464cea3e35
Rather than hardcode it. v2: integrate spc fix from Rex Reviewed-by: Jammy Zhou <Jammy.Zhou@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
4766 lines
156 KiB
C
4766 lines
156 KiB
C
/*
|
|
* Copyright 2015 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fb.h>
|
|
#include "linux/delay.h"
|
|
|
|
#include "hwmgr.h"
|
|
#include "fiji_smumgr.h"
|
|
#include "atombios.h"
|
|
#include "hardwaremanager.h"
|
|
#include "ppatomctrl.h"
|
|
#include "atombios.h"
|
|
#include "cgs_common.h"
|
|
#include "fiji_dyn_defaults.h"
|
|
#include "fiji_powertune.h"
|
|
#include "smu73.h"
|
|
#include "smu/smu_7_1_3_d.h"
|
|
#include "smu/smu_7_1_3_sh_mask.h"
|
|
#include "gmc/gmc_8_1_d.h"
|
|
#include "gmc/gmc_8_1_sh_mask.h"
|
|
#include "bif/bif_5_0_d.h"
|
|
#include "bif/bif_5_0_sh_mask.h"
|
|
#include "dce/dce_10_0_d.h"
|
|
#include "dce/dce_10_0_sh_mask.h"
|
|
#include "pppcielanes.h"
|
|
#include "fiji_hwmgr.h"
|
|
#include "tonga_processpptables.h"
|
|
#include "tonga_pptable.h"
|
|
#include "pp_debug.h"
|
|
#include "pp_acpi.h"
|
|
#include "amd_pcie_helpers.h"
|
|
|
|
#define VOLTAGE_SCALE 4
|
|
#define SMC_RAM_END 0x40000
|
|
#define VDDC_VDDCI_DELTA 300
|
|
|
|
#define MC_SEQ_MISC0_GDDR5_SHIFT 28
|
|
#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
|
|
#define MC_SEQ_MISC0_GDDR5_VALUE 5
|
|
|
|
#define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */
|
|
#define MC_CG_ARB_FREQ_F1 0x0b
|
|
#define MC_CG_ARB_FREQ_F2 0x0c
|
|
#define MC_CG_ARB_FREQ_F3 0x0d
|
|
|
|
/* From smc_reg.h */
|
|
#define SMC_CG_IND_START 0xc0030000
|
|
#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */
|
|
|
|
#define VOLTAGE_SCALE 4
|
|
#define VOLTAGE_VID_OFFSET_SCALE1 625
|
|
#define VOLTAGE_VID_OFFSET_SCALE2 100
|
|
|
|
#define VDDC_VDDCI_DELTA 300
|
|
|
|
#define ixSWRST_COMMAND_1 0x1400103
|
|
#define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000
|
|
|
|
/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
|
|
enum DPM_EVENT_SRC {
|
|
DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
|
|
DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
|
|
DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
|
|
DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
|
|
DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
|
|
};
|
|
|
|
enum DISPLAY_GAP {
|
|
DISPLAY_GAP_VBLANK_OR_WM = 0, /* Wait for vblank or MCHG watermark. */
|
|
DISPLAY_GAP_VBLANK = 1, /* Wait for vblank. */
|
|
DISPLAY_GAP_WATERMARK = 2, /* Wait for MCHG watermark. */
|
|
DISPLAY_GAP_IGNORE = 3 /* Do not wait. */
|
|
};
|
|
|
|
/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
|
|
* not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
|
|
*/
|
|
uint16_t fiji_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0},
|
|
{600, 1050, 6, 1} };
|
|
|
|
/* [FF, SS] type, [] 4 voltage ranges, and
|
|
* [Floor Freq, Boundary Freq, VID min , VID max]
|
|
*/
|
|
uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
|
|
{ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
|
|
{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
|
|
|
|
/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
|
|
* (coming from PWR_CKS_CNTL.stretch_amount reg spec)
|
|
*/
|
|
uint8_t fiji_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5},
|
|
{0, 2, 4, 5, 6, 5} };
|
|
|
|
const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
|
|
|
|
struct fiji_power_state *cast_phw_fiji_power_state(
|
|
struct pp_hw_power_state *hw_ps)
|
|
{
|
|
PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
|
|
"Invalid Powerstate Type!",
|
|
return NULL;);
|
|
|
|
return (struct fiji_power_state *)hw_ps;
|
|
}
|
|
|
|
const struct fiji_power_state *cast_const_phw_fiji_power_state(
|
|
const struct pp_hw_power_state *hw_ps)
|
|
{
|
|
PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
|
|
"Invalid Powerstate Type!",
|
|
return NULL;);
|
|
|
|
return (const struct fiji_power_state *)hw_ps;
|
|
}
|
|
|
|
static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
|
|
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
|
|
? true : false;
|
|
}
|
|
|
|
static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_ulv_parm *ulv = &data->ulv;
|
|
|
|
ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
|
|
data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
|
|
data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
|
|
data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
|
|
data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
|
|
data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
|
|
data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
|
|
data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
|
|
data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
|
|
|
|
data->static_screen_threshold_unit =
|
|
PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
|
|
data->static_screen_threshold =
|
|
PPFIJI_STATICSCREENTHRESHOLD_DFLT;
|
|
|
|
/* Unset ABM cap as it moved to DAL.
|
|
* Add PHM_PlatformCaps_NonABMSupportInPPLib
|
|
* for re-direct ABM related request to DAL
|
|
*/
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ABM);
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_NonABMSupportInPPLib);
|
|
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_DynamicACTiming);
|
|
|
|
fiji_initialize_power_tune_defaults(hwmgr);
|
|
|
|
data->mclk_stutter_mode_threshold = 60000;
|
|
data->pcie_gen_performance.max = PP_PCIEGen1;
|
|
data->pcie_gen_performance.min = PP_PCIEGen3;
|
|
data->pcie_gen_power_saving.max = PP_PCIEGen1;
|
|
data->pcie_gen_power_saving.min = PP_PCIEGen3;
|
|
data->pcie_lane_performance.max = 0;
|
|
data->pcie_lane_performance.min = 16;
|
|
data->pcie_lane_power_saving.max = 0;
|
|
data->pcie_lane_power_saving.min = 16;
|
|
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_DynamicUVDState);
|
|
}
|
|
|
|
static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_voltage_lookup_table *lookup_table,
|
|
uint16_t virtual_voltage_id, int32_t *sclk)
|
|
{
|
|
uint8_t entryId;
|
|
uint8_t voltageId;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
|
|
|
|
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
|
|
for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
|
|
voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
|
|
if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
|
|
break;
|
|
}
|
|
|
|
PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
|
|
"Can't find requested voltage id in vdd_dep_on_sclk table!",
|
|
return -EINVAL;
|
|
);
|
|
|
|
*sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get Leakage VDDC based on leakage ID.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint16_t vv_id;
|
|
uint16_t vddc = 0;
|
|
uint16_t evv_default = 1150;
|
|
uint16_t i, j;
|
|
uint32_t sclk = 0;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)hwmgr->pptable;
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
|
|
table_info->vdd_dep_on_sclk;
|
|
int result;
|
|
|
|
for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
|
|
vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
|
|
if (!fiji_get_sclk_for_voltage_evv(hwmgr,
|
|
table_info->vddc_lookup_table, vv_id, &sclk)) {
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ClockStretcher)) {
|
|
for (j = 1; j < sclk_table->count; j++) {
|
|
if (sclk_table->entries[j].clk == sclk &&
|
|
sclk_table->entries[j].cks_enable == 0) {
|
|
sclk += 5000;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EnableDriverEVV))
|
|
result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
|
|
VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
|
|
else
|
|
result = -EINVAL;
|
|
|
|
if (result)
|
|
result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
|
|
VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
|
|
|
|
/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
|
|
PP_ASSERT_WITH_CODE((vddc < 2000),
|
|
"Invalid VDDC value, greater than 2v!", result = -EINVAL;);
|
|
|
|
if (result)
|
|
/* 1.15V is the default safe value for Fiji */
|
|
vddc = evv_default;
|
|
|
|
/* the voltage should not be zero nor equal to leakage ID */
|
|
if (vddc != 0 && vddc != vv_id) {
|
|
data->vddc_leakage.actual_voltage
|
|
[data->vddc_leakage.count] = vddc;
|
|
data->vddc_leakage.leakage_id
|
|
[data->vddc_leakage.count] = vv_id;
|
|
data->vddc_leakage.count++;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Change virtual leakage voltage to actual value.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @param pointer to changing voltage
|
|
* @param pointer to leakage table
|
|
*/
|
|
static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
|
|
uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
|
|
{
|
|
uint32_t index;
|
|
|
|
/* search for leakage voltage ID 0xff01 ~ 0xff08 */
|
|
for (index = 0; index < leakage_table->count; index++) {
|
|
/* if this voltage matches a leakage voltage ID */
|
|
/* patch with actual leakage voltage */
|
|
if (leakage_table->leakage_id[index] == *voltage) {
|
|
*voltage = leakage_table->actual_voltage[index];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
|
|
printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
|
|
}
|
|
|
|
/**
|
|
* Patch voltage lookup table by EVV leakages.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @param pointer to voltage lookup table
|
|
* @param pointer to leakage table
|
|
* @return always 0
|
|
*/
|
|
static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_voltage_lookup_table *lookup_table,
|
|
struct fiji_leakage_voltage *leakage_table)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < lookup_table->count; i++)
|
|
fiji_patch_with_vdd_leakage(hwmgr,
|
|
&lookup_table->entries[i].us_vdd, leakage_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
|
|
struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
|
|
uint16_t *vddc)
|
|
{
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
|
|
hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
|
|
table_info->max_clock_voltage_on_dc.vddc;
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_patch_voltage_dependency_tables_with_lookup_table(
|
|
struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint8_t entryId;
|
|
uint8_t voltageId;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
|
|
table_info->vdd_dep_on_sclk;
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
|
|
table_info->vdd_dep_on_mclk;
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
|
|
for (entryId = 0; entryId < sclk_table->count; ++entryId) {
|
|
voltageId = sclk_table->entries[entryId].vddInd;
|
|
sclk_table->entries[entryId].vddc =
|
|
table_info->vddc_lookup_table->entries[voltageId].us_vdd;
|
|
}
|
|
|
|
for (entryId = 0; entryId < mclk_table->count; ++entryId) {
|
|
voltageId = mclk_table->entries[entryId].vddInd;
|
|
mclk_table->entries[entryId].vddc =
|
|
table_info->vddc_lookup_table->entries[voltageId].us_vdd;
|
|
}
|
|
|
|
for (entryId = 0; entryId < mm_table->count; ++entryId) {
|
|
voltageId = mm_table->entries[entryId].vddcInd;
|
|
mm_table->entries[entryId].vddc =
|
|
table_info->vddc_lookup_table->entries[voltageId].us_vdd;
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
|
|
{
|
|
/* Need to determine if we need calculated voltage. */
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
/* Need to determine if we need calculated voltage from mm table. */
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_ppt_v1_voltage_lookup_table *lookup_table)
|
|
{
|
|
uint32_t table_size, i, j;
|
|
struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
|
|
table_size = lookup_table->count;
|
|
|
|
PP_ASSERT_WITH_CODE(0 != lookup_table->count,
|
|
"Lookup table is empty", return -EINVAL);
|
|
|
|
/* Sorting voltages */
|
|
for (i = 0; i < table_size - 1; i++) {
|
|
for (j = i + 1; j > 0; j--) {
|
|
if (lookup_table->entries[j].us_vdd <
|
|
lookup_table->entries[j - 1].us_vdd) {
|
|
tmp_voltage_lookup_record = lookup_table->entries[j - 1];
|
|
lookup_table->entries[j - 1] = lookup_table->entries[j];
|
|
lookup_table->entries[j] = tmp_voltage_lookup_record;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
int tmp_result;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
|
|
table_info->vddc_lookup_table, &(data->vddc_leakage));
|
|
if (tmp_result)
|
|
result = tmp_result;
|
|
|
|
tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
|
|
&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
|
|
if (tmp_result)
|
|
result = tmp_result;
|
|
|
|
tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
|
|
if (tmp_result)
|
|
result = tmp_result;
|
|
|
|
tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
|
|
if (tmp_result)
|
|
result = tmp_result;
|
|
|
|
tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
|
|
if (tmp_result)
|
|
result = tmp_result;
|
|
|
|
tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
|
|
if(tmp_result)
|
|
result = tmp_result;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
|
|
table_info->vdd_dep_on_sclk;
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
|
|
table_info->vdd_dep_on_mclk;
|
|
|
|
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
|
|
"VDD dependency on SCLK table is missing. \
|
|
This table is mandatory", return -EINVAL);
|
|
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
|
|
"VDD dependency on SCLK table has to have is missing. \
|
|
This table is mandatory", return -EINVAL);
|
|
|
|
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
|
|
"VDD dependency on MCLK table is missing. \
|
|
This table is mandatory", return -EINVAL);
|
|
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
|
|
"VDD dependency on MCLK table has to have is missing. \
|
|
This table is mandatory", return -EINVAL);
|
|
|
|
data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
|
|
data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->
|
|
entries[allowed_sclk_vdd_table->count - 1].vddc;
|
|
|
|
table_info->max_clock_voltage_on_ac.sclk =
|
|
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
|
|
table_info->max_clock_voltage_on_ac.mclk =
|
|
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
|
|
table_info->max_clock_voltage_on_ac.vddc =
|
|
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
|
|
table_info->max_clock_voltage_on_ac.vddci =
|
|
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
|
|
|
|
hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
|
|
table_info->max_clock_voltage_on_ac.sclk;
|
|
hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
|
|
table_info->max_clock_voltage_on_ac.mclk;
|
|
hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
|
|
table_info->max_clock_voltage_on_ac.vddc;
|
|
hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
|
|
table_info->max_clock_voltage_on_ac.vddci;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t speedCntl = 0;
|
|
|
|
/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
|
|
speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
|
|
ixPCIE_LC_SPEED_CNTL);
|
|
return((uint16_t)PHM_GET_FIELD(speedCntl,
|
|
PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
|
|
}
|
|
|
|
static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t link_width;
|
|
|
|
/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
|
|
link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
|
|
PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
|
|
|
|
PP_ASSERT_WITH_CODE((7 >= link_width),
|
|
"Invalid PCIe lane width!", return 0);
|
|
|
|
return decode_pcie_lane_width(link_width);
|
|
}
|
|
|
|
/** Patch the Boot State to match VBIOS boot clocks and voltage.
|
|
*
|
|
* @param hwmgr Pointer to the hardware manager.
|
|
* @param pPowerState The address of the PowerState instance being created.
|
|
*
|
|
*/
|
|
static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
|
|
struct pp_hw_power_state *hw_ps)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
|
|
ATOM_FIRMWARE_INFO_V2_2 *fw_info;
|
|
uint16_t size;
|
|
uint8_t frev, crev;
|
|
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
|
|
|
|
/* First retrieve the Boot clocks and VDDC from the firmware info table.
|
|
* We assume here that fw_info is unchanged if this call fails.
|
|
*/
|
|
fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
|
|
hwmgr->device, index,
|
|
&size, &frev, &crev);
|
|
if (!fw_info)
|
|
/* During a test, there is no firmware info table. */
|
|
return 0;
|
|
|
|
/* Patch the state. */
|
|
data->vbios_boot_state.sclk_bootup_value =
|
|
le32_to_cpu(fw_info->ulDefaultEngineClock);
|
|
data->vbios_boot_state.mclk_bootup_value =
|
|
le32_to_cpu(fw_info->ulDefaultMemoryClock);
|
|
data->vbios_boot_state.mvdd_bootup_value =
|
|
le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
|
|
data->vbios_boot_state.vddc_bootup_value =
|
|
le16_to_cpu(fw_info->usBootUpVDDCVoltage);
|
|
data->vbios_boot_state.vddci_bootup_value =
|
|
le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
|
|
data->vbios_boot_state.pcie_gen_bootup_value =
|
|
fiji_get_current_pcie_speed(hwmgr);
|
|
data->vbios_boot_state.pcie_lane_bootup_value =
|
|
(uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
|
|
|
|
/* set boot power state */
|
|
ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
|
|
ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
|
|
ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
|
|
ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint32_t i;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
bool stay_in_boot;
|
|
int result;
|
|
|
|
data->dll_default_on = false;
|
|
data->sram_end = SMC_RAM_END;
|
|
|
|
for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
|
|
data->activity_target[i] = FIJI_AT_DFLT;
|
|
|
|
data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
|
|
|
|
data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
|
|
data->mclk_dpm0_activity_target = 0xa;
|
|
|
|
data->sclk_dpm_key_disabled = 0;
|
|
data->mclk_dpm_key_disabled = 0;
|
|
data->pcie_dpm_key_disabled = 0;
|
|
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_UnTabledHardwareInterface);
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_TablelessHardwareInterface);
|
|
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_SclkDeepSleep);
|
|
|
|
data->gpio_debug = 0;
|
|
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_DynamicPatchPowerState);
|
|
|
|
/* need to set voltage control types before EVV patching */
|
|
data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
|
|
data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
|
|
data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
|
|
|
|
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
|
|
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
|
|
data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EnableMVDDControl))
|
|
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
|
|
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
|
|
data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
|
|
|
|
if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EnableMVDDControl);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ControlVDDCI)) {
|
|
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
|
|
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
|
|
data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
|
|
else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
|
|
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
|
|
data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
|
|
}
|
|
|
|
if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ControlVDDCI);
|
|
|
|
if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ClockStretcher);
|
|
|
|
fiji_init_dpm_defaults(hwmgr);
|
|
|
|
/* Get leakage voltage based on leakage ID. */
|
|
fiji_get_evv_voltages(hwmgr);
|
|
|
|
/* Patch our voltage dependency table with actual leakage voltage
|
|
* We need to perform leakage translation before it's used by other functions
|
|
*/
|
|
fiji_complete_dependency_tables(hwmgr);
|
|
|
|
/* Parse pptable data read from VBIOS */
|
|
fiji_set_private_data_based_on_pptable(hwmgr);
|
|
|
|
/* ULV Support */
|
|
data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
|
|
|
|
/* Initalize Dynamic State Adjustment Rule Settings */
|
|
result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
|
|
|
|
if (!result) {
|
|
data->uvd_enabled = false;
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EnableSMU7ThermalManagement);
|
|
data->vddc_phase_shed_control = false;
|
|
}
|
|
|
|
stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StayInBootState);
|
|
|
|
if (0 == result) {
|
|
struct cgs_system_info sys_info = {0};
|
|
|
|
data->is_tlu_enabled = 0;
|
|
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
|
|
FIJI_MAX_HARDWARE_POWERLEVELS;
|
|
hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
|
|
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
|
|
|
|
sys_info.size = sizeof(struct cgs_system_info);
|
|
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
|
|
result = cgs_query_system_info(hwmgr->device, &sys_info);
|
|
if (result)
|
|
data->pcie_gen_cap = 0x30007;
|
|
else
|
|
data->pcie_gen_cap = (uint32_t)sys_info.value;
|
|
if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
|
|
data->pcie_spc_cap = 20;
|
|
sys_info.size = sizeof(struct cgs_system_info);
|
|
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
|
|
result = cgs_query_system_info(hwmgr->device, &sys_info);
|
|
if (result)
|
|
data->pcie_lane_cap = 0x2f0000;
|
|
else
|
|
data->pcie_lane_cap = (uint32_t)sys_info.value;
|
|
} else {
|
|
/* Ignore return value in here, we are cleaning up a mess. */
|
|
tonga_hwmgr_backend_fini(hwmgr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Read clock related registers.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
data->clock_registers.vCG_SPLL_FUNC_CNTL =
|
|
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_SPLL_FUNC_CNTL);
|
|
data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
|
|
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_SPLL_FUNC_CNTL_2);
|
|
data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
|
|
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_SPLL_FUNC_CNTL_3);
|
|
data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
|
|
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_SPLL_FUNC_CNTL_4);
|
|
data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
|
|
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_SPLL_SPREAD_SPECTRUM);
|
|
data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
|
|
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_SPLL_SPREAD_SPECTRUM_2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Find out if memory is GDDR5.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint32_t temp;
|
|
|
|
temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
|
|
|
|
data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
|
|
((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
|
|
MC_SEQ_MISC0_GDDR5_SHIFT));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Enables Dynamic Power Management by SMC
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
|
|
{
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
GENERAL_PWRMGT, STATIC_PM_EN, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialize PowerGating States for different engines
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
data->uvd_power_gated = false;
|
|
data->vce_power_gated = false;
|
|
data->samu_power_gated = false;
|
|
data->acp_power_gated = false;
|
|
data->pg_acp_init = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
data->low_sclk_interrupt_threshold = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int tmp_result, result = 0;
|
|
|
|
tmp_result = fiji_read_clock_registers(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to read clock registers!", result = tmp_result);
|
|
|
|
tmp_result = fiji_get_memory_type(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to get memory type!", result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_acpi_power_management(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable ACPI power management!", result = tmp_result);
|
|
|
|
tmp_result = fiji_init_power_gate_state(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to init power gate state!", result = tmp_result);
|
|
|
|
tmp_result = tonga_get_mc_microcode_version(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to get MC microcode version!", result = tmp_result);
|
|
|
|
tmp_result = fiji_init_sclk_threshold(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to init sclk threshold!", result = tmp_result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Checks if we want to support voltage control
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
*/
|
|
static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
|
|
{
|
|
const struct fiji_hwmgr *data =
|
|
(const struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
|
|
}
|
|
|
|
/**
|
|
* Enable voltage control
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
|
|
{
|
|
/* enable voltage control */
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Remove repeated voltage values and create table with unique values.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @param vol_table the pointer to changing voltage table
|
|
* @return 0 in success
|
|
*/
|
|
|
|
static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
|
|
struct pp_atomctrl_voltage_table *vol_table)
|
|
{
|
|
uint32_t i, j;
|
|
uint16_t vvalue;
|
|
bool found = false;
|
|
struct pp_atomctrl_voltage_table *table;
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"Voltage Table empty.", return -EINVAL);
|
|
table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
|
|
GFP_KERNEL);
|
|
|
|
if (NULL == table)
|
|
return -EINVAL;
|
|
|
|
table->mask_low = vol_table->mask_low;
|
|
table->phase_delay = vol_table->phase_delay;
|
|
|
|
for (i = 0; i < vol_table->count; i++) {
|
|
vvalue = vol_table->entries[i].value;
|
|
found = false;
|
|
|
|
for (j = 0; j < table->count; j++) {
|
|
if (vvalue == table->entries[j].value) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
table->entries[table->count].value = vvalue;
|
|
table->entries[table->count].smio_low =
|
|
vol_table->entries[i].smio_low;
|
|
table->count++;
|
|
}
|
|
}
|
|
|
|
memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
|
|
kfree(table);
|
|
|
|
return 0;
|
|
}
|
|
static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
|
|
{
|
|
uint32_t i;
|
|
int result;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
|
|
|
|
PP_ASSERT_WITH_CODE((0 != dep_table->count),
|
|
"Voltage Dependency Table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
vol_table->count = dep_table->count;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
vol_table->entries[i].value = dep_table->entries[i].mvdd;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
result = fiji_trim_voltage_table(hwmgr, vol_table);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to trim MVDD table.", return result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
|
|
{
|
|
uint32_t i;
|
|
int result;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
|
|
|
|
PP_ASSERT_WITH_CODE((0 != dep_table->count),
|
|
"Voltage Dependency Table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
vol_table->count = dep_table->count;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
vol_table->entries[i].value = dep_table->entries[i].vddci;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
result = fiji_trim_voltage_table(hwmgr, vol_table);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to trim VDDCI table.", return result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_voltage_lookup_table *lookup_table)
|
|
{
|
|
int i = 0;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
|
|
|
|
PP_ASSERT_WITH_CODE((0 != lookup_table->count),
|
|
"Voltage Lookup Table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
|
|
vol_table->count = lookup_table->count;
|
|
|
|
for (i = 0; i < vol_table->count; i++) {
|
|
vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ---- Voltage Tables ----
|
|
* If the voltage table would be bigger than
|
|
* what will fit into the state table on
|
|
* the SMC keep only the higher entries.
|
|
*/
|
|
static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
|
|
uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
|
|
{
|
|
unsigned int i, diff;
|
|
|
|
if (vol_table->count <= max_vol_steps)
|
|
return;
|
|
|
|
diff = vol_table->count - max_vol_steps;
|
|
|
|
for (i = 0; i < max_vol_steps; i++)
|
|
vol_table->entries[i] = vol_table->entries[i + diff];
|
|
|
|
vol_table->count = max_vol_steps;
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Create Voltage Tables.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)hwmgr->pptable;
|
|
int result;
|
|
|
|
if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
|
|
result = atomctrl_get_voltage_table_v3(hwmgr,
|
|
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
|
|
&(data->mvdd_voltage_table));
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to retrieve MVDD table.",
|
|
return result);
|
|
} else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
|
|
result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
|
|
table_info->vdd_dep_on_mclk);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to retrieve SVI2 MVDD table from dependancy table.",
|
|
return result;);
|
|
}
|
|
|
|
if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
|
|
result = atomctrl_get_voltage_table_v3(hwmgr,
|
|
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
|
|
&(data->vddci_voltage_table));
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to retrieve VDDCI table.",
|
|
return result);
|
|
} else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
|
|
result = fiji_get_svi2_vddci_voltage_table(hwmgr,
|
|
table_info->vdd_dep_on_mclk);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to retrieve SVI2 VDDCI table from dependancy table.",
|
|
return result);
|
|
}
|
|
|
|
if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
|
|
result = fiji_get_svi2_vdd_voltage_table(hwmgr,
|
|
table_info->vddc_lookup_table);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to retrieve SVI2 VDDC table from lookup table.",
|
|
return result);
|
|
}
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
(data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
|
|
"Too many voltage values for VDDC. Trimming to fit state table.",
|
|
fiji_trim_voltage_table_to_fit_state_table(hwmgr,
|
|
SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
(data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
|
|
"Too many voltage values for VDDCI. Trimming to fit state table.",
|
|
fiji_trim_voltage_table_to_fit_state_table(hwmgr,
|
|
SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
(data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
|
|
"Too many voltage values for MVDD. Trimming to fit state table.",
|
|
fiji_trim_voltage_table_to_fit_state_table(hwmgr,
|
|
SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
/* Program additional LP registers
|
|
* that are no longer programmed by VBIOS
|
|
*/
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Programs static screed detection parameters
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_program_static_screen_threshold_parameters(
|
|
struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
/* Set static screen threshold unit */
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
|
|
data->static_screen_threshold_unit);
|
|
/* Set static screen threshold */
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
|
|
data->static_screen_threshold);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Setup display gap for glitch free memory clock switching.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t displayGap =
|
|
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_DISPLAY_GAP_CNTL);
|
|
|
|
displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
|
|
DISP_GAP, DISPLAY_GAP_IGNORE);
|
|
|
|
displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
|
|
DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
|
|
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_DISPLAY_GAP_CNTL, displayGap);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Programs activity state transition voting clients
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
/* Clear reset for voting clients before enabling DPM */
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
|
|
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get the location of various tables inside the FW image.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
|
|
uint32_t tmp;
|
|
int result;
|
|
bool error = false;
|
|
|
|
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, DpmTable),
|
|
&tmp, data->sram_end);
|
|
|
|
if (0 == result)
|
|
data->dpm_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, SoftRegisters),
|
|
&tmp, data->sram_end);
|
|
|
|
if (!result) {
|
|
data->soft_regs_start = tmp;
|
|
smu_data->soft_regs_start = tmp;
|
|
}
|
|
|
|
error |= (0 != result);
|
|
|
|
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, mcRegisterTable),
|
|
&tmp, data->sram_end);
|
|
|
|
if (!result)
|
|
data->mc_reg_table_start = tmp;
|
|
|
|
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, FanTable),
|
|
&tmp, data->sram_end);
|
|
|
|
if (!result)
|
|
data->fan_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
|
|
&tmp, data->sram_end);
|
|
|
|
if (!result)
|
|
data->arb_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, Version),
|
|
&tmp, data->sram_end);
|
|
|
|
if (!result)
|
|
hwmgr->microcode_version_info.SMC = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
return error ? -1 : 0;
|
|
}
|
|
|
|
/* Copy one arb setting to another and then switch the active set.
|
|
* arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
|
|
*/
|
|
static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
|
|
uint32_t arb_src, uint32_t arb_dest)
|
|
{
|
|
uint32_t mc_arb_dram_timing;
|
|
uint32_t mc_arb_dram_timing2;
|
|
uint32_t burst_time;
|
|
uint32_t mc_cg_config;
|
|
|
|
switch (arb_src) {
|
|
case MC_CG_ARB_FREQ_F0:
|
|
mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
|
|
mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
|
|
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
|
|
break;
|
|
case MC_CG_ARB_FREQ_F1:
|
|
mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
|
|
mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
|
|
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (arb_dest) {
|
|
case MC_CG_ARB_FREQ_F0:
|
|
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
|
|
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
|
|
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
|
|
break;
|
|
case MC_CG_ARB_FREQ_F1:
|
|
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
|
|
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
|
|
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
|
|
mc_cg_config |= 0x0000000F;
|
|
cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
|
|
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initial switch from ARB F0->F1
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
* This function is to be called from the SetPowerState table.
|
|
*/
|
|
static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return fiji_copy_and_switch_arb_sets(hwmgr,
|
|
MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
|
|
}
|
|
|
|
static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
|
|
struct fiji_single_dpm_table *dpm_table, uint32_t count)
|
|
{
|
|
int i;
|
|
PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
|
|
"Fatal error, can not set up single DPM table entries "
|
|
"to exceed max number!",);
|
|
|
|
dpm_table->count = count;
|
|
for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
|
|
dpm_table->dpm_levels[i].enabled = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fiji_setup_pcie_table_entry(
|
|
struct fiji_single_dpm_table *dpm_table,
|
|
uint32_t index, uint32_t pcie_gen,
|
|
uint32_t pcie_lanes)
|
|
{
|
|
dpm_table->dpm_levels[index].value = pcie_gen;
|
|
dpm_table->dpm_levels[index].param1 = pcie_lanes;
|
|
dpm_table->dpm_levels[index].enabled = 1;
|
|
}
|
|
|
|
static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
|
|
uint32_t i, max_entry;
|
|
|
|
PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
|
|
data->use_pcie_power_saving_levels), "No pcie performance levels!",
|
|
return -EINVAL);
|
|
|
|
if (data->use_pcie_performance_levels &&
|
|
!data->use_pcie_power_saving_levels) {
|
|
data->pcie_gen_power_saving = data->pcie_gen_performance;
|
|
data->pcie_lane_power_saving = data->pcie_lane_performance;
|
|
} else if (!data->use_pcie_performance_levels &&
|
|
data->use_pcie_power_saving_levels) {
|
|
data->pcie_gen_performance = data->pcie_gen_power_saving;
|
|
data->pcie_lane_performance = data->pcie_lane_power_saving;
|
|
}
|
|
|
|
fiji_reset_single_dpm_table(hwmgr,
|
|
&data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
|
|
|
|
if (pcie_table != NULL) {
|
|
/* max_entry is used to make sure we reserve one PCIE level
|
|
* for boot level (fix for A+A PSPP issue).
|
|
* If PCIE table from PPTable have ULV entry + 8 entries,
|
|
* then ignore the last entry.*/
|
|
max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
|
|
SMU73_MAX_LEVELS_LINK : pcie_table->count;
|
|
for (i = 1; i < max_entry; i++) {
|
|
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
|
|
get_pcie_gen_support(data->pcie_gen_cap,
|
|
pcie_table->entries[i].gen_speed),
|
|
get_pcie_lane_support(data->pcie_lane_cap,
|
|
pcie_table->entries[i].lane_width));
|
|
}
|
|
data->dpm_table.pcie_speed_table.count = max_entry - 1;
|
|
} else {
|
|
/* Hardcode Pcie Table */
|
|
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
|
|
get_pcie_gen_support(data->pcie_gen_cap,
|
|
PP_Min_PCIEGen),
|
|
get_pcie_lane_support(data->pcie_lane_cap,
|
|
PP_Max_PCIELane));
|
|
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
|
|
get_pcie_gen_support(data->pcie_gen_cap,
|
|
PP_Min_PCIEGen),
|
|
get_pcie_lane_support(data->pcie_lane_cap,
|
|
PP_Max_PCIELane));
|
|
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
|
|
get_pcie_gen_support(data->pcie_gen_cap,
|
|
PP_Max_PCIEGen),
|
|
get_pcie_lane_support(data->pcie_lane_cap,
|
|
PP_Max_PCIELane));
|
|
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
|
|
get_pcie_gen_support(data->pcie_gen_cap,
|
|
PP_Max_PCIEGen),
|
|
get_pcie_lane_support(data->pcie_lane_cap,
|
|
PP_Max_PCIELane));
|
|
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
|
|
get_pcie_gen_support(data->pcie_gen_cap,
|
|
PP_Max_PCIEGen),
|
|
get_pcie_lane_support(data->pcie_lane_cap,
|
|
PP_Max_PCIELane));
|
|
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
|
|
get_pcie_gen_support(data->pcie_gen_cap,
|
|
PP_Max_PCIEGen),
|
|
get_pcie_lane_support(data->pcie_lane_cap,
|
|
PP_Max_PCIELane));
|
|
|
|
data->dpm_table.pcie_speed_table.count = 6;
|
|
}
|
|
/* Populate last level for boot PCIE level, but do not increment count. */
|
|
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
|
|
data->dpm_table.pcie_speed_table.count,
|
|
get_pcie_gen_support(data->pcie_gen_cap,
|
|
PP_Min_PCIEGen),
|
|
get_pcie_lane_support(data->pcie_lane_cap,
|
|
PP_Max_PCIELane));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is to initalize all DPM state tables
|
|
* for SMU7 based on the dependency table.
|
|
* Dynamic state patching function will then trim these
|
|
* state tables to the allowed range based
|
|
* on the power policy or external client requests,
|
|
* such as UVD request, etc.
|
|
*/
|
|
static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint32_t i;
|
|
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
|
|
table_info->vdd_dep_on_sclk;
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
|
|
table_info->vdd_dep_on_mclk;
|
|
|
|
PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
|
|
"SCLK dependency table is missing. This table is mandatory",
|
|
return -EINVAL);
|
|
PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
|
|
"SCLK dependency table has to have is missing. "
|
|
"This table is mandatory",
|
|
return -EINVAL);
|
|
|
|
PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
|
|
"MCLK dependency table is missing. This table is mandatory",
|
|
return -EINVAL);
|
|
PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
|
|
"MCLK dependency table has to have is missing. "
|
|
"This table is mandatory",
|
|
return -EINVAL);
|
|
|
|
/* clear the state table to reset everything to default */
|
|
fiji_reset_single_dpm_table(hwmgr,
|
|
&data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
|
|
fiji_reset_single_dpm_table(hwmgr,
|
|
&data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
|
|
|
|
/* Initialize Sclk DPM table based on allow Sclk values */
|
|
data->dpm_table.sclk_table.count = 0;
|
|
for (i = 0; i < dep_sclk_table->count; i++) {
|
|
if (i == 0 || data->dpm_table.sclk_table.dpm_levels
|
|
[data->dpm_table.sclk_table.count - 1].value !=
|
|
dep_sclk_table->entries[i].clk) {
|
|
data->dpm_table.sclk_table.dpm_levels
|
|
[data->dpm_table.sclk_table.count].value =
|
|
dep_sclk_table->entries[i].clk;
|
|
data->dpm_table.sclk_table.dpm_levels
|
|
[data->dpm_table.sclk_table.count].enabled =
|
|
(i == 0) ? true : false;
|
|
data->dpm_table.sclk_table.count++;
|
|
}
|
|
}
|
|
|
|
/* Initialize Mclk DPM table based on allow Mclk values */
|
|
data->dpm_table.mclk_table.count = 0;
|
|
for (i=0; i<dep_mclk_table->count; i++) {
|
|
if ( i==0 || data->dpm_table.mclk_table.dpm_levels
|
|
[data->dpm_table.mclk_table.count - 1].value !=
|
|
dep_mclk_table->entries[i].clk) {
|
|
data->dpm_table.mclk_table.dpm_levels
|
|
[data->dpm_table.mclk_table.count].value =
|
|
dep_mclk_table->entries[i].clk;
|
|
data->dpm_table.mclk_table.dpm_levels
|
|
[data->dpm_table.mclk_table.count].enabled =
|
|
(i == 0) ? true : false;
|
|
data->dpm_table.mclk_table.count++;
|
|
}
|
|
}
|
|
|
|
/* setup PCIE gen speed levels */
|
|
fiji_setup_default_pcie_table(hwmgr);
|
|
|
|
/* save a copy of the default DPM table */
|
|
memcpy(&(data->golden_dpm_table), &(data->dpm_table),
|
|
sizeof(struct fiji_dpm_table));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief PhwFiji_GetVoltageOrder
|
|
* Returns index of requested voltage record in lookup(table)
|
|
* @param lookup_table - lookup list to search in
|
|
* @param voltage - voltage to look for
|
|
* @return 0 on success
|
|
*/
|
|
uint8_t fiji_get_voltage_index(
|
|
struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
|
|
{
|
|
uint8_t count = (uint8_t) (lookup_table->count);
|
|
uint8_t i;
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != lookup_table),
|
|
"Lookup Table empty.", return 0);
|
|
PP_ASSERT_WITH_CODE((0 != count),
|
|
"Lookup Table empty.", return 0);
|
|
|
|
for (i = 0; i < lookup_table->count; i++) {
|
|
/* find first voltage equal or bigger than requested */
|
|
if (lookup_table->entries[i].us_vdd >= voltage)
|
|
return i;
|
|
}
|
|
/* voltage is bigger than max voltage in the table */
|
|
return i - 1;
|
|
}
|
|
|
|
/**
|
|
* Preparation of vddc and vddgfx CAC tables for SMC.
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
* @param table the SMC DPM table structure to be populated
|
|
* @return always 0
|
|
*/
|
|
static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
uint32_t count;
|
|
uint8_t index;
|
|
int result = 0;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_voltage_lookup_table *lookup_table =
|
|
table_info->vddc_lookup_table;
|
|
/* tables is already swapped, so in order to use the value from it,
|
|
* we need to swap it back.
|
|
* We are populating vddc CAC data to BapmVddc table
|
|
* in split and merged mode
|
|
*/
|
|
for( count = 0; count<lookup_table->count; count++) {
|
|
index = fiji_get_voltage_index(lookup_table,
|
|
data->vddc_voltage_table.entries[count].value);
|
|
table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
|
|
(lookup_table->entries[index].us_cac_low *
|
|
VOLTAGE_SCALE)) / 25);
|
|
table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
|
|
(lookup_table->entries[index].us_cac_high *
|
|
VOLTAGE_SCALE)) / 25);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Preparation of voltage tables for SMC.
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
* @param table the SMC DPM table structure to be populated
|
|
* @return always 0
|
|
*/
|
|
|
|
int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result;
|
|
|
|
result = fiji_populate_cac_table(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"can not populate CAC voltage tables to SMC",
|
|
return -EINVAL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_Ulv *state)
|
|
{
|
|
int result = 0;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
state->CcPwrDynRm = 0;
|
|
state->CcPwrDynRm1 = 0;
|
|
|
|
state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
|
|
state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
|
|
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
|
|
|
|
state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
|
|
|
|
if (!result) {
|
|
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
|
|
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
return fiji_populate_ulv_level(hwmgr, &table->Ulv);
|
|
}
|
|
|
|
static int32_t fiji_get_dpm_level_enable_mask_value(
|
|
struct fiji_single_dpm_table* dpm_table)
|
|
{
|
|
int32_t i;
|
|
int32_t mask = 0;
|
|
|
|
for (i = dpm_table->count; i > 0; i--) {
|
|
mask = mask << 1;
|
|
if (dpm_table->dpm_levels[i - 1].enabled)
|
|
mask |= 0x1;
|
|
else
|
|
mask &= 0xFFFFFFFE;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_dpm_table *dpm_table = &data->dpm_table;
|
|
int i;
|
|
|
|
/* Index (dpm_table->pcie_speed_table.count)
|
|
* is reserved for PCIE boot level. */
|
|
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
|
|
table->LinkLevel[i].PcieGenSpeed =
|
|
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
|
|
table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
|
|
dpm_table->pcie_speed_table.dpm_levels[i].param1);
|
|
table->LinkLevel[i].EnabledForActivity = 1;
|
|
table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
|
|
table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
|
|
table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
|
|
}
|
|
|
|
data->smc_state_table.LinkLevelCount =
|
|
(uint8_t)dpm_table->pcie_speed_table.count;
|
|
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
|
|
fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Calculates the SCLK dividers using the provided engine clock
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
* @param clock the engine clock to use to populate the structure
|
|
* @param sclk the SMC SCLK structure to be populated
|
|
*/
|
|
static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
|
|
{
|
|
const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
|
|
uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
|
|
uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
|
|
uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
|
|
uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
|
|
uint32_t ref_clock;
|
|
uint32_t ref_divider;
|
|
uint32_t fbdiv;
|
|
int result;
|
|
|
|
/* get the engine clock dividers for this clock value */
|
|
result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs);
|
|
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error retrieving Engine Clock dividers from VBIOS.",
|
|
return result);
|
|
|
|
/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
|
|
ref_clock = atomctrl_get_reference_clock(hwmgr);
|
|
ref_divider = 1 + dividers.uc_pll_ref_div;
|
|
|
|
/* low 14 bits is fraction and high 12 bits is divider */
|
|
fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
|
|
|
|
/* SPLL_FUNC_CNTL setup */
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_REF_DIV, dividers.uc_pll_ref_div);
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_PDIV_A, dividers.uc_pll_post_div);
|
|
|
|
/* SPLL_FUNC_CNTL_3 setup*/
|
|
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
|
|
SPLL_FB_DIV, fbdiv);
|
|
|
|
/* set to use fractional accumulation*/
|
|
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
|
|
SPLL_DITHEN, 1);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
|
|
struct pp_atomctrl_internal_ss_info ssInfo;
|
|
|
|
uint32_t vco_freq = clock * dividers.uc_pll_post_div;
|
|
if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
|
|
vco_freq, &ssInfo)) {
|
|
/*
|
|
* ss_info.speed_spectrum_percentage -- in unit of 0.01%
|
|
* ss_info.speed_spectrum_rate -- in unit of khz
|
|
*
|
|
* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
|
|
*/
|
|
uint32_t clk_s = ref_clock * 5 /
|
|
(ref_divider * ssInfo.speed_spectrum_rate);
|
|
/* clkv = 2 * D * fbdiv / NS */
|
|
uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
|
|
fbdiv / (clk_s * 10000);
|
|
|
|
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
|
|
CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
|
|
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
|
|
CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
|
|
cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
|
|
CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
|
|
}
|
|
}
|
|
|
|
sclk->SclkFrequency = clock;
|
|
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
|
|
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
|
|
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
|
|
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
|
|
sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
|
|
{
|
|
uint32_t i;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct pp_atomctrl_voltage_table *vddci_table =
|
|
&(data->vddci_voltage_table);
|
|
|
|
for (i = 0; i < vddci_table->count; i++) {
|
|
if (vddci_table->entries[i].value >= vddci)
|
|
return vddci_table->entries[i].value;
|
|
}
|
|
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
|
|
return vddci_table->entries[i].value);
|
|
}
|
|
|
|
static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
|
|
struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
|
|
uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
|
|
{
|
|
uint32_t i;
|
|
uint16_t vddci;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
*voltage = *mvdd = 0;
|
|
|
|
/* clock - voltage dependency table is empty table */
|
|
if (dep_table->count == 0)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
/* find first sclk bigger than request */
|
|
if (dep_table->entries[i].clk >= clock) {
|
|
*voltage |= (dep_table->entries[i].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
|
|
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else if (dep_table->entries[i].vddci)
|
|
*voltage |= (dep_table->entries[i].vddci *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else {
|
|
vddci = fiji_find_closest_vddci(hwmgr,
|
|
(dep_table->entries[i].vddc -
|
|
(uint16_t)data->vddc_vddci_delta));
|
|
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
}
|
|
|
|
if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
|
|
*mvdd = data->vbios_boot_state.mvdd_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
else if (dep_table->entries[i].mvdd)
|
|
*mvdd = (uint32_t) dep_table->entries[i].mvdd *
|
|
VOLTAGE_SCALE;
|
|
|
|
*voltage |= 1 << PHASES_SHIFT;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* sclk is bigger than max sclk in the dependence table */
|
|
*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
|
|
if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
|
|
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else if (dep_table->entries[i-1].vddci) {
|
|
vddci = fiji_find_closest_vddci(hwmgr,
|
|
(dep_table->entries[i].vddc -
|
|
(uint16_t)data->vddc_vddci_delta));
|
|
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
}
|
|
|
|
if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
|
|
*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
|
|
else if (dep_table->entries[i].mvdd)
|
|
*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
|
|
|
|
return 0;
|
|
}
|
|
/**
|
|
* Populates single SMC SCLK structure using the provided engine clock
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
* @param clock the engine clock to use to populate the structure
|
|
* @param sclk the SMC SCLK structure to be populated
|
|
*/
|
|
|
|
static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, uint16_t sclk_al_threshold,
|
|
struct SMU73_Discrete_GraphicsLevel *level)
|
|
{
|
|
int result;
|
|
/* PP_Clocks minClocks; */
|
|
uint32_t threshold, mvdd;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
result = fiji_calculate_sclk_params(hwmgr, clock, level);
|
|
|
|
/* populate graphics levels */
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_sclk, clock,
|
|
&level->MinVoltage, &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find VDDC voltage value for "
|
|
"VDDC engine clock dependency table",
|
|
return result);
|
|
|
|
level->SclkFrequency = clock;
|
|
level->ActivityLevel = sclk_al_threshold;
|
|
level->CcPwrDynRm = 0;
|
|
level->CcPwrDynRm1 = 0;
|
|
level->EnabledForActivity = 0;
|
|
level->EnabledForThrottle = 1;
|
|
level->UpHyst = 10;
|
|
level->DownHyst = 0;
|
|
level->VoltageDownHyst = 0;
|
|
level->PowerThrottle = 0;
|
|
|
|
threshold = clock * data->fast_watermark_threshold / 100;
|
|
|
|
/*
|
|
* TODO: get minimum clocks from dal configaration
|
|
* PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
|
|
*/
|
|
/* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
|
|
|
|
/* get level->DeepSleepDivId
|
|
if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
|
|
{
|
|
level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
|
|
} */
|
|
|
|
/* Default to slow, highest DPM level will be
|
|
* set to PPSMC_DISPLAY_WATERMARK_LOW later.
|
|
*/
|
|
level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
|
|
|
|
return 0;
|
|
}
|
|
/**
|
|
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
*/
|
|
static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_dpm_table *dpm_table = &data->dpm_table;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
|
|
uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
|
|
int result = 0;
|
|
uint32_t array = data->dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
|
|
uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
|
|
SMU73_MAX_LEVELS_GRAPHICS;
|
|
struct SMU73_Discrete_GraphicsLevel *levels =
|
|
data->smc_state_table.GraphicsLevel;
|
|
uint32_t i, max_entry;
|
|
uint8_t hightest_pcie_level_enabled = 0,
|
|
lowest_pcie_level_enabled = 0,
|
|
mid_pcie_level_enabled = 0,
|
|
count = 0;
|
|
|
|
for (i = 0; i < dpm_table->sclk_table.count; i++) {
|
|
result = fiji_populate_single_graphic_level(hwmgr,
|
|
dpm_table->sclk_table.dpm_levels[i].value,
|
|
(uint16_t)data->activity_target[i],
|
|
&levels[i]);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
|
|
if (i > 1)
|
|
levels[i].DeepSleepDivId = 0;
|
|
}
|
|
|
|
/* Only enable level 0 for now.*/
|
|
levels[0].EnabledForActivity = 1;
|
|
|
|
/* set highest level watermark to high */
|
|
levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
|
|
PPSMC_DISPLAY_WATERMARK_HIGH;
|
|
|
|
data->smc_state_table.GraphicsDpmLevelCount =
|
|
(uint8_t)dpm_table->sclk_table.count;
|
|
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
|
|
fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
|
|
|
|
if (pcie_table != NULL) {
|
|
PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
|
|
"There must be 1 or more PCIE levels defined in PPTable.",
|
|
return -EINVAL);
|
|
max_entry = pcie_entry_cnt - 1;
|
|
for (i = 0; i < dpm_table->sclk_table.count; i++)
|
|
levels[i].pcieDpmLevel =
|
|
(uint8_t) ((i < max_entry)? i : max_entry);
|
|
} else {
|
|
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << (hightest_pcie_level_enabled + 1))) != 0 ))
|
|
hightest_pcie_level_enabled++;
|
|
|
|
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << lowest_pcie_level_enabled)) == 0 ))
|
|
lowest_pcie_level_enabled++;
|
|
|
|
while ((count < hightest_pcie_level_enabled) &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
|
|
count++;
|
|
|
|
mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
|
|
hightest_pcie_level_enabled?
|
|
(lowest_pcie_level_enabled + 1 + count) :
|
|
hightest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to hightest_pcie_level_enabled */
|
|
for(i = 2; i < dpm_table->sclk_table.count; i++)
|
|
levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to lowest_pcie_level_enabled */
|
|
levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to mid_pcie_level_enabled */
|
|
levels[1].pcieDpmLevel = mid_pcie_level_enabled;
|
|
}
|
|
/* level count will send to smc once at init smc table and never change */
|
|
result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
|
|
(uint32_t)array_size, data->sram_end);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* MCLK Frequency Ratio
|
|
* SEQ_CG_RESP Bit[31:24] - 0x0
|
|
* Bit[27:24] \96 DDR3 Frequency ratio
|
|
* 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
|
|
* 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
|
|
* 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
|
|
* 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
|
|
* 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
|
|
* 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
|
|
* 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
|
|
* 400 < 0x7 <= 450MHz, 800 < 0xF
|
|
*/
|
|
static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
|
|
{
|
|
if (mem_clock <= 10000) return 0x0;
|
|
if (mem_clock <= 15000) return 0x1;
|
|
if (mem_clock <= 20000) return 0x2;
|
|
if (mem_clock <= 25000) return 0x3;
|
|
if (mem_clock <= 30000) return 0x4;
|
|
if (mem_clock <= 35000) return 0x5;
|
|
if (mem_clock <= 40000) return 0x6;
|
|
if (mem_clock <= 45000) return 0x7;
|
|
if (mem_clock <= 50000) return 0x8;
|
|
if (mem_clock <= 55000) return 0x9;
|
|
if (mem_clock <= 60000) return 0xa;
|
|
if (mem_clock <= 65000) return 0xb;
|
|
if (mem_clock <= 70000) return 0xc;
|
|
if (mem_clock <= 75000) return 0xd;
|
|
if (mem_clock <= 80000) return 0xe;
|
|
/* mem_clock > 800MHz */
|
|
return 0xf;
|
|
}
|
|
|
|
/**
|
|
* Populates the SMC MCLK structure using the provided memory clock
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
* @param clock the memory clock to use to populate the structure
|
|
* @param sclk the SMC SCLK structure to be populated
|
|
*/
|
|
static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
|
|
{
|
|
struct pp_atomctrl_memory_clock_param mem_param;
|
|
int result;
|
|
|
|
result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to get Memory PLL Dividers.",);
|
|
|
|
/* Save the result data to outpupt memory level structure */
|
|
mclk->MclkFrequency = clock;
|
|
mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
|
|
mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
int result = 0;
|
|
|
|
if (table_info->vdd_dep_on_mclk) {
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_mclk, clock,
|
|
&mem_level->MinVoltage, &mem_level->MinMvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find MinVddc voltage value from memory "
|
|
"VDDC voltage dependency table", return result);
|
|
}
|
|
|
|
mem_level->EnabledForThrottle = 1;
|
|
mem_level->EnabledForActivity = 0;
|
|
mem_level->UpHyst = 0;
|
|
mem_level->DownHyst = 100;
|
|
mem_level->VoltageDownHyst = 0;
|
|
mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
|
|
mem_level->StutterEnable = false;
|
|
|
|
mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
|
|
/* enable stutter mode if all the follow condition applied
|
|
* PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
|
|
* &(data->DisplayTiming.numExistingDisplays));
|
|
*/
|
|
data->display_timing.num_existing_displays = 1;
|
|
|
|
if ((data->mclk_stutter_mode_threshold) &&
|
|
(clock <= data->mclk_stutter_mode_threshold) &&
|
|
(!data->is_uvd_enabled) &&
|
|
(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
|
|
STUTTER_ENABLE) & 0x1))
|
|
mem_level->StutterEnable = true;
|
|
|
|
result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
|
|
if (!result) {
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
*/
|
|
static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_dpm_table *dpm_table = &data->dpm_table;
|
|
int result;
|
|
/* populate MCLK dpm table to SMU7 */
|
|
uint32_t array = data->dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
|
|
uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
|
|
SMU73_MAX_LEVELS_MEMORY;
|
|
struct SMU73_Discrete_MemoryLevel *levels =
|
|
data->smc_state_table.MemoryLevel;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < dpm_table->mclk_table.count; i++) {
|
|
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
|
|
"can not populate memory level as memory clock is zero",
|
|
return -EINVAL);
|
|
result = fiji_populate_single_memory_level(hwmgr,
|
|
dpm_table->mclk_table.dpm_levels[i].value,
|
|
&levels[i]);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/* Only enable level 0 for now. */
|
|
levels[0].EnabledForActivity = 1;
|
|
|
|
/* in order to prevent MC activity from stutter mode to push DPM up.
|
|
* the UVD change complements this by putting the MCLK in
|
|
* a higher state by default such that we are not effected by
|
|
* up threshold or and MCLK DPM latency.
|
|
*/
|
|
levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
|
|
CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
|
|
|
|
data->smc_state_table.MemoryDpmLevelCount =
|
|
(uint8_t)dpm_table->mclk_table.count;
|
|
data->dpm_level_enable_mask.mclk_dpm_enable_mask =
|
|
fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
|
|
/* set highest level watermark to high */
|
|
levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
|
|
PPSMC_DISPLAY_WATERMARK_HIGH;
|
|
|
|
/* level count will send to smc once at init smc table and never change */
|
|
result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
|
|
(uint32_t)array_size, data->sram_end);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Populates the SMC MVDD structure using the provided memory clock.
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
* @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
|
|
* @param voltage the SMC VOLTAGE structure to be populated
|
|
*/
|
|
int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
|
|
uint32_t mclk, SMIO_Pattern *smio_pat)
|
|
{
|
|
const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint32_t i = 0;
|
|
|
|
if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
|
|
/* find mvdd value which clock is more than request */
|
|
for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
|
|
if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
|
|
smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
|
|
break;
|
|
}
|
|
}
|
|
PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
|
|
"MVDD Voltage is outside the supported range.",
|
|
return -EINVAL);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = 0;
|
|
const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
SMIO_Pattern vol_level;
|
|
uint32_t mvdd;
|
|
uint16_t us_mvdd;
|
|
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
|
|
uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
|
|
|
|
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
|
|
|
|
if (!data->sclk_dpm_key_disabled) {
|
|
/* Get MinVoltage and Frequency from DPM0,
|
|
* already converted to SMC_UL */
|
|
table->ACPILevel.SclkFrequency =
|
|
data->dpm_table.sclk_table.dpm_levels[0].value;
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_sclk,
|
|
table->ACPILevel.SclkFrequency,
|
|
&table->ACPILevel.MinVoltage, &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Cannot find ACPI VDDC voltage value "
|
|
"in Clock Dependency Table",);
|
|
} else {
|
|
table->ACPILevel.SclkFrequency =
|
|
data->vbios_boot_state.sclk_bootup_value;
|
|
table->ACPILevel.MinVoltage =
|
|
data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
|
|
}
|
|
|
|
/* get the engine clock dividers for this clock value */
|
|
result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
|
|
table->ACPILevel.SclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error retrieving Engine Clock dividers from VBIOS.",
|
|
return result);
|
|
|
|
table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
|
|
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
table->ACPILevel.DeepSleepDivId = 0;
|
|
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_PWRON, 0);
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_RESET, 1);
|
|
spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
|
|
SCLK_MUX_SEL, 4);
|
|
|
|
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
|
|
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
|
|
table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
|
|
table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
|
|
table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
|
|
table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
|
|
table->ACPILevel.CcPwrDynRm = 0;
|
|
table->ACPILevel.CcPwrDynRm1 = 0;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
|
|
|
|
if (!data->mclk_dpm_key_disabled) {
|
|
/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
|
|
table->MemoryACPILevel.MclkFrequency =
|
|
data->dpm_table.mclk_table.dpm_levels[0].value;
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_mclk,
|
|
table->MemoryACPILevel.MclkFrequency,
|
|
&table->MemoryACPILevel.MinVoltage, &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Cannot find ACPI VDDCI voltage value "
|
|
"in Clock Dependency Table",);
|
|
} else {
|
|
table->MemoryACPILevel.MclkFrequency =
|
|
data->vbios_boot_state.mclk_bootup_value;
|
|
table->MemoryACPILevel.MinVoltage =
|
|
data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
|
|
}
|
|
|
|
us_mvdd = 0;
|
|
if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
|
|
(data->mclk_dpm_key_disabled))
|
|
us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
|
|
else {
|
|
if (!fiji_populate_mvdd_value(hwmgr,
|
|
data->dpm_table.mclk_table.dpm_levels[0].value,
|
|
&vol_level))
|
|
us_mvdd = vol_level.Voltage;
|
|
}
|
|
|
|
table->MemoryACPILevel.MinMvdd =
|
|
PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
|
|
|
|
table->MemoryACPILevel.EnabledForThrottle = 0;
|
|
table->MemoryACPILevel.EnabledForActivity = 0;
|
|
table->MemoryACPILevel.UpHyst = 0;
|
|
table->MemoryACPILevel.DownHyst = 100;
|
|
table->MemoryACPILevel.VoltageDownHyst = 0;
|
|
table->MemoryACPILevel.ActivityLevel =
|
|
PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
|
|
|
|
table->MemoryACPILevel.StutterEnable = false;
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
table->VceLevelCount = (uint8_t)(mm_table->count);
|
|
table->VceBootLevel = 0;
|
|
|
|
for(count = 0; count < table->VceLevelCount; count++) {
|
|
table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
|
|
table->VceLevel[count].MinVoltage |=
|
|
(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->VceLevel[count].MinVoltage |=
|
|
((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/*retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->VceLevel[count].Frequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for VCE engine clock",
|
|
return result);
|
|
|
|
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
table->AcpLevelCount = (uint8_t)(mm_table->count);
|
|
table->AcpBootLevel = 0;
|
|
|
|
for (count = 0; count < table->AcpLevelCount; count++) {
|
|
table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
|
|
table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
|
|
data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/* retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->AcpLevel[count].Frequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for engine clock", return result);
|
|
|
|
table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
table->SamuBootLevel = 0;
|
|
table->SamuLevelCount = (uint8_t)(mm_table->count);
|
|
|
|
for (count = 0; count < table->SamuLevelCount; count++) {
|
|
/* not sure whether we need evclk or not */
|
|
table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
|
|
table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
|
|
data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/* retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->SamuLevel[count].Frequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for samu clock", return result);
|
|
|
|
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
|
|
int32_t eng_clock, int32_t mem_clock,
|
|
struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
|
|
{
|
|
uint32_t dram_timing;
|
|
uint32_t dram_timing2;
|
|
uint32_t burstTime;
|
|
ULONG state, trrds, trrdl;
|
|
int result;
|
|
|
|
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
|
|
eng_clock, mem_clock);
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error calling VBIOS to set DRAM_TIMING.", return result);
|
|
|
|
dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
|
|
dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
|
|
burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
|
|
|
|
state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
|
|
trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
|
|
trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
|
|
|
|
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
|
|
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
|
|
arb_regs->McArbBurstTime = (uint8_t)burstTime;
|
|
arb_regs->TRRDS = (uint8_t)trrds;
|
|
arb_regs->TRRDL = (uint8_t)trrdl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
|
|
uint32_t i, j;
|
|
int result = 0;
|
|
|
|
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
|
|
for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
|
|
result = fiji_populate_memory_timing_parameters(hwmgr,
|
|
data->dpm_table.sclk_table.dpm_levels[i].value,
|
|
data->dpm_table.mclk_table.dpm_levels[j].value,
|
|
&arb_regs.entries[i][j]);
|
|
if (result)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!result)
|
|
result = fiji_copy_bytes_to_smc(
|
|
hwmgr->smumgr,
|
|
data->arb_table_start,
|
|
(uint8_t *)&arb_regs,
|
|
sizeof(SMU73_Discrete_MCArbDramTimingTable),
|
|
data->sram_end);
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
table->UvdLevelCount = (uint8_t)(mm_table->count);
|
|
table->UvdBootLevel = 0;
|
|
|
|
for (count = 0; count < table->UvdLevelCount; count++) {
|
|
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
|
|
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
|
|
table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
|
|
data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/* retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->UvdLevel[count].VclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for Vclk clock", return result);
|
|
|
|
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->UvdLevel[count].DclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for Dclk clock", return result);
|
|
|
|
table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
|
|
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
|
|
uint32_t value, uint32_t *boot_level)
|
|
{
|
|
int result = -EINVAL;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < table->count; i++) {
|
|
if (value == table->dpm_levels[i].value) {
|
|
*boot_level = i;
|
|
result = 0;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = 0;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
table->GraphicsBootLevel = 0;
|
|
table->MemoryBootLevel = 0;
|
|
|
|
/* find boot level from dpm table */
|
|
result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
|
|
data->vbios_boot_state.sclk_bootup_value,
|
|
(uint32_t *)&(table->GraphicsBootLevel));
|
|
|
|
result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
|
|
data->vbios_boot_state.mclk_bootup_value,
|
|
(uint32_t *)&(table->MemoryBootLevel));
|
|
|
|
table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint8_t count, level;
|
|
|
|
count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
|
|
for (level = 0; level < count; level++) {
|
|
if(table_info->vdd_dep_on_sclk->entries[level].clk >=
|
|
data->vbios_boot_state.sclk_bootup_value) {
|
|
data->smc_state_table.GraphicsBootLevel = level;
|
|
break;
|
|
}
|
|
}
|
|
|
|
count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
|
|
for (level = 0; level < count; level++) {
|
|
if(table_info->vdd_dep_on_mclk->entries[level].clk >=
|
|
data->vbios_boot_state.mclk_bootup_value) {
|
|
data->smc_state_table.MemoryBootLevel = level;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
|
|
volt_with_cks, value;
|
|
uint16_t clock_freq_u16;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
|
|
volt_offset = 0;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
|
|
table_info->vdd_dep_on_sclk;
|
|
|
|
stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
|
|
|
|
/* Read SMU_Eefuse to read and calculate RO and determine
|
|
* if the part is SS or FF. if RO >= 1660MHz, part is FF.
|
|
*/
|
|
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_EFUSE_0 + (146 * 4));
|
|
efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_EFUSE_0 + (148 * 4));
|
|
efuse &= 0xFF000000;
|
|
efuse = efuse >> 24;
|
|
efuse2 &= 0xF;
|
|
|
|
if (efuse2 == 1)
|
|
ro = (2300 - 1350) * efuse / 255 + 1350;
|
|
else
|
|
ro = (2500 - 1000) * efuse / 255 + 1000;
|
|
|
|
if (ro >= 1660)
|
|
type = 0;
|
|
else
|
|
type = 1;
|
|
|
|
/* Populate Stretch amount */
|
|
data->smc_state_table.ClockStretcherAmount = stretch_amount;
|
|
|
|
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
|
|
for (i = 0; i < sclk_table->count; i++) {
|
|
data->smc_state_table.Sclk_CKS_masterEn0_7 |=
|
|
sclk_table->entries[i].cks_enable << i;
|
|
volt_without_cks = (uint32_t)((14041 *
|
|
(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
|
|
(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
|
|
volt_with_cks = (uint32_t)((13946 *
|
|
(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
|
|
(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
|
|
if (volt_without_cks >= volt_with_cks)
|
|
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
|
|
sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
|
|
data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
|
|
}
|
|
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
STRETCH_ENABLE, 0x0);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
masterReset, 0x1);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
staticEnable, 0x1);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
masterReset, 0x0);
|
|
|
|
/* Populate CKS Lookup Table */
|
|
if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
|
|
stretch_amount2 = 0;
|
|
else if (stretch_amount == 3 || stretch_amount == 4)
|
|
stretch_amount2 = 1;
|
|
else {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ClockStretcher);
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Stretch Amount in PPTable not supported\n",
|
|
return -EINVAL);
|
|
}
|
|
|
|
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixPWR_CKS_CNTL);
|
|
value &= 0xFFC2FF87;
|
|
data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][0];
|
|
data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][1];
|
|
clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
|
|
GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
|
|
SclkFrequency) / 100);
|
|
if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
|
|
clock_freq_u16 &&
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
|
|
clock_freq_u16) {
|
|
/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
|
|
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
|
|
/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
|
|
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
|
|
/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
|
|
value |= (fiji_clock_stretch_amount_conversion
|
|
[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
|
|
[stretch_amount]) << 3;
|
|
}
|
|
CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
|
|
CKS_LOOKUPTableEntry[0].minFreq);
|
|
CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
|
|
CKS_LOOKUPTableEntry[0].maxFreq);
|
|
data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
|
|
data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
|
|
(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
|
|
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixPWR_CKS_CNTL, value);
|
|
|
|
/* Populate DDT Lookup Table */
|
|
for (i = 0; i < 4; i++) {
|
|
/* Assign the minimum and maximum VID stored
|
|
* in the last row of Clock Stretcher Voltage Table.
|
|
*/
|
|
data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].minVID =
|
|
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
|
|
data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].maxVID =
|
|
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
|
|
/* Loop through each SCLK and check the frequency
|
|
* to see if it lies within the frequency for clock stretcher.
|
|
*/
|
|
for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
|
|
cks_setting = 0;
|
|
clock_freq = PP_SMC_TO_HOST_UL(
|
|
data->smc_state_table.GraphicsLevel[j].SclkFrequency);
|
|
/* Check the allowed frequency against the sclk level[j].
|
|
* Sclk's endianness has already been converted,
|
|
* and it's in 10Khz unit,
|
|
* as opposed to Data table, which is in Mhz unit.
|
|
*/
|
|
if (clock_freq >=
|
|
(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
|
|
cks_setting |= 0x2;
|
|
if (clock_freq <
|
|
(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
|
|
cks_setting |= 0x1;
|
|
}
|
|
data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
|
|
}
|
|
CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
|
|
ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].setting);
|
|
}
|
|
|
|
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
|
|
value &= 0xFFFFFFFE;
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Populates the SMC VRConfig field in DPM table.
|
|
*
|
|
* @param hwmgr the address of the hardware manager
|
|
* @param table the SMC DPM table structure to be populated
|
|
* @return always 0
|
|
*/
|
|
static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint16_t config;
|
|
|
|
config = VR_MERGED_WITH_VDDC;
|
|
table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
|
|
|
|
/* Set Vddc Voltage Controller */
|
|
if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
|
|
config = VR_SVI2_PLANE_1;
|
|
table->VRConfig |= config;
|
|
} else {
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"VDDC should be on SVI2 control in merged mode!",);
|
|
}
|
|
/* Set Vddci Voltage Controller */
|
|
if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
|
|
config = VR_SVI2_PLANE_2; /* only in merged mode */
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
} else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
|
|
config = VR_SMIO_PATTERN_1;
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
} else {
|
|
config = VR_STATIC_VOLTAGE;
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
}
|
|
/* Set Mvdd Voltage Controller */
|
|
if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
|
|
config = VR_SVI2_PLANE_2;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
} else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
|
|
config = VR_SMIO_PATTERN_2;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
} else {
|
|
config = VR_STATIC_VOLTAGE;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initializes the SMC table and uploads it
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @param pInput the pointer to input data (PowerState)
|
|
* @return always 0
|
|
*/
|
|
static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
|
|
const struct fiji_ulv_parm *ulv = &(data->ulv);
|
|
uint8_t i;
|
|
struct pp_atomctrl_gpio_pin_assignment gpio_pin;
|
|
|
|
result = fiji_setup_default_dpm_tables(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to setup default DPM tables!", return result);
|
|
|
|
if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
|
|
fiji_populate_smc_voltage_tables(hwmgr, table);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition))
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StepVddc))
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
|
|
|
|
if (data->is_memory_gddr5)
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
|
|
|
|
if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
|
|
result = fiji_populate_ulv_state(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ULV state!", return result);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
|
|
}
|
|
|
|
result = fiji_populate_smc_link_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Link Level!", return result);
|
|
|
|
result = fiji_populate_all_graphic_levels(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Graphics Level!", return result);
|
|
|
|
result = fiji_populate_all_memory_levels(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Memory Level!", return result);
|
|
|
|
result = fiji_populate_smc_acpi_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ACPI Level!", return result);
|
|
|
|
result = fiji_populate_smc_vce_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize VCE Level!", return result);
|
|
|
|
result = fiji_populate_smc_acp_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ACP Level!", return result);
|
|
|
|
result = fiji_populate_smc_samu_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize SAMU Level!", return result);
|
|
|
|
/* Since only the initial state is completely set up at this point
|
|
* (the other states are just copies of the boot state) we only
|
|
* need to populate the ARB settings for the initial state.
|
|
*/
|
|
result = fiji_program_memory_timing_parameters(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to Write ARB settings for the initial state.", return result);
|
|
|
|
result = fiji_populate_smc_uvd_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize UVD Level!", return result);
|
|
|
|
result = fiji_populate_smc_boot_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Boot Level!", return result);
|
|
|
|
result = fiji_populate_smc_initailial_state(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Boot State!", return result);
|
|
|
|
result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate BAPM Parameters!", return result);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ClockStretcher)) {
|
|
result = fiji_populate_clock_stretcher_data_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate Clock Stretcher Data Table!",
|
|
return result);
|
|
}
|
|
|
|
table->GraphicsVoltageChangeEnable = 1;
|
|
table->GraphicsThermThrottleEnable = 1;
|
|
table->GraphicsInterval = 1;
|
|
table->VoltageInterval = 1;
|
|
table->ThermalInterval = 1;
|
|
table->TemperatureLimitHigh =
|
|
table_info->cac_dtp_table->usTargetOperatingTemp *
|
|
FIJI_Q88_FORMAT_CONVERSION_UNIT;
|
|
table->TemperatureLimitLow =
|
|
(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
|
|
FIJI_Q88_FORMAT_CONVERSION_UNIT;
|
|
table->MemoryVoltageChangeEnable = 1;
|
|
table->MemoryInterval = 1;
|
|
table->VoltageResponseTime = 0;
|
|
table->PhaseResponseTime = 0;
|
|
table->MemoryThermThrottleEnable = 1;
|
|
table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
|
|
table->PCIeGenInterval = 1;
|
|
|
|
result = fiji_populate_vr_config(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate VRConfig setting!", return result);
|
|
|
|
table->ThermGpio = 17;
|
|
table->SclkStepSize = 0x4000;
|
|
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
|
|
table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot);
|
|
} else {
|
|
table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot);
|
|
}
|
|
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
|
|
&gpio_pin)) {
|
|
table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition);
|
|
} else {
|
|
table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition);
|
|
}
|
|
|
|
/* Thermal Output GPIO */
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
|
|
&gpio_pin)) {
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ThermalOutGPIO);
|
|
|
|
table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
|
|
/* For porlarity read GPIOPAD_A with assigned Gpio pin
|
|
* since VBIOS will program this register to set 'inactive state',
|
|
* driver can then determine 'active state' from this and
|
|
* program SMU with correct polarity
|
|
*/
|
|
table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
|
|
(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
|
|
|
|
/* if required, combine VRHot/PCC with thermal out GPIO */
|
|
if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot) &&
|
|
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_CombinePCCWithThermalSignal))
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
|
|
} else {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ThermalOutGPIO);
|
|
table->ThermOutGpio = 17;
|
|
table->ThermOutPolarity = 1;
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
|
|
}
|
|
|
|
for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
|
|
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
|
|
|
|
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
|
|
result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
|
|
data->dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, SystemFlags),
|
|
(uint8_t *)&(table->SystemFlags),
|
|
sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
|
|
data->sram_end);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to upload dpm data to SMC memory!", return result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialize the ARB DRAM timing table's index field.
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
* @return always 0
|
|
*/
|
|
static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
|
|
{
|
|
const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint32_t tmp;
|
|
int result;
|
|
|
|
/* This is a read-modify-write on the first byte of the ARB table.
|
|
* The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
|
|
* is the field 'current'.
|
|
* This solution is ugly, but we never write the whole table only
|
|
* individual fields in it.
|
|
* In reality this field should not be in that structure
|
|
* but in a soft register.
|
|
*/
|
|
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
|
|
data->arb_table_start, &tmp, data->sram_end);
|
|
|
|
if (result)
|
|
return result;
|
|
|
|
tmp &= 0x00FFFFFF;
|
|
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
|
|
|
|
return fiji_write_smc_sram_dword(hwmgr->smumgr,
|
|
data->arb_table_start, tmp, data->sram_end);
|
|
}
|
|
|
|
static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
|
|
{
|
|
if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot))
|
|
return smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_EnableVRHotGPIOInterrupt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
|
|
{
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
|
|
SCLK_PWRMGT_OFF, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_ulv_parm *ulv = &(data->ulv);
|
|
|
|
if (ulv->ulv_supported)
|
|
return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
|
|
{
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_SclkDeepSleep)) {
|
|
if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to enable Master Deep Sleep switch failed!",
|
|
return -1);
|
|
} else {
|
|
if (smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_MASTER_DeepSleep_OFF)) {
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to disable Master Deep Sleep switch failed!",
|
|
return -1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint32_t val, val0, val2;
|
|
uint32_t i, cpl_cntl, cpl_threshold, mc_threshold;
|
|
|
|
/* enable SCLK dpm */
|
|
if(!data->sclk_dpm_key_disabled)
|
|
PP_ASSERT_WITH_CODE(
|
|
(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
|
|
"Failed to enable SCLK DPM during DPM Start Function!",
|
|
return -1);
|
|
|
|
/* enable MCLK dpm */
|
|
if(0 == data->mclk_dpm_key_disabled) {
|
|
cpl_threshold = 0;
|
|
mc_threshold = 0;
|
|
|
|
/* Read per MCD tile (0 - 7) */
|
|
for (i = 0; i < 8; i++) {
|
|
PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
|
|
val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
|
|
if (0xf0000000 != val) {
|
|
/* count number of MCQ that has channel(s) enabled */
|
|
cpl_threshold++;
|
|
/* only harvest 3 or full 4 supported */
|
|
mc_threshold = val ? 3 : 4;
|
|
}
|
|
}
|
|
PP_ASSERT_WITH_CODE(0 != cpl_threshold,
|
|
"Number of MCQ is zero!", return -EINVAL;);
|
|
|
|
mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
|
|
LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
|
|
LCAC_MC0_CNTL__MC0_ENABLE_MASK;
|
|
cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
|
|
LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
|
|
LCAC_CPL_CNTL__CPL_ENABLE_MASK;
|
|
cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC0_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC1_CNTL, mc_threshold);
|
|
if (8 == cpl_threshold) {
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC2_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC3_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC4_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC5_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC6_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC7_CNTL, mc_threshold);
|
|
}
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_CPL_CNTL, cpl_cntl);
|
|
|
|
udelay(5);
|
|
|
|
mc_threshold = mc_threshold |
|
|
(1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
|
|
cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC0_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC1_CNTL, mc_threshold);
|
|
if (8 == cpl_threshold) {
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC2_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC3_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC4_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC5_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC6_CNTL, mc_threshold);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_MC7_CNTL, mc_threshold);
|
|
}
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixLCAC_CPL_CNTL, cpl_cntl);
|
|
|
|
/* Program CAC_EN per MCD (0-7) Tile */
|
|
val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
|
|
val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
|
|
MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
|
|
MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
|
|
MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
|
|
MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
|
|
MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
|
|
MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
|
|
MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
|
|
MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
/* Enable MCD i Tile read & write */
|
|
val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
|
|
(1 << i));
|
|
cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
|
|
/* Enbale CAC_ON MCD i Tile */
|
|
val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
|
|
val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
|
|
}
|
|
/* Set MC_CONFIG_MCD back to its default setting val0 */
|
|
cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_MCLKDPM_Enable)),
|
|
"Failed to enable MCLK DPM during DPM Start Function!",
|
|
return -1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
/*enable general power management */
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
|
|
GLOBAL_PWRMGT_EN, 1);
|
|
/* enable sclk deep sleep */
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
|
|
DYNAMIC_PM_EN, 1);
|
|
/* prepare for PCIE DPM */
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
data->soft_regs_start + offsetof(SMU73_SoftRegisters,
|
|
VoltageChangeTimeout), 0x1000);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
|
|
SWRST_COMMAND_1, RESETLC, 0x0);
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_Voltage_Cntl_Enable)),
|
|
"Failed to enable voltage DPM during DPM Start Function!",
|
|
return -1);
|
|
|
|
if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
|
|
printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
|
|
return -1;
|
|
}
|
|
|
|
/* enable PCIE dpm */
|
|
if(!data->pcie_dpm_key_disabled) {
|
|
PP_ASSERT_WITH_CODE(
|
|
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_PCIeDPM_Enable)),
|
|
"Failed to enable pcie DPM during DPM Start Function!",
|
|
return -1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
|
|
uint32_t sources)
|
|
{
|
|
bool protection;
|
|
enum DPM_EVENT_SRC src;
|
|
|
|
switch (sources) {
|
|
default:
|
|
printk(KERN_ERR "Unknown throttling event sources.");
|
|
/* fall through */
|
|
case 0:
|
|
protection = false;
|
|
/* src is unused */
|
|
break;
|
|
case (1 << PHM_AutoThrottleSource_Thermal):
|
|
protection = true;
|
|
src = DPM_EVENT_SRC_DIGITAL;
|
|
break;
|
|
case (1 << PHM_AutoThrottleSource_External):
|
|
protection = true;
|
|
src = DPM_EVENT_SRC_EXTERNAL;
|
|
break;
|
|
case (1 << PHM_AutoThrottleSource_External) |
|
|
(1 << PHM_AutoThrottleSource_Thermal):
|
|
protection = true;
|
|
src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
|
|
break;
|
|
}
|
|
/* Order matters - don't enable thermal protection for the wrong source. */
|
|
if (protection) {
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
|
|
DPM_EVENT_SRC, src);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
|
|
THERMAL_PROTECTION_DIS,
|
|
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ThermalController));
|
|
} else
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
|
|
THERMAL_PROTECTION_DIS, 1);
|
|
}
|
|
|
|
static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
|
|
PHM_AutoThrottleSource source)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
if (!(data->active_auto_throttle_sources & (1 << source))) {
|
|
data->active_auto_throttle_sources |= 1 << source;
|
|
fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
|
|
}
|
|
|
|
static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int tmp_result, result = 0;
|
|
|
|
tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"DPM is already running right now, no need to enable DPM!",
|
|
return 0);
|
|
|
|
if (fiji_voltage_control(hwmgr)) {
|
|
tmp_result = fiji_enable_voltage_control(hwmgr);
|
|
PP_ASSERT_WITH_CODE(tmp_result == 0,
|
|
"Failed to enable voltage control!",
|
|
result = tmp_result);
|
|
}
|
|
|
|
if (fiji_voltage_control(hwmgr)) {
|
|
tmp_result = fiji_construct_voltage_tables(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to contruct voltage tables!",
|
|
result = tmp_result);
|
|
}
|
|
|
|
tmp_result = fiji_initialize_mc_reg_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to initialize MC reg table!", result = tmp_result);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EngineSpreadSpectrumSupport))
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ThermalController))
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
|
|
|
|
tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to program static screen threshold parameters!",
|
|
result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_display_gap(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable display gap!", result = tmp_result);
|
|
|
|
tmp_result = fiji_program_voting_clients(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to program voting clients!", result = tmp_result);
|
|
|
|
tmp_result = fiji_process_firmware_header(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to process firmware header!", result = tmp_result);
|
|
|
|
tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to initialize switch from ArbF0 to F1!",
|
|
result = tmp_result);
|
|
|
|
tmp_result = fiji_init_smc_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to initialize SMC table!", result = tmp_result);
|
|
|
|
tmp_result = fiji_init_arb_table_index(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to initialize ARB table index!", result = tmp_result);
|
|
|
|
tmp_result = fiji_populate_pm_fuses(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to populate PM fuses!", result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable VR hot GPIO interrupt!", result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_sclk_control(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable SCLK control!", result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_ulv(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable ULV!", result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable deep sleep master switch!", result = tmp_result);
|
|
|
|
tmp_result = fiji_start_dpm(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to start DPM!", result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_smc_cac(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable SMC CAC!", result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_power_containment(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable power containment!", result = tmp_result);
|
|
|
|
tmp_result = fiji_power_control_set_level(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to power control set level!", result = tmp_result);
|
|
|
|
tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to enable thermal auto throttle!", result = tmp_result);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint32_t level, tmp;
|
|
|
|
if (!data->sclk_dpm_key_disabled) {
|
|
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
|
|
level = 0;
|
|
tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
|
|
while (tmp >>= 1)
|
|
level++;
|
|
if (level)
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_SCLKDPM_SetEnabledMask,
|
|
(1 << level));
|
|
}
|
|
}
|
|
|
|
if (!data->mclk_dpm_key_disabled) {
|
|
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
|
|
level = 0;
|
|
tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
|
|
while (tmp >>= 1)
|
|
level++;
|
|
if (level)
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_MCLKDPM_SetEnabledMask,
|
|
(1 << level));
|
|
}
|
|
}
|
|
|
|
if (!data->pcie_dpm_key_disabled) {
|
|
if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
|
|
level = 0;
|
|
tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
|
|
while (tmp >>= 1)
|
|
level++;
|
|
if (level)
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_PCIeDPM_ForceLevel,
|
|
(1 << level));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void fiji_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)hwmgr->pptable;
|
|
struct phm_clock_voltage_dependency_table *table =
|
|
table_info->vddc_dep_on_dal_pwrl;
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
|
|
enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
|
|
uint32_t req_vddc = 0, req_volt, i;
|
|
|
|
if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW &&
|
|
dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE))
|
|
return;
|
|
|
|
for (i= 0; i < table->count; i++) {
|
|
if (dal_power_level == table->entries[i].clk) {
|
|
req_vddc = table->entries[i].v;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vddc_table = table_info->vdd_dep_on_sclk;
|
|
for (i= 0; i < vddc_table->count; i++) {
|
|
if (req_vddc <= vddc_table->entries[i].vddc) {
|
|
req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE)
|
|
<< VDDC_SHIFT;
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_VddC_Request, req_volt);
|
|
return;
|
|
}
|
|
}
|
|
printk(KERN_ERR "DAL requested level can not"
|
|
" found a available voltage in VDDC DPM Table \n");
|
|
}
|
|
|
|
static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
fiji_apply_dal_min_voltage_request(hwmgr);
|
|
|
|
if (!data->sclk_dpm_key_disabled) {
|
|
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_SCLKDPM_SetEnabledMask,
|
|
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
if (!fiji_is_dpm_running(hwmgr))
|
|
return -EINVAL;
|
|
|
|
if (!data->pcie_dpm_key_disabled) {
|
|
smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_PCIeDPM_UnForceLevel);
|
|
}
|
|
|
|
return fiji_upload_dpmlevel_enable_mask(hwmgr);
|
|
}
|
|
|
|
static uint32_t fiji_get_lowest_enabled_level(
|
|
struct pp_hwmgr *hwmgr, uint32_t mask)
|
|
{
|
|
uint32_t level = 0;
|
|
|
|
while(0 == (mask & (1 << level)))
|
|
level++;
|
|
|
|
return level;
|
|
}
|
|
|
|
static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data =
|
|
(struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint32_t level;
|
|
|
|
if (!data->sclk_dpm_key_disabled)
|
|
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
|
|
level = fiji_get_lowest_enabled_level(hwmgr,
|
|
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_SCLKDPM_SetEnabledMask,
|
|
(1 << level));
|
|
|
|
}
|
|
|
|
if (!data->mclk_dpm_key_disabled) {
|
|
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
|
|
level = fiji_get_lowest_enabled_level(hwmgr,
|
|
data->dpm_level_enable_mask.mclk_dpm_enable_mask);
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_MCLKDPM_SetEnabledMask,
|
|
(1 << level));
|
|
}
|
|
}
|
|
|
|
if (!data->pcie_dpm_key_disabled) {
|
|
if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
|
|
level = fiji_get_lowest_enabled_level(hwmgr,
|
|
data->dpm_level_enable_mask.pcie_dpm_enable_mask);
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_PCIeDPM_ForceLevel,
|
|
(1 << level));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
|
|
enum amd_dpm_forced_level level)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (level) {
|
|
case AMD_DPM_FORCED_LEVEL_HIGH:
|
|
ret = fiji_force_dpm_highest(hwmgr);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case AMD_DPM_FORCED_LEVEL_LOW:
|
|
ret = fiji_force_dpm_lowest(hwmgr);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case AMD_DPM_FORCED_LEVEL_AUTO:
|
|
ret = fiji_unforce_dpm_levels(hwmgr);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
hwmgr->dpm_level = level;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return sizeof(struct fiji_power_state);
|
|
}
|
|
|
|
static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
|
|
void *state, struct pp_power_state *power_state,
|
|
void *pp_table, uint32_t classification_flag)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_power_state *fiji_power_state =
|
|
(struct fiji_power_state *)(&(power_state->hardware));
|
|
struct fiji_performance_level *performance_level;
|
|
ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
|
|
ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
|
|
(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
|
|
ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
|
|
(ATOM_Tonga_SCLK_Dependency_Table *)
|
|
(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
|
|
ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
|
|
(ATOM_Tonga_MCLK_Dependency_Table *)
|
|
(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
|
|
|
|
/* The following fields are not initialized here: id orderedList allStatesList */
|
|
power_state->classification.ui_label =
|
|
(le16_to_cpu(state_entry->usClassification) &
|
|
ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
|
|
ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
|
|
power_state->classification.flags = classification_flag;
|
|
/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
|
|
|
|
power_state->classification.temporary_state = false;
|
|
power_state->classification.to_be_deleted = false;
|
|
|
|
power_state->validation.disallowOnDC =
|
|
(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
|
|
ATOM_Tonga_DISALLOW_ON_DC));
|
|
|
|
power_state->pcie.lanes = 0;
|
|
|
|
power_state->display.disableFrameModulation = false;
|
|
power_state->display.limitRefreshrate = false;
|
|
power_state->display.enableVariBright =
|
|
(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
|
|
ATOM_Tonga_ENABLE_VARIBRIGHT));
|
|
|
|
power_state->validation.supportedPowerLevels = 0;
|
|
power_state->uvd_clocks.VCLK = 0;
|
|
power_state->uvd_clocks.DCLK = 0;
|
|
power_state->temperatures.min = 0;
|
|
power_state->temperatures.max = 0;
|
|
|
|
performance_level = &(fiji_power_state->performance_levels
|
|
[fiji_power_state->performance_level_count++]);
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
(fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
|
|
"Performance levels exceeds SMC limit!",
|
|
return -1);
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
(fiji_power_state->performance_level_count <=
|
|
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
|
|
"Performance levels exceeds Driver limit!",
|
|
return -1);
|
|
|
|
/* Performance levels are arranged from low to high. */
|
|
performance_level->memory_clock = mclk_dep_table->entries
|
|
[state_entry->ucMemoryClockIndexLow].ulMclk;
|
|
performance_level->engine_clock = sclk_dep_table->entries
|
|
[state_entry->ucEngineClockIndexLow].ulSclk;
|
|
performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
|
|
state_entry->ucPCIEGenLow);
|
|
performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
|
|
state_entry->ucPCIELaneHigh);
|
|
|
|
performance_level = &(fiji_power_state->performance_levels
|
|
[fiji_power_state->performance_level_count++]);
|
|
performance_level->memory_clock = mclk_dep_table->entries
|
|
[state_entry->ucMemoryClockIndexHigh].ulMclk;
|
|
performance_level->engine_clock = sclk_dep_table->entries
|
|
[state_entry->ucEngineClockIndexHigh].ulSclk;
|
|
performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
|
|
state_entry->ucPCIEGenHigh);
|
|
performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
|
|
state_entry->ucPCIELaneHigh);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
|
|
unsigned long entry_index, struct pp_power_state *state)
|
|
{
|
|
int result;
|
|
struct fiji_power_state *ps;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
|
|
table_info->vdd_dep_on_mclk;
|
|
|
|
state->hardware.magic = PHM_VIslands_Magic;
|
|
|
|
ps = (struct fiji_power_state *)(&state->hardware);
|
|
|
|
result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
|
|
fiji_get_pp_table_entry_callback_func);
|
|
|
|
/* This is the earliest time we have all the dependency table and the VBIOS boot state
|
|
* as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
|
|
* if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
|
|
*/
|
|
if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
|
|
if (dep_mclk_table->entries[0].clk !=
|
|
data->vbios_boot_state.mclk_bootup_value)
|
|
printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
|
|
"does not match VBIOS boot MCLK level");
|
|
if (dep_mclk_table->entries[0].vddci !=
|
|
data->vbios_boot_state.vddci_bootup_value)
|
|
printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
|
|
"does not match VBIOS boot VDDCI level");
|
|
}
|
|
|
|
/* set DC compatible flag if this state supports DC */
|
|
if (!state->validation.disallowOnDC)
|
|
ps->dc_compatible = true;
|
|
|
|
if (state->classification.flags & PP_StateClassificationFlag_ACPI)
|
|
data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
|
|
|
|
ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
|
|
ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
|
|
|
|
if (!result) {
|
|
uint32_t i;
|
|
|
|
switch (state->classification.ui_label) {
|
|
case PP_StateUILabel_Performance:
|
|
data->use_pcie_performance_levels = true;
|
|
|
|
for (i = 0; i < ps->performance_level_count; i++) {
|
|
if (data->pcie_gen_performance.max <
|
|
ps->performance_levels[i].pcie_gen)
|
|
data->pcie_gen_performance.max =
|
|
ps->performance_levels[i].pcie_gen;
|
|
|
|
if (data->pcie_gen_performance.min >
|
|
ps->performance_levels[i].pcie_gen)
|
|
data->pcie_gen_performance.min =
|
|
ps->performance_levels[i].pcie_gen;
|
|
|
|
if (data->pcie_lane_performance.max <
|
|
ps->performance_levels[i].pcie_lane)
|
|
data->pcie_lane_performance.max =
|
|
ps->performance_levels[i].pcie_lane;
|
|
|
|
if (data->pcie_lane_performance.min >
|
|
ps->performance_levels[i].pcie_lane)
|
|
data->pcie_lane_performance.min =
|
|
ps->performance_levels[i].pcie_lane;
|
|
}
|
|
break;
|
|
case PP_StateUILabel_Battery:
|
|
data->use_pcie_power_saving_levels = true;
|
|
|
|
for (i = 0; i < ps->performance_level_count; i++) {
|
|
if (data->pcie_gen_power_saving.max <
|
|
ps->performance_levels[i].pcie_gen)
|
|
data->pcie_gen_power_saving.max =
|
|
ps->performance_levels[i].pcie_gen;
|
|
|
|
if (data->pcie_gen_power_saving.min >
|
|
ps->performance_levels[i].pcie_gen)
|
|
data->pcie_gen_power_saving.min =
|
|
ps->performance_levels[i].pcie_gen;
|
|
|
|
if (data->pcie_lane_power_saving.max <
|
|
ps->performance_levels[i].pcie_lane)
|
|
data->pcie_lane_power_saving.max =
|
|
ps->performance_levels[i].pcie_lane;
|
|
|
|
if (data->pcie_lane_power_saving.min >
|
|
ps->performance_levels[i].pcie_lane)
|
|
data->pcie_lane_power_saving.min =
|
|
ps->performance_levels[i].pcie_lane;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
|
|
struct pp_power_state *request_ps,
|
|
const struct pp_power_state *current_ps)
|
|
{
|
|
struct fiji_power_state *fiji_ps =
|
|
cast_phw_fiji_power_state(&request_ps->hardware);
|
|
uint32_t sclk;
|
|
uint32_t mclk;
|
|
struct PP_Clocks minimum_clocks = {0};
|
|
bool disable_mclk_switching;
|
|
bool disable_mclk_switching_for_frame_lock;
|
|
struct cgs_display_info info = {0};
|
|
const struct phm_clock_and_voltage_limits *max_limits;
|
|
uint32_t i;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
int32_t count;
|
|
int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
|
|
|
|
data->battery_state = (PP_StateUILabel_Battery ==
|
|
request_ps->classification.ui_label);
|
|
|
|
PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
|
|
"VI should always have 2 performance levels",);
|
|
|
|
max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
|
|
&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
|
|
&(hwmgr->dyn_state.max_clock_voltage_on_dc);
|
|
|
|
/* Cap clock DPM tables at DC MAX if it is in DC. */
|
|
if (PP_PowerSource_DC == hwmgr->power_source) {
|
|
for (i = 0; i < fiji_ps->performance_level_count; i++) {
|
|
if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
|
|
fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
|
|
if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
|
|
fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
|
|
}
|
|
}
|
|
|
|
fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
|
|
fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
|
|
|
|
fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
|
|
|
|
cgs_get_active_displays_info(hwmgr->device, &info);
|
|
|
|
/*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
|
|
|
|
/* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StablePState)) {
|
|
max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
|
|
stable_pstate_sclk = (max_limits->sclk * 75) / 100;
|
|
|
|
for (count = table_info->vdd_dep_on_sclk->count - 1;
|
|
count >= 0; count--) {
|
|
if (stable_pstate_sclk >=
|
|
table_info->vdd_dep_on_sclk->entries[count].clk) {
|
|
stable_pstate_sclk =
|
|
table_info->vdd_dep_on_sclk->entries[count].clk;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (count < 0)
|
|
stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
|
|
|
|
stable_pstate_mclk = max_limits->mclk;
|
|
|
|
minimum_clocks.engineClock = stable_pstate_sclk;
|
|
minimum_clocks.memoryClock = stable_pstate_mclk;
|
|
}
|
|
|
|
if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
|
|
minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
|
|
|
|
if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
|
|
minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
|
|
|
|
fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
|
|
|
|
if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
|
|
PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
|
|
hwmgr->platform_descriptor.overdriveLimit.engineClock),
|
|
"Overdrive sclk exceeds limit",
|
|
hwmgr->gfx_arbiter.sclk_over_drive =
|
|
hwmgr->platform_descriptor.overdriveLimit.engineClock);
|
|
|
|
if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
|
|
fiji_ps->performance_levels[1].engine_clock =
|
|
hwmgr->gfx_arbiter.sclk_over_drive;
|
|
}
|
|
|
|
if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
|
|
PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
|
|
hwmgr->platform_descriptor.overdriveLimit.memoryClock),
|
|
"Overdrive mclk exceeds limit",
|
|
hwmgr->gfx_arbiter.mclk_over_drive =
|
|
hwmgr->platform_descriptor.overdriveLimit.memoryClock);
|
|
|
|
if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
|
|
fiji_ps->performance_levels[1].memory_clock =
|
|
hwmgr->gfx_arbiter.mclk_over_drive;
|
|
}
|
|
|
|
disable_mclk_switching_for_frame_lock = phm_cap_enabled(
|
|
hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
|
|
|
|
disable_mclk_switching = (1 < info.display_count) ||
|
|
disable_mclk_switching_for_frame_lock;
|
|
|
|
sclk = fiji_ps->performance_levels[0].engine_clock;
|
|
mclk = fiji_ps->performance_levels[0].memory_clock;
|
|
|
|
if (disable_mclk_switching)
|
|
mclk = fiji_ps->performance_levels
|
|
[fiji_ps->performance_level_count - 1].memory_clock;
|
|
|
|
if (sclk < minimum_clocks.engineClock)
|
|
sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
|
|
max_limits->sclk : minimum_clocks.engineClock;
|
|
|
|
if (mclk < minimum_clocks.memoryClock)
|
|
mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
|
|
max_limits->mclk : minimum_clocks.memoryClock;
|
|
|
|
fiji_ps->performance_levels[0].engine_clock = sclk;
|
|
fiji_ps->performance_levels[0].memory_clock = mclk;
|
|
|
|
fiji_ps->performance_levels[1].engine_clock =
|
|
(fiji_ps->performance_levels[1].engine_clock >=
|
|
fiji_ps->performance_levels[0].engine_clock) ?
|
|
fiji_ps->performance_levels[1].engine_clock :
|
|
fiji_ps->performance_levels[0].engine_clock;
|
|
|
|
if (disable_mclk_switching) {
|
|
if (mclk < fiji_ps->performance_levels[1].memory_clock)
|
|
mclk = fiji_ps->performance_levels[1].memory_clock;
|
|
|
|
fiji_ps->performance_levels[0].memory_clock = mclk;
|
|
fiji_ps->performance_levels[1].memory_clock = mclk;
|
|
} else {
|
|
if (fiji_ps->performance_levels[1].memory_clock <
|
|
fiji_ps->performance_levels[0].memory_clock)
|
|
fiji_ps->performance_levels[1].memory_clock =
|
|
fiji_ps->performance_levels[0].memory_clock;
|
|
}
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StablePState)) {
|
|
for (i = 0; i < fiji_ps->performance_level_count; i++) {
|
|
fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
|
|
fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
|
|
fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
|
|
fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
|
|
{
|
|
const struct phm_set_power_state_input *states =
|
|
(const struct phm_set_power_state_input *)input;
|
|
const struct fiji_power_state *fiji_ps =
|
|
cast_const_phw_fiji_power_state(states->pnew_state);
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
|
|
uint32_t sclk = fiji_ps->performance_levels
|
|
[fiji_ps->performance_level_count - 1].engine_clock;
|
|
struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
|
|
uint32_t mclk = fiji_ps->performance_levels
|
|
[fiji_ps->performance_level_count - 1].memory_clock;
|
|
struct PP_Clocks min_clocks = {0};
|
|
uint32_t i;
|
|
struct cgs_display_info info = {0};
|
|
|
|
data->need_update_smu7_dpm_table = 0;
|
|
|
|
for (i = 0; i < sclk_table->count; i++) {
|
|
if (sclk == sclk_table->dpm_levels[i].value)
|
|
break;
|
|
}
|
|
|
|
if (i >= sclk_table->count)
|
|
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
|
|
else {
|
|
/* TODO: Check SCLK in DAL's minimum clocks
|
|
* in case DeepSleep divider update is required.
|
|
*/
|
|
if(data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR)
|
|
data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
|
|
}
|
|
|
|
for (i = 0; i < mclk_table->count; i++) {
|
|
if (mclk == mclk_table->dpm_levels[i].value)
|
|
break;
|
|
}
|
|
|
|
if (i >= mclk_table->count)
|
|
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
|
|
|
|
cgs_get_active_displays_info(hwmgr->device, &info);
|
|
|
|
if (data->display_timing.num_existing_displays != info.display_count)
|
|
data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
|
|
const struct fiji_power_state *fiji_ps)
|
|
{
|
|
uint32_t i;
|
|
uint32_t sclk, max_sclk = 0;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
struct fiji_dpm_table *dpm_table = &data->dpm_table;
|
|
|
|
for (i = 0; i < fiji_ps->performance_level_count; i++) {
|
|
sclk = fiji_ps->performance_levels[i].engine_clock;
|
|
if (max_sclk < sclk)
|
|
max_sclk = sclk;
|
|
}
|
|
|
|
for (i = 0; i < dpm_table->sclk_table.count; i++) {
|
|
if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
|
|
return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
|
|
dpm_table->pcie_speed_table.dpm_levels
|
|
[dpm_table->pcie_speed_table.count - 1].value :
|
|
dpm_table->pcie_speed_table.dpm_levels[i].value);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_request_link_speed_change_before_state_change(
|
|
struct pp_hwmgr *hwmgr, const void *input)
|
|
{
|
|
const struct phm_set_power_state_input *states =
|
|
(const struct phm_set_power_state_input *)input;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
const struct fiji_power_state *fiji_nps =
|
|
cast_const_phw_fiji_power_state(states->pnew_state);
|
|
const struct fiji_power_state *fiji_cps =
|
|
cast_const_phw_fiji_power_state(states->pcurrent_state);
|
|
|
|
uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
|
|
uint16_t current_link_speed;
|
|
|
|
if (data->force_pcie_gen == PP_PCIEGenInvalid)
|
|
current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
|
|
else
|
|
current_link_speed = data->force_pcie_gen;
|
|
|
|
data->force_pcie_gen = PP_PCIEGenInvalid;
|
|
data->pspp_notify_required = false;
|
|
if (target_link_speed > current_link_speed) {
|
|
switch(target_link_speed) {
|
|
case PP_PCIEGen3:
|
|
if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
|
|
break;
|
|
data->force_pcie_gen = PP_PCIEGen2;
|
|
if (current_link_speed == PP_PCIEGen2)
|
|
break;
|
|
case PP_PCIEGen2:
|
|
if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
|
|
break;
|
|
default:
|
|
data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
|
|
break;
|
|
}
|
|
} else {
|
|
if (target_link_speed < current_link_speed)
|
|
data->pspp_notify_required = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
if (0 == data->need_update_smu7_dpm_table)
|
|
return 0;
|
|
|
|
if ((0 == data->sclk_dpm_key_disabled) &&
|
|
(data->need_update_smu7_dpm_table &
|
|
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
|
|
PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
|
|
"Trying to freeze SCLK DPM when DPM is disabled",);
|
|
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_SCLKDPM_FreezeLevel),
|
|
"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
|
|
return -1);
|
|
}
|
|
|
|
if ((0 == data->mclk_dpm_key_disabled) &&
|
|
(data->need_update_smu7_dpm_table &
|
|
DPMTABLE_OD_UPDATE_MCLK)) {
|
|
PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
|
|
"Trying to freeze MCLK DPM when DPM is disabled",);
|
|
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_MCLKDPM_FreezeLevel),
|
|
"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
|
|
return -1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
|
|
struct pp_hwmgr *hwmgr, const void *input)
|
|
{
|
|
int result = 0;
|
|
const struct phm_set_power_state_input *states =
|
|
(const struct phm_set_power_state_input *)input;
|
|
const struct fiji_power_state *fiji_ps =
|
|
cast_const_phw_fiji_power_state(states->pnew_state);
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint32_t sclk = fiji_ps->performance_levels
|
|
[fiji_ps->performance_level_count - 1].engine_clock;
|
|
uint32_t mclk = fiji_ps->performance_levels
|
|
[fiji_ps->performance_level_count - 1].memory_clock;
|
|
struct fiji_dpm_table *dpm_table = &data->dpm_table;
|
|
|
|
struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
|
|
uint32_t dpm_count, clock_percent;
|
|
uint32_t i;
|
|
|
|
if (0 == data->need_update_smu7_dpm_table)
|
|
return 0;
|
|
|
|
if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
|
|
dpm_table->sclk_table.dpm_levels
|
|
[dpm_table->sclk_table.count - 1].value = sclk;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_OD6PlusinACSupport) ||
|
|
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_OD6PlusinDCSupport)) {
|
|
/* Need to do calculation based on the golden DPM table
|
|
* as the Heatmap GPU Clock axis is also based on the default values
|
|
*/
|
|
PP_ASSERT_WITH_CODE(
|
|
(golden_dpm_table->sclk_table.dpm_levels
|
|
[golden_dpm_table->sclk_table.count - 1].value != 0),
|
|
"Divide by 0!",
|
|
return -1);
|
|
dpm_count = dpm_table->sclk_table.count < 2 ?
|
|
0 : dpm_table->sclk_table.count - 2;
|
|
for (i = dpm_count; i > 1; i--) {
|
|
if (sclk > golden_dpm_table->sclk_table.dpm_levels
|
|
[golden_dpm_table->sclk_table.count-1].value) {
|
|
clock_percent =
|
|
((sclk - golden_dpm_table->sclk_table.dpm_levels
|
|
[golden_dpm_table->sclk_table.count-1].value) * 100) /
|
|
golden_dpm_table->sclk_table.dpm_levels
|
|
[golden_dpm_table->sclk_table.count-1].value;
|
|
|
|
dpm_table->sclk_table.dpm_levels[i].value =
|
|
golden_dpm_table->sclk_table.dpm_levels[i].value +
|
|
(golden_dpm_table->sclk_table.dpm_levels[i].value *
|
|
clock_percent)/100;
|
|
|
|
} else if (golden_dpm_table->sclk_table.dpm_levels
|
|
[dpm_table->sclk_table.count-1].value > sclk) {
|
|
clock_percent =
|
|
((golden_dpm_table->sclk_table.dpm_levels
|
|
[golden_dpm_table->sclk_table.count - 1].value - sclk) *
|
|
100) /
|
|
golden_dpm_table->sclk_table.dpm_levels
|
|
[golden_dpm_table->sclk_table.count-1].value;
|
|
|
|
dpm_table->sclk_table.dpm_levels[i].value =
|
|
golden_dpm_table->sclk_table.dpm_levels[i].value -
|
|
(golden_dpm_table->sclk_table.dpm_levels[i].value *
|
|
clock_percent) / 100;
|
|
} else
|
|
dpm_table->sclk_table.dpm_levels[i].value =
|
|
golden_dpm_table->sclk_table.dpm_levels[i].value;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
|
|
dpm_table->mclk_table.dpm_levels
|
|
[dpm_table->mclk_table.count - 1].value = mclk;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_OD6PlusinACSupport) ||
|
|
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_OD6PlusinDCSupport)) {
|
|
|
|
PP_ASSERT_WITH_CODE(
|
|
(golden_dpm_table->mclk_table.dpm_levels
|
|
[golden_dpm_table->mclk_table.count-1].value != 0),
|
|
"Divide by 0!",
|
|
return -1);
|
|
dpm_count = dpm_table->mclk_table.count < 2 ?
|
|
0 : dpm_table->mclk_table.count - 2;
|
|
for (i = dpm_count; i > 1; i--) {
|
|
if (mclk > golden_dpm_table->mclk_table.dpm_levels
|
|
[golden_dpm_table->mclk_table.count-1].value) {
|
|
clock_percent = ((mclk -
|
|
golden_dpm_table->mclk_table.dpm_levels
|
|
[golden_dpm_table->mclk_table.count-1].value) * 100) /
|
|
golden_dpm_table->mclk_table.dpm_levels
|
|
[golden_dpm_table->mclk_table.count-1].value;
|
|
|
|
dpm_table->mclk_table.dpm_levels[i].value =
|
|
golden_dpm_table->mclk_table.dpm_levels[i].value +
|
|
(golden_dpm_table->mclk_table.dpm_levels[i].value *
|
|
clock_percent) / 100;
|
|
|
|
} else if (golden_dpm_table->mclk_table.dpm_levels
|
|
[dpm_table->mclk_table.count-1].value > mclk) {
|
|
clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
|
|
[golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
|
|
golden_dpm_table->mclk_table.dpm_levels
|
|
[golden_dpm_table->mclk_table.count-1].value;
|
|
|
|
dpm_table->mclk_table.dpm_levels[i].value =
|
|
golden_dpm_table->mclk_table.dpm_levels[i].value -
|
|
(golden_dpm_table->mclk_table.dpm_levels[i].value *
|
|
clock_percent) / 100;
|
|
} else
|
|
dpm_table->mclk_table.dpm_levels[i].value =
|
|
golden_dpm_table->mclk_table.dpm_levels[i].value;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (data->need_update_smu7_dpm_table &
|
|
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
|
|
result = fiji_populate_all_memory_levels(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
|
|
return result);
|
|
}
|
|
|
|
if (data->need_update_smu7_dpm_table &
|
|
(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
|
|
/*populate MCLK dpm table to SMU7 */
|
|
result = fiji_populate_all_memory_levels(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
|
|
return result);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
|
|
struct fiji_single_dpm_table * dpm_table,
|
|
uint32_t low_limit, uint32_t high_limit)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < dpm_table->count; i++) {
|
|
if ((dpm_table->dpm_levels[i].value < low_limit) ||
|
|
(dpm_table->dpm_levels[i].value > high_limit))
|
|
dpm_table->dpm_levels[i].enabled = false;
|
|
else
|
|
dpm_table->dpm_levels[i].enabled = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
|
|
const struct fiji_power_state *fiji_ps)
|
|
{
|
|
int result = 0;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
uint32_t high_limit_count;
|
|
|
|
PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
|
|
"power state did not have any performance level",
|
|
return -1);
|
|
|
|
high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
|
|
|
|
fiji_trim_single_dpm_states(hwmgr,
|
|
&(data->dpm_table.sclk_table),
|
|
fiji_ps->performance_levels[0].engine_clock,
|
|
fiji_ps->performance_levels[high_limit_count].engine_clock);
|
|
|
|
fiji_trim_single_dpm_states(hwmgr,
|
|
&(data->dpm_table.mclk_table),
|
|
fiji_ps->performance_levels[0].memory_clock,
|
|
fiji_ps->performance_levels[high_limit_count].memory_clock);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_generate_dpm_level_enable_mask(
|
|
struct pp_hwmgr *hwmgr, const void *input)
|
|
{
|
|
int result;
|
|
const struct phm_set_power_state_input *states =
|
|
(const struct phm_set_power_state_input *)input;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
const struct fiji_power_state *fiji_ps =
|
|
cast_const_phw_fiji_power_state(states->pnew_state);
|
|
|
|
result = fiji_trim_dpm_states(hwmgr, fiji_ps);
|
|
if (result)
|
|
return result;
|
|
|
|
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
|
|
fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
|
|
data->dpm_level_enable_mask.mclk_dpm_enable_mask =
|
|
fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
|
|
data->last_mclk_dpm_enable_mask =
|
|
data->dpm_level_enable_mask.mclk_dpm_enable_mask;
|
|
|
|
if (data->uvd_enabled) {
|
|
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
|
|
data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
|
|
}
|
|
|
|
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
|
|
fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
|
|
{
|
|
return smum_send_msg_to_smc(hwmgr->smumgr, enable?
|
|
PPSMC_MSG_VCEDPM_Enable :
|
|
PPSMC_MSG_VCEDPM_Disable);
|
|
}
|
|
|
|
static int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
|
|
{
|
|
const struct phm_set_power_state_input *states =
|
|
(const struct phm_set_power_state_input *)input;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
const struct fiji_power_state *fiji_nps =
|
|
cast_const_phw_fiji_power_state(states->pnew_state);
|
|
const struct fiji_power_state *fiji_cps =
|
|
cast_const_phw_fiji_power_state(states->pcurrent_state);
|
|
|
|
uint32_t mm_boot_level_offset, mm_boot_level_value;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
if (fiji_nps->vce_clks.evclk >0 &&
|
|
(fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
|
|
data->smc_state_table.VceBootLevel =
|
|
(uint8_t) (table_info->mm_dep_table->count - 1);
|
|
|
|
mm_boot_level_offset = data->dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
|
|
mm_boot_level_offset /= 4;
|
|
mm_boot_level_offset *= 4;
|
|
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset);
|
|
mm_boot_level_value &= 0xFF00FFFF;
|
|
mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
|
|
cgs_write_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StablePState)) {
|
|
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_VCEDPM_SetEnabledMask,
|
|
(uint32_t)1 << data->smc_state_table.VceBootLevel);
|
|
|
|
fiji_enable_disable_vce_dpm(hwmgr, true);
|
|
} else if (fiji_nps->vce_clks.evclk == 0 &&
|
|
fiji_cps != NULL &&
|
|
fiji_cps->vce_clks.evclk > 0)
|
|
fiji_enable_disable_vce_dpm(hwmgr, false);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
int result = 0;
|
|
uint32_t low_sclk_interrupt_threshold = 0;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_SclkThrottleLowNotification)
|
|
&& (hwmgr->gfx_arbiter.sclk_threshold !=
|
|
data->low_sclk_interrupt_threshold)) {
|
|
data->low_sclk_interrupt_threshold =
|
|
hwmgr->gfx_arbiter.sclk_threshold;
|
|
low_sclk_interrupt_threshold =
|
|
data->low_sclk_interrupt_threshold;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
|
|
|
|
result = fiji_copy_bytes_to_smc(
|
|
hwmgr->smumgr,
|
|
data->dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable,
|
|
LowSclkInterruptThreshold),
|
|
(uint8_t *)&low_sclk_interrupt_threshold,
|
|
sizeof(uint32_t),
|
|
data->sram_end);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
if (data->need_update_smu7_dpm_table &
|
|
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
|
|
return fiji_program_memory_timing_parameters(hwmgr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
if (0 == data->need_update_smu7_dpm_table)
|
|
return 0;
|
|
|
|
if ((0 == data->sclk_dpm_key_disabled) &&
|
|
(data->need_update_smu7_dpm_table &
|
|
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
|
|
|
|
PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
|
|
"Trying to Unfreeze SCLK DPM when DPM is disabled",);
|
|
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_SCLKDPM_UnfreezeLevel),
|
|
"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
|
|
return -1);
|
|
}
|
|
|
|
if ((0 == data->mclk_dpm_key_disabled) &&
|
|
(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
|
|
|
|
PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
|
|
"Trying to Unfreeze MCLK DPM when DPM is disabled",);
|
|
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
|
|
PPSMC_MSG_SCLKDPM_UnfreezeLevel),
|
|
"Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
|
|
return -1);
|
|
}
|
|
|
|
data->need_update_smu7_dpm_table = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Look up the voltaged based on DAL's requested level.
|
|
* and then send the requested VDDC voltage to SMC
|
|
*/
|
|
static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return;
|
|
}
|
|
|
|
int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
|
|
/* Apply minimum voltage based on DAL's request level */
|
|
fiji_apply_dal_minimum_voltage_request(hwmgr);
|
|
|
|
if (0 == data->sclk_dpm_key_disabled) {
|
|
/* Checking if DPM is running. If we discover hang because of this,
|
|
* we should skip this message.
|
|
*/
|
|
if (!fiji_is_dpm_running(hwmgr))
|
|
printk(KERN_ERR "[ powerplay ] "
|
|
"Trying to set Enable Mask when DPM is disabled \n");
|
|
|
|
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
|
|
result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_SCLKDPM_SetEnabledMask,
|
|
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Set Sclk Dpm enable Mask failed", return -1);
|
|
}
|
|
}
|
|
|
|
if (0 == data->mclk_dpm_key_disabled) {
|
|
/* Checking if DPM is running. If we discover hang because of this,
|
|
* we should skip this message.
|
|
*/
|
|
if (!fiji_is_dpm_running(hwmgr))
|
|
printk(KERN_ERR "[ powerplay ]"
|
|
" Trying to set Enable Mask when DPM is disabled \n");
|
|
|
|
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
|
|
result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
|
|
PPSMC_MSG_MCLKDPM_SetEnabledMask,
|
|
data->dpm_level_enable_mask.mclk_dpm_enable_mask);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Set Mclk Dpm enable Mask failed", return -1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_notify_link_speed_change_after_state_change(
|
|
struct pp_hwmgr *hwmgr, const void *input)
|
|
{
|
|
const struct phm_set_power_state_input *states =
|
|
(const struct phm_set_power_state_input *)input;
|
|
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
|
|
const struct fiji_power_state *fiji_ps =
|
|
cast_const_phw_fiji_power_state(states->pnew_state);
|
|
uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
|
|
uint8_t request;
|
|
|
|
if (data->pspp_notify_required) {
|
|
if (target_link_speed == PP_PCIEGen3)
|
|
request = PCIE_PERF_REQ_GEN3;
|
|
else if (target_link_speed == PP_PCIEGen2)
|
|
request = PCIE_PERF_REQ_GEN2;
|
|
else
|
|
request = PCIE_PERF_REQ_GEN1;
|
|
|
|
if(request == PCIE_PERF_REQ_GEN1 &&
|
|
fiji_get_current_pcie_speed(hwmgr) > 0)
|
|
return 0;
|
|
|
|
if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
|
|
if (PP_PCIEGen2 == target_link_speed)
|
|
printk("PSPP request to switch to Gen2 from Gen3 Failed!");
|
|
else
|
|
printk("PSPP request to switch to Gen1 from Gen2 Failed!");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
|
|
const void *input)
|
|
{
|
|
int tmp_result, result = 0;
|
|
|
|
tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to find DPM states clocks in DPM table!",
|
|
result = tmp_result);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_PCIEPerformanceRequest)) {
|
|
tmp_result =
|
|
fiji_request_link_speed_change_before_state_change(hwmgr, input);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to request link speed change before state change!",
|
|
result = tmp_result);
|
|
}
|
|
|
|
tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to freeze SCLK MCLK DPM!", result = tmp_result);
|
|
|
|
tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to populate and upload SCLK MCLK DPM levels!",
|
|
result = tmp_result);
|
|
|
|
tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to generate DPM level enabled mask!",
|
|
result = tmp_result);
|
|
|
|
tmp_result = fiji_update_vce_dpm(hwmgr, input);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to update VCE DPM!",
|
|
result = tmp_result);
|
|
|
|
tmp_result = fiji_update_sclk_threshold(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to update SCLK threshold!",
|
|
result = tmp_result);
|
|
|
|
tmp_result = fiji_program_mem_timing_parameters(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to program memory timing parameters!",
|
|
result = tmp_result);
|
|
|
|
tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to unfreeze SCLK MCLK DPM!",
|
|
result = tmp_result);
|
|
|
|
tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to upload DPM level enabled mask!",
|
|
result = tmp_result);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_PCIEPerformanceRequest)) {
|
|
tmp_result =
|
|
fiji_notify_link_speed_change_after_state_change(hwmgr, input);
|
|
PP_ASSERT_WITH_CODE((0 == tmp_result),
|
|
"Failed to notify link speed change after state change!",
|
|
result = tmp_result);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
|
|
{
|
|
struct pp_power_state *ps;
|
|
struct fiji_power_state *fiji_ps;
|
|
|
|
if (hwmgr == NULL)
|
|
return -EINVAL;
|
|
|
|
ps = hwmgr->request_ps;
|
|
|
|
if (ps == NULL)
|
|
return -EINVAL;
|
|
|
|
fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
|
|
|
|
if (low)
|
|
return fiji_ps->performance_levels[0].engine_clock;
|
|
else
|
|
return fiji_ps->performance_levels
|
|
[fiji_ps->performance_level_count-1].engine_clock;
|
|
}
|
|
|
|
static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
|
|
{
|
|
struct pp_power_state *ps;
|
|
struct fiji_power_state *fiji_ps;
|
|
|
|
if (hwmgr == NULL)
|
|
return -EINVAL;
|
|
|
|
ps = hwmgr->request_ps;
|
|
|
|
if (ps == NULL)
|
|
return -EINVAL;
|
|
|
|
fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
|
|
|
|
if (low)
|
|
return fiji_ps->performance_levels[0].memory_clock;
|
|
else
|
|
return fiji_ps->performance_levels
|
|
[fiji_ps->performance_level_count-1].memory_clock;
|
|
}
|
|
|
|
static void fiji_print_current_perforce_level(
|
|
struct pp_hwmgr *hwmgr, struct seq_file *m)
|
|
{
|
|
uint32_t sclk, mclk;
|
|
|
|
smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
|
|
|
|
sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
|
|
|
|
smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
|
|
|
|
mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
|
|
seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
|
|
mclk / 100, sclk / 100);
|
|
}
|
|
|
|
static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
|
|
.backend_init = &fiji_hwmgr_backend_init,
|
|
.backend_fini = &tonga_hwmgr_backend_fini,
|
|
.asic_setup = &fiji_setup_asic_task,
|
|
.dynamic_state_management_enable = &fiji_enable_dpm_tasks,
|
|
.force_dpm_level = &fiji_dpm_force_dpm_level,
|
|
.get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
|
|
.get_power_state_size = &fiji_get_power_state_size,
|
|
.get_pp_table_entry = &fiji_get_pp_table_entry,
|
|
.patch_boot_state = &fiji_patch_boot_state,
|
|
.apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
|
|
.power_state_set = &fiji_set_power_state_tasks,
|
|
.get_sclk = &fiji_dpm_get_sclk,
|
|
.get_mclk = &fiji_dpm_get_mclk,
|
|
.print_current_perforce_level = &fiji_print_current_perforce_level,
|
|
};
|
|
|
|
int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_hwmgr *data;
|
|
int ret = 0;
|
|
|
|
data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
|
|
if (data == NULL)
|
|
return -ENOMEM;
|
|
|
|
hwmgr->backend = data;
|
|
hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
|
|
hwmgr->pptable_func = &tonga_pptable_funcs;
|
|
return ret;
|
|
}
|