)
list_move(&vma->exec_list, &ordered_vmas);
else
list_move_tail(&vma->exec_list, &ordered_vmas);
obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
obj->base.pending_write_domain = 0;
obj->pending_fenced_gpu_access = false;
}
list_splice(&ordered_vmas, vmas);
/* Attempt to pin all of the buffers into the GTT.
* This is done in 3 phases:
*
* 1a. Unbind all objects that do not match the GTT constraints for
* the execbuffer (fenceable, mappable, alignment etc).
* 1b. Increment pin count for already bound objects.
* 2. Bind new objects.
* 3. Decrement pin count.
*
* This avoid unnecessary unbinding of later objects in order to make
* room for the earlier objects *unless* we need to defragment.
*/
retry = 0;
do {
int ret = 0;
/* Unbind any ill-fitting objects or pin. */
list_for_each_entry(vma, vmas, exec_list) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (eb_vma_misplaced(vma, has_fenced_gpu_access))
ret = i915_vma_unbind(vma);
else
ret = i915_gem_execbuffer_reserve_vma(vma, ring, need_relocs);
if (ret)
goto err;
}
/* Bind fresh objects */
list_for_each_entry(vma, vmas, exec_list) {
if (drm_mm_node_allocated(&vma->node))
continue;
ret = i915_gem_execbuffer_reserve_vma(vma, ring, need_relocs);
if (ret)
goto err;
}
err:
if (ret != -ENOSPC || retry++)
return ret;
/* Decrement pin count for bound objects */
list_for_each_entry(vma, vmas, exec_list)
i915_gem_execbuffer_unreserve_vma(vma);
ret = i915_gem_evict_vm(vm, true);
if (ret)
return ret;
} while (1);
}
static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
struct drm_i915_gem_execbuffer2 *args,
struct drm_file *file,
struct intel_engine_cs *ring,
struct eb_vmas *eb,
struct drm_i915_gem_exec_object2 *exec)
{
struct drm_i915_gem_relocation_entry *reloc;
struct i915_address_space *vm;
struct i915_vma *vma;
bool need_relocs;
int *reloc_offset;
int i, total, ret;
unsigned count = args->buffer_count;
if (WARN_ON(list_empty(&eb->vmas)))
return 0;
vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
/* We may process another execbuffer during the unlock... */
while (!list_empty(&eb->vmas)) {
vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
list_del_init(&vma->exec_list);
i915_gem_execbuffer_unreserve_vma(vma);
drm_gem_object_unreference(&vma->obj->base);
}
mutex_unlock(&dev->struct_mutex);
total = 0;
for (i = 0; i < count; i++)
total += exec[i].relocation_count;
reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
reloc = drm_malloc_ab(total, sizeof(*reloc));
if (reloc == NULL || reloc_offset == NULL) {
drm_free_large(reloc);
drm_free_large(reloc_offset);
mutex_lock(&dev->struct_mutex);
return -ENOMEM;
}
total = 0;
for (i = 0; i < count; i++) {
struct drm_i915_gem_relocation_entry __user *user_relocs;
u64 invalid_offset = (u64)-1;
int j;
user_relocs = to_user_ptr(exec[i].relocs_ptr);
if (copy_from_user(reloc+total, user_relocs,
exec[i].relocation_count * sizeof(*reloc))) {
ret = -EFAULT;
mutex_lock(&dev->struct_mutex);
goto err;
}
/* As we do not update the known relocation offsets after
* relocating (due to the complexities in lock handling),
* we need to mark them as invalid now so that we force the
* relocation processing next time. Just in case the target
* object is evicted and then rebound into its old
* presumed_offset before the next execbuffer - if that
* happened we would make the mistake of assuming that the
* relocations were valid.
*/
for (j = 0; j < exec[i].relocation_count; j++) {
if (__copy_to_user(&user_relocs[j].presumed_offset,
&invalid_offset,
sizeof(invalid_offset))) {
ret = -EFAULT;
mutex_lock(&dev->struct_mutex);
goto err;
}
}
reloc_offset[i] = total;
total += exec[i].relocation_count;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret) {
mutex_lock(&dev->struct_mutex);
goto err;
}
/* reacquire the objects */
eb_reset(eb);
ret = eb_lookup_vmas(eb, exec, args, vm, file);
if (ret)
goto err;
need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
ret = i915_gem_execbuffer_reserve(ring, &eb->vmas, &need_relocs);
if (ret)
goto err;
list_for_each_entry(vma, &eb->vmas, exec_list) {
int offset = vma->exec_entry - exec;
ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
reloc + reloc_offset[offset]);
if (ret)
goto err;
}
/* Leave the user relocations as are, this is the painfully slow path,
* and we want to avoid the complication of dropping the lock whilst
* having buffers reserved in the aperture and so causing spurious
* ENOSPC for random operations.
*/
err:
drm_free_large(reloc);
drm_free_large(reloc_offset);
return ret;
}
static int
i915_gem_execbuffer_move_to_gpu(struct intel_engine_cs *ring,
struct list_head *vmas)
{
struct i915_vma *vma;
uint32_t flush_domains = 0;
bool flush_chipset = false;
int ret;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_object *obj = vma->obj;
ret = i915_gem_object_sync(obj, ring);
if (ret)
return ret;
if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
flush_chipset |= i915_gem_clflush_object(obj, false);
flush_domains |= obj->base.write_domain;
}
if (flush_chipset)
i915_gem_chipset_flush(ring->dev);
if (flush_domains & I915_GEM_DOMAIN_GTT)
wmb();
/* Unconditionally invalidate gpu caches and ensure that we do flush
* any residual writes from the previous batch.
*/
return intel_ring_invalidate_all_caches(ring);
}
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
{
if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
return false;
return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
}
static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
int count)
{
int i;
unsigned relocs_total = 0;
unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
for (i = 0; i < count; i++) {
char __user *ptr = to_user_ptr(exec[i].relocs_ptr);
int length; /* limited by fault_in_pages_readable() */
if (exec[i].flags & __EXEC_OBJECT_UNKNOWN_FLAGS)
return -EINVAL;
/* First check for malicious input causing overflow in
* the worst case where we need to allocate the entire
* relocation tree as a single array.
*/
if (exec[i].relocation_count > relocs_max - relocs_total)
return -EINVAL;
relocs_total += exec[i].relocation_count;
length = exec[i].relocation_count *
sizeof(struct drm_i915_gem_relocation_entry);
/*
* We must check that the entire relocation array is safe
* to read, but since we may need to update the presumed
* offsets during execution, check for full write access.
*/
if (!access_ok(VERIFY_WRITE, ptr, length))
return -EFAULT;
if (likely(!i915.prefault_disable)) {
if (fault_in_multipages_readable(ptr, length))
return -EFAULT;
}
}
return 0;
}
static struct intel_context *
i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
struct intel_engine_cs *ring, const u32 ctx_id)
{
struct intel_context *ctx = NULL;
struct i915_ctx_hang_stats *hs;
if (ring->id != RCS && ctx_id != DEFAULT_CONTEXT_ID)
return ERR_PTR(-EINVAL);
ctx = i915_gem_context_get(file->driver_priv, ctx_id);
if (IS_ERR(ctx))
return ctx;
hs = &ctx->hang_stats;
if (hs->banned) {
DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
return ERR_PTR(-EIO);
}
return ctx;
}
static void
i915_gem_execbuffer_move_to_active(struct list_head *vmas,
struct intel_engine_cs *ring)
{
struct i915_vma *vma;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_object *obj = vma->obj;
u32 old_read = obj->base.read_domains;
u32 old_write = obj->base.write_domain;
obj->base.write_domain = obj->base.pending_write_domain;
if (obj->base.write_domain == 0)
obj->base.pending_read_domains |= obj->base.read_domains;
obj->base.read_domains = obj->base.pending_read_domains;
obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
i915_vma_move_to_active(vma, ring);
if (obj->base.write_domain) {
obj->dirty = 1;
obj->last_write_seqno = intel_ring_get_seqno(ring);
intel_fb_obj_invalidate(obj, ring);
/* update for the implicit flush after a batch */
obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
}
trace_i915_gem_object_change_domain(obj, old_read, old_write);
}
}
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
struct drm_file *file,
struct intel_engine_cs *ring,
struct drm_i915_gem_object *obj)
{
/* Unconditionally force add_request to emit a full flush. */
ring->gpu_caches_dirty = true;
/* Add a breadcrumb for the completion of the batch buffer */
(void)__i915_add_request(ring, file, obj, NULL);
}
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret, i;
if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS]) {
DRM_DEBUG("sol reset is gen7/rcs only\n");
return -EINVAL;
}
ret = intel_ring_begin(ring, 4 * 3);
if (ret)
return ret;
for (i = 0; i < 4; i++) {
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
intel_ring_emit(ring, 0);
}
intel_ring_advance(ring);
return 0;
}
/**
* Find one BSD ring to dispatch the corresponding BSD command.
* The Ring ID is returned.
*/
static int gen8_dispatch_bsd_ring(struct drm_device *dev,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Check whether the file_priv is using one ring */
if (file_priv->bsd_ring)
return file_priv->bsd_ring->id;
else {
/* If no, use the ping-pong mechanism to select one ring */
int ring_id;
mutex_lock(&dev->struct_mutex);
if (dev_priv->mm.bsd_ring_dispatch_index == 0) {
ring_id = VCS;
dev_priv->mm.bsd_ring_dispatch_index = 1;
} else {
ring_id = VCS2;
dev_priv->mm.bsd_ring_dispatch_index = 0;
}
file_priv->bsd_ring = &dev_priv->ring[ring_id];
mutex_unlock(&dev->struct_mutex);
return ring_id;
}
}
static struct drm_i915_gem_object *
eb_get_batch(struct eb_vmas *eb)
{
struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
/*
* SNA is doing fancy tricks with compressing batch buffers, which leads
* to negative relocation deltas. Usually that works out ok since the
* relocate address is still positive, except when the batch is placed
* very low in the GTT. Ensure this doesn't happen.
*
* Note that actual hangs have only been observed on gen7, but for
* paranoia do it everywhere.
*/
vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
return vma->obj;
}
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args,
struct drm_i915_gem_exec_object2 *exec)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct eb_vmas *eb;
struct drm_i915_gem_object *batch_obj;
struct drm_clip_rect *cliprects = NULL;
struct intel_engine_cs *ring;
struct intel_context *ctx;
struct i915_address_space *vm;
const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
u64 exec_start = args->batch_start_offset, exec_len;
u32 mask, flags;
int ret, mode, i;
bool need_relocs;
if (!i915_gem_check_execbuffer(args))
return -EINVAL;
ret = validate_exec_list(exec, args->buffer_count);
if (ret)
return ret;
flags = 0;
if (args->flags & I915_EXEC_SECURE) {
if (!file->is_master || !capable(CAP_SYS_ADMIN))
return -EPERM;
flags |= I915_DISPATCH_SECURE;
}
if (args->flags & I915_EXEC_IS_PINNED)
flags |= I915_DISPATCH_PINNED;
if ((args->flags & I915_EXEC_RING_MASK) > LAST_USER_RING) {
DRM_DEBUG("execbuf with unknown ring: %d\n",
(int)(args->flags & I915_EXEC_RING_MASK));
return -EINVAL;
}
if ((args->flags & I915_EXEC_RING_MASK) == I915_EXEC_DEFAULT)
ring = &dev_priv->ring[RCS];
else if ((args->flags & I915_EXEC_RING_MASK) == I915_EXEC_BSD) {
if (HAS_BSD2(dev)) {
int ring_id;
ring_id = gen8_dispatch_bsd_ring(dev, file);
ring = &dev_priv->ring[ring_id];
} else
ring = &dev_priv->ring[VCS];
} else
ring = &dev_priv->ring[(args->flags & I915_EXEC_RING_MASK) - 1];
if (!intel_ring_initialized(ring)) {
DRM_DEBUG("execbuf with invalid ring: %d\n",
(int)(args->flags & I915_EXEC_RING_MASK));
return -EINVAL;
}
mode = args->flags & I915_EXEC_CONSTANTS_MASK;
mask = I915_EXEC_CONSTANTS_MASK;
switch (mode) {
case I915_EXEC_CONSTANTS_REL_GENERAL:
case I915_EXEC_CONSTANTS_ABSOLUTE:
case I915_EXEC_CONSTANTS_REL_SURFACE:
if (mode != 0 && ring != &dev_priv->ring[RCS]) {
DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
return -EINVAL;
}
if (mode != dev_priv->relative_constants_mode) {
if (INTEL_INFO(dev)->gen < 4) {
DRM_DEBUG("no rel constants on pre-gen4\n");
return -EINVAL;
}
if (INTEL_INFO(dev)->gen > 5 &&
mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
return -EINVAL;
}
/* The HW changed the meaning on this bit on gen6 */
if (INTEL_INFO(dev)->gen >= 6)
mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
}
break;
default:
DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
return -EINVAL;
}
if (args->buffer_count < 1) {
DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
if (args->num_cliprects != 0) {
if (ring != &dev_priv->ring[RCS]) {
DRM_DEBUG("clip rectangles are only valid with the render ring\n");
return -EINVAL;
}
if (INTEL_INFO(dev)->gen >= 5) {
DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
return -EINVAL;
}
if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
DRM_DEBUG("execbuf with %u cliprects\n",
args->num_cliprects);
return -EINVAL;
}
cliprects = kcalloc(args->num_cliprects,
sizeof(*cliprects),
GFP_KERNEL);
if (cliprects == NULL) {
ret = -ENOMEM;
goto pre_mutex_err;
}
if (copy_from_user(cliprects,
to_user_ptr(args->cliprects_ptr),
sizeof(*cliprects)*args->num_cliprects)) {
ret = -EFAULT;
goto pre_mutex_err;
}
} else {
if (args->DR4 == 0xffffffff) {
DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
args->DR4 = 0;
}
if (args->DR1 || args->DR4 || args->cliprects_ptr) {
DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
return -EINVAL;
}
}
intel_runtime_pm_get(dev_priv);
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto pre_mutex_err;
if (dev_priv->ums.mm_suspended) {
mutex_unlock(&dev->struct_mutex);
ret = -EBUSY;
goto pre_mutex_err;
}
ctx = i915_gem_validate_context(dev, file, ring, ctx_id);
if (IS_ERR(ctx)) {
mutex_unlock(&dev->struct_mutex);
ret = PTR_ERR(ctx);
goto pre_mutex_err;
}
i915_gem_context_reference(ctx);
vm = ctx->vm;
if (!USES_FULL_PPGTT(dev))
vm = &dev_priv->gtt.base;
eb = eb_create(args);
if (eb == NULL) {
i915_gem_context_unreference(ctx);
mutex_unlock(&dev->struct_mutex);
ret = -ENOMEM;
goto pre_mutex_err;
}
/* Look up object handles */
ret = eb_lookup_vmas(eb, exec, args, vm, file);
if (ret)
goto err;
/* take note of the batch buffer before we might reorder the lists */
batch_obj = eb_get_batch(eb);
/* Move the objects en-masse into the GTT, evicting if necessary. */
need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
ret = i915_gem_execbuffer_reserve(ring, &eb->vmas, &need_relocs);
if (ret)
goto err;
/* The objects are in their final locations, apply the relocations. */
if (need_relocs)
ret = i915_gem_execbuffer_relocate(eb);
if (ret) {
if (ret == -EFAULT) {
ret = i915_gem_execbuffer_relocate_slow(dev, args, file, ring,
eb, exec);
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
}
if (ret)
goto err;
}
/* Set the pending read domains for the batch buffer to COMMAND */
if (batch_obj->base.pending_write_domain) {
DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
ret = -EINVAL;
goto err;
}
batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
if (i915_needs_cmd_parser(ring)) {
ret = i915_parse_cmds(ring,
batch_obj,
args->batch_start_offset,
file->is_master);
if (ret)
goto err;
/*
* XXX: Actually do this when enabling batch copy...
*
* Set the DISPATCH_SECURE bit to remove the NON_SECURE bit
* from MI_BATCH_BUFFER_START commands issued in the
* dispatch_execbuffer implementations. We specifically don't
* want that set when the command parser is enabled.
*/
}
/* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
* batch" bit. Hence we need to pin secure batches into the global gtt.
* hsw should have this fixed, but bdw mucks it up again. */
if (flags & I915_DISPATCH_SECURE &&
!batch_obj->has_global_gtt_mapping) {
/* When we have multiple VMs, we'll need to make sure that we
* allocate space first */
struct i915_vma *vma = i915_gem_obj_to_ggtt(batch_obj);
BUG_ON(!vma);
vma->bind_vma(vma, batch_obj->cache_level, GLOBAL_BIND);
}
if (flags & I915_DISPATCH_SECURE)
exec_start += i915_gem_obj_ggtt_offset(batch_obj);
else
exec_start += i915_gem_obj_offset(batch_obj, vm);
ret = i915_gem_execbuffer_move_to_gpu(ring, &eb->vmas);
if (ret)
goto err;
ret = i915_switch_context(ring, ctx);
if (ret)
goto err;
if (ring == &dev_priv->ring[RCS] &&
mode != dev_priv->relative_constants_mode) {
ret = intel_ring_begin(ring, 4);
if (ret)
goto err;
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, INSTPM);
intel_ring_emit(ring, mask << 16 | mode);
intel_ring_advance(ring);
dev_priv->relative_constants_mode = mode;
}
if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
ret = i915_reset_gen7_sol_offsets(dev, ring);
if (ret)
goto err;
}
exec_len = args->batch_len;
if (cliprects) {
for (i = 0; i < args->num_cliprects; i++) {
ret = i915_emit_box(dev, &cliprects[i],
args->DR1, args->DR4);
if (ret)
goto err;
ret = ring->dispatch_execbuffer(ring,
exec_start, exec_len,
flags);
if (ret)
goto err;
}
} else {
ret = ring->dispatch_execbuffer(ring,
exec_start, exec_len,
flags);
if (ret)
goto err;
}
trace_i915_gem_ring_dispatch(ring, intel_ring_get_seqno(ring), flags);
i915_gem_execbuffer_move_to_active(&eb->vmas, ring);
i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
err:
/* the request owns the ref now */
i915_gem_context_unreference(ctx);
eb_destroy(eb);
mutex_unlock(&dev->struct_mutex);
pre_mutex_err:
kfree(cliprects);
/* intel_gpu_busy should also get a ref, so it will free when the device
* is really idle. */
intel_runtime_pm_put(dev_priv);
return ret;
}
/*
* Legacy execbuffer just creates an exec2 list from the original exec object
* list array and passes it to the real function.
*/
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer *args = data;
struct drm_i915_gem_execbuffer2 exec2;
struct drm_i915_gem_exec_object *exec_list = NULL;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret, i;
if (args->buffer_count < 1) {
DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
/* Copy in the exec list from userland */
exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
if (exec_list == NULL || exec2_list == NULL) {
DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -ENOMEM;
}
ret = copy_from_user(exec_list,
to_user_ptr(args->buffers_ptr),
sizeof(*exec_list) * args->buffer_count);
if (ret != 0) {
DRM_DEBUG("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -EFAULT;
}
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].handle = exec_list[i].handle;
exec2_list[i].relocation_count = exec_list[i].relocation_count;
exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
exec2_list[i].alignment = exec_list[i].alignment;
exec2_list[i].offset = exec_list[i].offset;
if (INTEL_INFO(dev)->gen < 4)
exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
else
exec2_list[i].flags = 0;
}
exec2.buffers_ptr = args->buffers_ptr;
exec2.buffer_count = args->buffer_count;
exec2.batch_start_offset = args->batch_start_offset;
exec2.batch_len = args->batch_len;
exec2.DR1 = args->DR1;
exec2.DR4 = args->DR4;
exec2.num_cliprects = args->num_cliprects;
exec2.cliprects_ptr = args->cliprects_ptr;
exec2.flags = I915_EXEC_RENDER;
i915_execbuffer2_set_context_id(exec2, 0);
ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
if (!ret) {
struct drm_i915_gem_exec_object __user *user_exec_list =
to_user_ptr(args->buffers_ptr);
/* Copy the new buffer offsets back to the user's exec list. */
for (i = 0; i < args->buffer_count; i++) {
ret = __copy_to_user(&user_exec_list[i].offset,
&exec2_list[i].offset,
sizeof(user_exec_list[i].offset));
if (ret) {
ret = -EFAULT;
DRM_DEBUG("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
break;
}
}
}
drm_free_large(exec_list);
drm_free_large(exec2_list);
return ret;
}
int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer2 *args = data;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret;
if (args->buffer_count < 1 ||
args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
return -EINVAL;
}
if (args->rsvd2 != 0) {
DRM_DEBUG("dirty rvsd2 field\n");
return -EINVAL;
}
exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
if (exec2_list == NULL)
exec2_list = drm_malloc_ab(sizeof(*exec2_list),
args->buffer_count);
if (exec2_list == NULL) {
DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
return -ENOMEM;
}
ret = copy_from_user(exec2_list,
to_user_ptr(args->buffers_ptr),
sizeof(*exec2_list) * args->buffer_count);
if (ret != 0) {
DRM_DEBUG("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec2_list);
return -EFAULT;
}
ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
struct drm_i915_gem_exec_object2 __user *user_exec_list =
to_user_ptr(args->buffers_ptr);
int i;
for (i = 0; i < args->buffer_count; i++) {
ret = __copy_to_user(&user_exec_list[i].offset,
&exec2_list[i].offset,
sizeof(user_exec_list[i].offset));
if (ret) {
ret = -EFAULT;
DRM_DEBUG("failed to copy %d exec entries "
"back to user\n",
args->buffer_count);
break;
}
}
}
drm_free_large(exec2_list);
return ret;
}