linux/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
yanyang1 c82baa2818 drm/amd/powerplay: add Tonga dpm support (v3)
This implements DPM for tonga.  DPM handles dynamic
clock and voltage scaling.

v2: merge all the patches related with tonga dpm
v3: merge dpm force level fix, cgs display fix, spelling fix

Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Reviewed-by: Jammy Zhou <Jammy.Zhou@amd.com>
Signed-off-by: yanyang1 <young.yang@amd.com>
Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Signed-off-by: Eric Huang <JinHuiEric.Huang@amd.com>
2015-12-21 16:42:15 -05:00

1130 lines
38 KiB
C

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include "tonga_processpptables.h"
#include "ppatomctrl.h"
#include "atombios.h"
#include "pp_debug.h"
#include "hwmgr.h"
#include "cgs_common.h"
#include "tonga_pptable.h"
/**
* Private Function used during initialization.
* @param hwmgr Pointer to the hardware manager.
* @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE).
* @param cap Which capability to set/reset.
*/
static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap)
{
if (setIt)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
else
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
}
/**
* Private Function used during initialization.
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_caps the bit array (from BIOS) of capability bits.
* @exception the current implementation always returns 1.
*/
static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
{
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____),
"ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue);
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____),
"ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue);
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____),
"ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue);
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____),
"ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue);
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____),
"ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY),
PHM_PlatformCaps_PowerPlaySupport
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
PHM_PlatformCaps_BiosPowerSourceControl
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC),
PHM_PlatformCaps_AutomaticDCTransition
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL),
PHM_PlatformCaps_EnableMVDDControl
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL),
PHM_PlatformCaps_ControlVDDCI
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL),
PHM_PlatformCaps_ControlVDDGFX
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO),
PHM_PlatformCaps_BACO
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND),
PHM_PlatformCaps_DisableVoltageIsland
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
PHM_PlatformCaps_CombinePCCWithThermalSignal
);
set_hw_cap(
hwmgr,
0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
PHM_PlatformCaps_LoadPostProductionFirmware
);
return 0;
}
/**
* Private Function to get the PowerPlay Table Address.
*/
const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
{
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 size;
u8 frev, crev;
void *table_address;
table_address = (ATOM_Tonga_POWERPLAYTABLE *)
cgs_atom_get_data_table(hwmgr->device, index, &size, &frev, &crev);
hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/
return table_address;
}
static int get_vddc_lookup_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table **lookup_table,
const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables,
uint32_t max_levels
)
{
uint32_t table_size, i;
phm_ppt_v1_voltage_lookup_table *table;
PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries),
"Invalid CAC Leakage PowerPlay Table!", return 1);
table_size = sizeof(uint32_t) +
sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
table = (phm_ppt_v1_voltage_lookup_table *)
kzalloc(table_size, GFP_KERNEL);
if (NULL == table)
return -1;
memset(table, 0x00, table_size);
table->count = vddc_lookup_pp_tables->ucNumEntries;
for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) {
table->entries[i].us_calculated = 0;
table->entries[i].us_vdd =
vddc_lookup_pp_tables->entries[i].usVdd;
table->entries[i].us_cac_low =
vddc_lookup_pp_tables->entries[i].usCACLow;
table->entries[i].us_cac_mid =
vddc_lookup_pp_tables->entries[i].usCACMid;
table->entries[i].us_cac_high =
vddc_lookup_pp_tables->entries[i].usCACHigh;
}
*lookup_table = table;
return 0;
}
/**
* Private Function used during initialization.
* Initialize Platform Power Management Parameter table
* @param hwmgr Pointer to the hardware manager.
* @param atom_ppm_table Pointer to PPM table in VBIOS
*/
static int get_platform_power_management_table(
struct pp_hwmgr *hwmgr,
ATOM_Tonga_PPM_Table *atom_ppm_table)
{
struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL);
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (NULL == ptr)
return -1;
ptr->ppm_design
= atom_ppm_table->ucPpmDesign;
ptr->cpu_core_number
= atom_ppm_table->usCpuCoreNumber;
ptr->platform_tdp
= atom_ppm_table->ulPlatformTDP;
ptr->small_ac_platform_tdp
= atom_ppm_table->ulSmallACPlatformTDP;
ptr->platform_tdc
= atom_ppm_table->ulPlatformTDC;
ptr->small_ac_platform_tdc
= atom_ppm_table->ulSmallACPlatformTDC;
ptr->apu_tdp
= atom_ppm_table->ulApuTDP;
ptr->dgpu_tdp
= atom_ppm_table->ulDGpuTDP;
ptr->dgpu_ulv_power
= atom_ppm_table->ulDGpuUlvPower;
ptr->tj_max
= atom_ppm_table->ulTjmax;
pp_table_information->ppm_parameter_table = ptr;
return 0;
}
/**
* Private Function used during initialization.
* Initialize TDP limits for DPM2
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_table Pointer to the PowerPlay Table.
*/
static int init_dpm_2_parameters(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
)
{
int result = 0;
struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
ATOM_Tonga_PPM_Table *atom_ppm_table;
uint32_t disable_ppm = 0;
uint32_t disable_power_control = 0;
pp_table_information->us_ulv_voltage_offset =
le16_to_cpu(powerplay_table->usUlvVoltageOffset);
pp_table_information->ppm_parameter_table = NULL;
pp_table_information->vddc_lookup_table = NULL;
pp_table_information->vddgfx_lookup_table = NULL;
/* TDP limits */
hwmgr->platform_descriptor.TDPODLimit =
le16_to_cpu(powerplay_table->usPowerControlLimit);
hwmgr->platform_descriptor.TDPAdjustment = 0;
hwmgr->platform_descriptor.VidAdjustment = 0;
hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
hwmgr->platform_descriptor.VidMinLimit = 0;
hwmgr->platform_descriptor.VidMaxLimit = 1500000;
hwmgr->platform_descriptor.VidStep = 6250;
disable_power_control = 0;
if (0 == disable_power_control) {
/* enable TDP overdrive (PowerControl) feature as well if supported */
if (hwmgr->platform_descriptor.TDPODLimit != 0)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerControl);
}
if (0 != powerplay_table->usVddcLookupTableOffset) {
const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable =
(ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
result = get_vddc_lookup_table(hwmgr,
&pp_table_information->vddc_lookup_table, pVddcCACTable, 16);
}
if (0 != powerplay_table->usVddgfxLookupTableOffset) {
const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable =
(ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset));
result = get_vddc_lookup_table(hwmgr,
&pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16);
}
disable_ppm = 0;
if (0 == disable_ppm) {
atom_ppm_table = (ATOM_Tonga_PPM_Table *)
(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset));
if (0 != powerplay_table->usPPMTableOffset) {
if (1 == get_platform_power_management_table(hwmgr, atom_ppm_table)) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnablePlatformPowerManagement);
}
}
}
return result;
}
static int get_valid_clk(
struct pp_hwmgr *hwmgr,
struct phm_clock_array **clk_table,
const phm_ppt_v1_clock_voltage_dependency_table * clk_volt_pp_table
)
{
uint32_t table_size, i;
struct phm_clock_array *table;
PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) +
sizeof(uint32_t) * clk_volt_pp_table->count;
table = (struct phm_clock_array *)kzalloc(table_size, GFP_KERNEL);
if (NULL == table)
return -1;
memset(table, 0x00, table_size);
table->count = (uint32_t)clk_volt_pp_table->count;
for (i = 0; i < table->count; i++)
table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk;
*clk_table = table;
return 0;
}
static int get_hard_limits(
struct pp_hwmgr *hwmgr,
struct phm_clock_and_voltage_limits *limits,
const ATOM_Tonga_Hard_Limit_Table * limitable
)
{
PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1);
/* currently we always take entries[0] parameters */
limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit;
limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit;
limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit;
limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit;
limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit;
return 0;
}
static int get_mclk_voltage_dependency_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table,
const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table
)
{
uint32_t table_size, i;
phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
* mclk_dep_table->ucNumEntries;
mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
kzalloc(table_size, GFP_KERNEL);
if (NULL == mclk_table)
return -1;
memset(mclk_table, 0x00, table_size);
mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
mclk_table->entries[i].vddInd =
mclk_dep_table->entries[i].ucVddcInd;
mclk_table->entries[i].vdd_offset =
mclk_dep_table->entries[i].usVddgfxOffset;
mclk_table->entries[i].vddci =
mclk_dep_table->entries[i].usVddci;
mclk_table->entries[i].mvdd =
mclk_dep_table->entries[i].usMvdd;
mclk_table->entries[i].clk =
mclk_dep_table->entries[i].ulMclk;
}
*pp_tonga_mclk_dep_table = mclk_table;
return 0;
}
static int get_sclk_voltage_dependency_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table,
const ATOM_Tonga_SCLK_Dependency_Table * sclk_dep_table
)
{
uint32_t table_size, i;
phm_ppt_v1_clock_voltage_dependency_table *sclk_table;
PP_ASSERT_WITH_CODE((0 != sclk_dep_table->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
* sclk_dep_table->ucNumEntries;
sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
kzalloc(table_size, GFP_KERNEL);
if (NULL == sclk_table)
return -1;
memset(sclk_table, 0x00, table_size);
sclk_table->count = (uint32_t)sclk_dep_table->ucNumEntries;
for (i = 0; i < sclk_dep_table->ucNumEntries; i++) {
sclk_table->entries[i].vddInd =
sclk_dep_table->entries[i].ucVddInd;
sclk_table->entries[i].vdd_offset =
sclk_dep_table->entries[i].usVddcOffset;
sclk_table->entries[i].clk =
sclk_dep_table->entries[i].ulSclk;
sclk_table->entries[i].cks_enable =
(((sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
sclk_table->entries[i].cks_voffset =
(sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x7F);
}
*pp_tonga_sclk_dep_table = sclk_table;
return 0;
}
static int get_pcie_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_pcie_table **pp_tonga_pcie_table,
const ATOM_Tonga_PCIE_Table * atom_pcie_table
)
{
uint32_t table_size, i, pcie_count;
phm_ppt_v1_pcie_table *pcie_table;
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
PP_ASSERT_WITH_CODE((0 != atom_pcie_table->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) +
sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL);
if (NULL == pcie_table)
return -1;
memset(pcie_table, 0x00, table_size);
/*
* Make sure the number of pcie entries are less than or equal to sclk dpm levels.
* Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
*/
pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
else
printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
Disregarding the excess entries... \n");
pcie_table->count = pcie_count;
for (i = 0; i < pcie_count; i++) {
pcie_table->entries[i].gen_speed =
atom_pcie_table->entries[i].ucPCIEGenSpeed;
pcie_table->entries[i].lane_width =
atom_pcie_table->entries[i].usPCIELaneWidth;
}
*pp_tonga_pcie_table = pcie_table;
return 0;
}
static int get_cac_tdp_table(
struct pp_hwmgr *hwmgr,
struct phm_cac_tdp_table **cac_tdp_table,
const PPTable_Generic_SubTable_Header * table
)
{
uint32_t table_size;
struct phm_cac_tdp_table *tdp_table;
table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table);
tdp_table = kzalloc(table_size, GFP_KERNEL);
if (NULL == tdp_table)
return -1;
memset(tdp_table, 0x00, table_size);
hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL);
if (NULL == hwmgr->dyn_state.cac_dtp_table)
return -1;
memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size);
if (table->ucRevId < 3) {
const ATOM_Tonga_PowerTune_Table *tonga_table =
(ATOM_Tonga_PowerTune_Table *)table;
tdp_table->usTDP = tonga_table->usTDP;
tdp_table->usConfigurableTDP =
tonga_table->usConfigurableTDP;
tdp_table->usTDC = tonga_table->usTDC;
tdp_table->usBatteryPowerLimit =
tonga_table->usBatteryPowerLimit;
tdp_table->usSmallPowerLimit =
tonga_table->usSmallPowerLimit;
tdp_table->usLowCACLeakage =
tonga_table->usLowCACLeakage;
tdp_table->usHighCACLeakage =
tonga_table->usHighCACLeakage;
tdp_table->usMaximumPowerDeliveryLimit =
tonga_table->usMaximumPowerDeliveryLimit;
tdp_table->usDefaultTargetOperatingTemp =
tonga_table->usTjMax;
tdp_table->usTargetOperatingTemp =
tonga_table->usTjMax; /*Set the initial temp to the same as default */
tdp_table->usPowerTuneDataSetID =
tonga_table->usPowerTuneDataSetID;
tdp_table->usSoftwareShutdownTemp =
tonga_table->usSoftwareShutdownTemp;
tdp_table->usClockStretchAmount =
tonga_table->usClockStretchAmount;
} else { /* Fiji and newer */
const ATOM_Fiji_PowerTune_Table *fijitable =
(ATOM_Fiji_PowerTune_Table *)table;
tdp_table->usTDP = fijitable->usTDP;
tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP;
tdp_table->usTDC = fijitable->usTDC;
tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit;
tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit;
tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage;
tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage;
tdp_table->usMaximumPowerDeliveryLimit =
fijitable->usMaximumPowerDeliveryLimit;
tdp_table->usDefaultTargetOperatingTemp =
fijitable->usTjMax;
tdp_table->usTargetOperatingTemp =
fijitable->usTjMax; /*Set the initial temp to the same as default */
tdp_table->usPowerTuneDataSetID =
fijitable->usPowerTuneDataSetID;
tdp_table->usSoftwareShutdownTemp =
fijitable->usSoftwareShutdownTemp;
tdp_table->usClockStretchAmount =
fijitable->usClockStretchAmount;
tdp_table->usTemperatureLimitHotspot =
fijitable->usTemperatureLimitHotspot;
tdp_table->usTemperatureLimitLiquid1 =
fijitable->usTemperatureLimitLiquid1;
tdp_table->usTemperatureLimitLiquid2 =
fijitable->usTemperatureLimitLiquid2;
tdp_table->usTemperatureLimitVrVddc =
fijitable->usTemperatureLimitVrVddc;
tdp_table->usTemperatureLimitVrMvdd =
fijitable->usTemperatureLimitVrMvdd;
tdp_table->usTemperatureLimitPlx =
fijitable->usTemperatureLimitPlx;
tdp_table->ucLiquid1_I2C_address =
fijitable->ucLiquid1_I2C_address;
tdp_table->ucLiquid2_I2C_address =
fijitable->ucLiquid2_I2C_address;
tdp_table->ucLiquid_I2C_Line =
fijitable->ucLiquid_I2C_Line;
tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address;
tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line;
tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address;
tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line;
}
*cac_tdp_table = tdp_table;
return 0;
}
static int get_mm_clock_voltage_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table,
const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table
)
{
uint32_t table_size, i;
const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record;
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
table_size = sizeof(uint32_t) +
sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record)
* mm_dependency_table->ucNumEntries;
mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *)
kzalloc(table_size, GFP_KERNEL);
if (NULL == mm_table)
return -1;
memset(mm_table, 0x00, table_size);
mm_table->count = mm_dependency_table->ucNumEntries;
for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
mm_dependency_record = &mm_dependency_table->entries[i];
mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd;
mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset;
mm_table->entries[i].aclk = mm_dependency_record->ulAClk;
mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk;
mm_table->entries[i].eclk = mm_dependency_record->ulEClk;
mm_table->entries[i].vclk = mm_dependency_record->ulVClk;
mm_table->entries[i].dclk = mm_dependency_record->ulDClk;
}
*tonga_mm_table = mm_table;
return 0;
}
/**
* Private Function used during initialization.
* Initialize clock voltage dependency
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_table Pointer to the PowerPlay Table.
*/
static int init_clock_voltage_dependency(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
)
{
int result = 0;
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table =
(const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
const PPTable_Generic_SubTable_Header *pPowerTuneTable =
(const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
(const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
(const ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
const ATOM_Tonga_Hard_Limit_Table *pHardLimits =
(const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usHardLimitTableOffset));
const ATOM_Tonga_PCIE_Table *pcie_table =
(const ATOM_Tonga_PCIE_Table *)(((unsigned long) powerplay_table) +
le16_to_cpu(powerplay_table->usPCIETableOffset));
pp_table_information->vdd_dep_on_sclk = NULL;
pp_table_information->vdd_dep_on_mclk = NULL;
pp_table_information->mm_dep_table = NULL;
pp_table_information->pcie_table = NULL;
if (powerplay_table->usMMDependencyTableOffset != 0)
result = get_mm_clock_voltage_table(hwmgr,
&pp_table_information->mm_dep_table, mm_dependency_table);
if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0)
result = get_cac_tdp_table(hwmgr,
&pp_table_information->cac_dtp_table, pPowerTuneTable);
if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0)
result = get_sclk_voltage_dependency_table(hwmgr,
&pp_table_information->vdd_dep_on_sclk, sclk_dep_table);
if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0)
result = get_mclk_voltage_dependency_table(hwmgr,
&pp_table_information->vdd_dep_on_mclk, mclk_dep_table);
if (result == 0 && powerplay_table->usPCIETableOffset != 0)
result = get_pcie_table(hwmgr,
&pp_table_information->pcie_table, pcie_table);
if (result == 0 && powerplay_table->usHardLimitTableOffset != 0)
result = get_hard_limits(hwmgr,
&pp_table_information->max_clock_voltage_on_dc, pHardLimits);
hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
pp_table_information->max_clock_voltage_on_dc.sclk;
hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
pp_table_information->max_clock_voltage_on_dc.mclk;
hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
pp_table_information->max_clock_voltage_on_dc.vddc;
hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
pp_table_information->max_clock_voltage_on_dc.vddci;
if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk)
&& (0 != pp_table_information->vdd_dep_on_mclk->count))
result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values,
pp_table_information->vdd_dep_on_mclk);
if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk)
&& (0 != pp_table_information->vdd_dep_on_sclk->count))
result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values,
pp_table_information->vdd_dep_on_sclk);
return result;
}
/** Retrieves the (signed) Overdrive limits from VBIOS.
* The max engine clock, memory clock and max temperature come from the firmware info table.
*
* The information is placed into the platform descriptor.
*
* @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated.
* @param powerplay_table the address of the PowerPlay table.
*
* @return 1 as long as the firmware info table was present and of a supported version.
*/
static int init_over_drive_limits(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table)
{
hwmgr->platform_descriptor.overdriveLimit.engineClock =
le16_to_cpu(powerplay_table->ulMaxODEngineClock);
hwmgr->platform_descriptor.overdriveLimit.memoryClock =
le16_to_cpu(powerplay_table->ulMaxODMemoryClock);
hwmgr->platform_descriptor.minOverdriveVDDC = 0;
hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
hwmgr->platform_descriptor.overdriveVDDCStep = 0;
if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \
&& hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ACOverdriveSupport);
}
return 0;
}
/**
* Private Function used during initialization.
* Inspect the PowerPlay table for obvious signs of corruption.
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_table Pointer to the PowerPlay Table.
* @exception This implementation always returns 1.
*/
static int init_thermal_controller(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
)
{
const PPTable_Generic_SubTable_Header *fan_table;
ATOM_Tonga_Thermal_Controller *thermal_controller;
thermal_controller = (ATOM_Tonga_Thermal_Controller *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usThermalControllerOffset));
PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset),
"Thermal controller table not set!", return -1);
hwmgr->thermal_controller.ucType = thermal_controller->ucType;
hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
hwmgr->thermal_controller.fanInfo.bNoFan =
(0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN));
hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
thermal_controller->ucFanParameters &
ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
hwmgr->thermal_controller.fanInfo.ulMinRPM
= thermal_controller->ucFanMinRPM * 100UL;
hwmgr->thermal_controller.fanInfo.ulMaxRPM
= thermal_controller->ucFanMaxRPM * 100UL;
set_hw_cap(
hwmgr,
ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
PHM_PlatformCaps_ThermalController
);
if (0 == powerplay_table->usFanTableOffset)
return -1;
fan_table = (const PPTable_Generic_SubTable_Header *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usFanTableOffset));
PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset),
"Fan table not set!", return -1);
PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId),
"Unsupported fan table format!", return -1);
hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
= 100000;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
if (fan_table->ucRevId < 8) {
const ATOM_Tonga_Fan_Table *tonga_fan_table =
(ATOM_Tonga_Fan_Table *)fan_table;
hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
= tonga_fan_table->ucTHyst;
hwmgr->thermal_controller.advanceFanControlParameters.usTMin
= tonga_fan_table->usTMin;
hwmgr->thermal_controller.advanceFanControlParameters.usTMed
= tonga_fan_table->usTMed;
hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
= tonga_fan_table->usTHigh;
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
= tonga_fan_table->usPWMMin;
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
= tonga_fan_table->usPWMMed;
hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
= tonga_fan_table->usPWMHigh;
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
= 10900; /* hard coded */
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
= tonga_fan_table->usTMax;
hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
= tonga_fan_table->ucFanControlMode;
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
= tonga_fan_table->usFanPWMMax;
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
= 4836;
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
= tonga_fan_table->usFanOutputSensitivity;
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
= tonga_fan_table->usFanRPMMax;
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
= (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
= tonga_fan_table->ucTargetTemperature;
hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
= tonga_fan_table->ucMinimumPWMLimit;
} else {
const ATOM_Fiji_Fan_Table *fiji_fan_table =
(ATOM_Fiji_Fan_Table *)fan_table;
hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
= fiji_fan_table->ucTHyst;
hwmgr->thermal_controller.advanceFanControlParameters.usTMin
= fiji_fan_table->usTMin;
hwmgr->thermal_controller.advanceFanControlParameters.usTMed
= fiji_fan_table->usTMed;
hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
= fiji_fan_table->usTHigh;
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
= fiji_fan_table->usPWMMin;
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
= fiji_fan_table->usPWMMed;
hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
= fiji_fan_table->usPWMHigh;
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
= fiji_fan_table->usTMax;
hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
= fiji_fan_table->ucFanControlMode;
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
= fiji_fan_table->usFanPWMMax;
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
= 4836;
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
= fiji_fan_table->usFanOutputSensitivity;
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
= fiji_fan_table->usFanRPMMax;
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
= (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
= fiji_fan_table->ucTargetTemperature;
hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
= fiji_fan_table->ucMinimumPWMLimit;
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge
= fiji_fan_table->usFanGainEdge;
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot
= fiji_fan_table->usFanGainHotspot;
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid
= fiji_fan_table->usFanGainLiquid;
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc
= fiji_fan_table->usFanGainVrVddc;
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd
= fiji_fan_table->usFanGainVrMvdd;
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx
= fiji_fan_table->usFanGainPlx;
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm
= fiji_fan_table->usFanGainHbm;
}
return 0;
}
/**
* Private Function used during initialization.
* Inspect the PowerPlay table for obvious signs of corruption.
* @param hwmgr Pointer to the hardware manager.
* @param powerplay_table Pointer to the PowerPlay Table.
* @exception 2 if the powerplay table is incorrect.
*/
static int check_powerplay_tables(
struct pp_hwmgr *hwmgr,
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
)
{
const ATOM_Tonga_State_Array *state_arrays;
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usStateArrayOffset));
PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <=
powerplay_table->sHeader.ucTableFormatRevision),
"Unsupported PPTable format!", return -1);
PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset),
"State table is not set!", return -1);
PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize),
"Invalid PowerPlay Table!", return -1);
PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
"Invalid PowerPlay Table!", return -1);
return 0;
}
int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr)
{
int result = 0;
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table;
hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL);
if (NULL == hwmgr->pptable)
return -1;
memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information));
powerplay_table = get_powerplay_table(hwmgr);
PP_ASSERT_WITH_CODE((NULL != powerplay_table),
"Missing PowerPlay Table!", return -1);
result = check_powerplay_tables(hwmgr, powerplay_table);
if (0 == result)
result = set_platform_caps(hwmgr,
le32_to_cpu(powerplay_table->ulPlatformCaps));
if (0 == result)
result = init_thermal_controller(hwmgr, powerplay_table);
if (0 == result)
result = init_over_drive_limits(hwmgr, powerplay_table);
if (0 == result)
result = init_clock_voltage_dependency(hwmgr, powerplay_table);
if (0 == result)
result = init_dpm_2_parameters(hwmgr, powerplay_table);
return result;
}
int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct phm_ppt_v1_information *pp_table_information =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (NULL != hwmgr->soft_pp_table) {
kfree(hwmgr->soft_pp_table);
hwmgr->soft_pp_table = NULL;
}
if (NULL != pp_table_information->vdd_dep_on_sclk)
pp_table_information->vdd_dep_on_sclk = NULL;
if (NULL != pp_table_information->vdd_dep_on_mclk)
pp_table_information->vdd_dep_on_mclk = NULL;
if (NULL != pp_table_information->valid_mclk_values)
pp_table_information->valid_mclk_values = NULL;
if (NULL != pp_table_information->valid_sclk_values)
pp_table_information->valid_sclk_values = NULL;
if (NULL != pp_table_information->vddc_lookup_table)
pp_table_information->vddc_lookup_table = NULL;
if (NULL != pp_table_information->vddgfx_lookup_table)
pp_table_information->vddgfx_lookup_table = NULL;
if (NULL != pp_table_information->mm_dep_table)
pp_table_information->mm_dep_table = NULL;
if (NULL != pp_table_information->cac_dtp_table)
pp_table_information->cac_dtp_table = NULL;
if (NULL != hwmgr->dyn_state.cac_dtp_table)
hwmgr->dyn_state.cac_dtp_table = NULL;
if (NULL != pp_table_information->ppm_parameter_table)
pp_table_information->ppm_parameter_table = NULL;
if (NULL != pp_table_information->pcie_table)
pp_table_information->pcie_table = NULL;
if (NULL != hwmgr->pptable) {
kfree(hwmgr->pptable);
hwmgr->pptable = NULL;
}
return result;
}
const struct pp_table_func tonga_pptable_funcs = {
.pptable_init = tonga_pp_tables_initialize,
.pptable_fini = tonga_pp_tables_uninitialize,
};
int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
{
const ATOM_Tonga_State_Array * state_arrays;
const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
PP_ASSERT_WITH_CODE((NULL != pp_table),
"Missing PowerPlay Table!", return -1);
PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >=
ATOM_Tonga_TABLE_REVISION_TONGA),
"Incorrect PowerPlay table revision!", return -1);
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
le16_to_cpu(pp_table->usStateArrayOffset));
return (uint32_t)(state_arrays->ucNumEntries);
}
/**
* Private function to convert flags stored in the BIOS to software flags in PowerPlay.
*/
static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
uint16_t classification, uint16_t classification2)
{
uint32_t result = 0;
if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
result |= PP_StateClassificationFlag_Boot;
if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
result |= PP_StateClassificationFlag_Thermal;
if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
result |= PP_StateClassificationFlag_LimitedPowerSource;
if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
result |= PP_StateClassificationFlag_Rest;
if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
result |= PP_StateClassificationFlag_Forced;
if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
result |= PP_StateClassificationFlag_ACPI;
if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
result |= PP_StateClassificationFlag_LimitedPowerSource_2;
return result;
}
/**
* Create a Power State out of an entry in the PowerPlay table.
* This function is called by the hardware back-end.
* @param hwmgr Pointer to the hardware manager.
* @param entry_index The index of the entry to be extracted from the table.
* @param power_state The address of the PowerState instance being created.
* @return -1 if the entry cannot be retrieved.
*/
int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr,
uint32_t entry_index, struct pp_power_state *power_state,
int (*call_back_func)(struct pp_hwmgr *, void *,
struct pp_power_state *, void *, uint32_t))
{
int result = 0;
const ATOM_Tonga_State_Array * state_arrays;
const ATOM_Tonga_State *state_entry;
const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;);
power_state->classification.bios_index = entry_index;
if (pp_table->sHeader.ucTableFormatRevision >=
ATOM_Tonga_TABLE_REVISION_TONGA) {
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
le16_to_cpu(pp_table->usStateArrayOffset));
PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset),
"Invalid PowerPlay Table State Array Offset.", return -1);
PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
"Invalid PowerPlay Table State Array.", return -1);
PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
"Invalid PowerPlay Table State Array Entry.", return -1);
state_entry = &(state_arrays->states[entry_index]);
result = call_back_func(hwmgr, (void *)state_entry, power_state,
(void *)pp_table,
make_classification_flags(hwmgr,
le16_to_cpu(state_entry->usClassification),
le16_to_cpu(state_entry->usClassification2)));
}
if (!result && (power_state->classification.flags &
PP_StateClassificationFlag_Boot))
result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
return result;
}