forked from Minki/linux
cb77cb5abe
blk_keyslot_manager is misnamed because it doesn't necessarily manage keyslots. It actually does several different things: - Contains the crypto capabilities of the device. - Provides functions to control the inline encryption hardware. Originally these were just for programming/evicting keyslots; however, new functionality (hardware-wrapped keys) will require new functions here which are unrelated to keyslots. Moreover, device-mapper devices already (ab)use "keyslot_evict" to pass key eviction requests to their underlying devices even though device-mapper devices don't have any keyslots themselves (so it really should be "evict_key", not "keyslot_evict"). - Sometimes (but not always!) it manages keyslots. Originally it always did, but device-mapper devices don't have keyslots themselves, so they use a "passthrough keyslot manager" which doesn't actually manage keyslots. This hack works, but the terminology is unnatural. Also, some hardware doesn't have keyslots and thus also uses a "passthrough keyslot manager" (support for such hardware is yet to be upstreamed, but it will happen eventually). Let's stop having keyslot managers which don't actually manage keyslots. Instead, rename blk_keyslot_manager to blk_crypto_profile. This is a fairly big change, since for consistency it also has to update keyslot manager-related function names, variable names, and comments -- not just the actual struct name. However it's still a fairly straightforward change, as it doesn't change any actual functionality. Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # For MMC Reviewed-by: Mike Snitzer <snitzer@redhat.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20211018180453.40441-4-ebiggers@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
244 lines
7.2 KiB
C
244 lines
7.2 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* CQHCI crypto engine (inline encryption) support
|
|
*
|
|
* Copyright 2020 Google LLC
|
|
*/
|
|
|
|
#include <linux/blk-crypto.h>
|
|
#include <linux/blk-crypto-profile.h>
|
|
#include <linux/mmc/host.h>
|
|
|
|
#include "cqhci-crypto.h"
|
|
|
|
/* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */
|
|
static const struct cqhci_crypto_alg_entry {
|
|
enum cqhci_crypto_alg alg;
|
|
enum cqhci_crypto_key_size key_size;
|
|
} cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
|
|
[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
|
|
.alg = CQHCI_CRYPTO_ALG_AES_XTS,
|
|
.key_size = CQHCI_CRYPTO_KEY_SIZE_256,
|
|
},
|
|
};
|
|
|
|
static inline struct cqhci_host *
|
|
cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile)
|
|
{
|
|
struct mmc_host *mmc =
|
|
container_of(profile, struct mmc_host, crypto_profile);
|
|
|
|
return mmc->cqe_private;
|
|
}
|
|
|
|
static int cqhci_crypto_program_key(struct cqhci_host *cq_host,
|
|
const union cqhci_crypto_cfg_entry *cfg,
|
|
int slot)
|
|
{
|
|
u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg);
|
|
int i;
|
|
|
|
if (cq_host->ops->program_key)
|
|
return cq_host->ops->program_key(cq_host, cfg, slot);
|
|
|
|
/* Clear CFGE */
|
|
cqhci_writel(cq_host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
|
|
|
|
/* Write the key */
|
|
for (i = 0; i < 16; i++) {
|
|
cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[i]),
|
|
slot_offset + i * sizeof(cfg->reg_val[0]));
|
|
}
|
|
/* Write dword 17 */
|
|
cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[17]),
|
|
slot_offset + 17 * sizeof(cfg->reg_val[0]));
|
|
/* Write dword 16, which includes the new value of CFGE */
|
|
cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[16]),
|
|
slot_offset + 16 * sizeof(cfg->reg_val[0]));
|
|
return 0;
|
|
}
|
|
|
|
static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key,
|
|
unsigned int slot)
|
|
|
|
{
|
|
struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
|
|
const union cqhci_crypto_cap_entry *ccap_array =
|
|
cq_host->crypto_cap_array;
|
|
const struct cqhci_crypto_alg_entry *alg =
|
|
&cqhci_crypto_algs[key->crypto_cfg.crypto_mode];
|
|
u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
|
|
int i;
|
|
int cap_idx = -1;
|
|
union cqhci_crypto_cfg_entry cfg = {};
|
|
int err;
|
|
|
|
BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
|
|
for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) {
|
|
if (ccap_array[i].algorithm_id == alg->alg &&
|
|
ccap_array[i].key_size == alg->key_size &&
|
|
(ccap_array[i].sdus_mask & data_unit_mask)) {
|
|
cap_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
if (WARN_ON(cap_idx < 0))
|
|
return -EOPNOTSUPP;
|
|
|
|
cfg.data_unit_size = data_unit_mask;
|
|
cfg.crypto_cap_idx = cap_idx;
|
|
cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE;
|
|
|
|
if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) {
|
|
/* In XTS mode, the blk_crypto_key's size is already doubled */
|
|
memcpy(cfg.crypto_key, key->raw, key->size/2);
|
|
memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2,
|
|
key->raw + key->size/2, key->size/2);
|
|
} else {
|
|
memcpy(cfg.crypto_key, key->raw, key->size);
|
|
}
|
|
|
|
err = cqhci_crypto_program_key(cq_host, &cfg, slot);
|
|
|
|
memzero_explicit(&cfg, sizeof(cfg));
|
|
return err;
|
|
}
|
|
|
|
static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot)
|
|
{
|
|
/*
|
|
* Clear the crypto cfg on the device. Clearing CFGE
|
|
* might not be sufficient, so just clear the entire cfg.
|
|
*/
|
|
union cqhci_crypto_cfg_entry cfg = {};
|
|
|
|
return cqhci_crypto_program_key(cq_host, &cfg, slot);
|
|
}
|
|
|
|
static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key,
|
|
unsigned int slot)
|
|
{
|
|
struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
|
|
|
|
return cqhci_crypto_clear_keyslot(cq_host, slot);
|
|
}
|
|
|
|
/*
|
|
* The keyslot management operations for CQHCI crypto.
|
|
*
|
|
* Note that the block layer ensures that these are never called while the host
|
|
* controller is runtime-suspended. However, the CQE won't necessarily be
|
|
* "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the
|
|
* CQHCI_CFG register. But the hardware allows that.
|
|
*/
|
|
static const struct blk_crypto_ll_ops cqhci_crypto_ops = {
|
|
.keyslot_program = cqhci_crypto_keyslot_program,
|
|
.keyslot_evict = cqhci_crypto_keyslot_evict,
|
|
};
|
|
|
|
static enum blk_crypto_mode_num
|
|
cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) {
|
|
BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
|
|
if (cqhci_crypto_algs[i].alg == cap.algorithm_id &&
|
|
cqhci_crypto_algs[i].key_size == cap.key_size)
|
|
return i;
|
|
}
|
|
return BLK_ENCRYPTION_MODE_INVALID;
|
|
}
|
|
|
|
/**
|
|
* cqhci_crypto_init - initialize CQHCI crypto support
|
|
* @cq_host: a cqhci host
|
|
*
|
|
* If the driver previously set MMC_CAP2_CRYPTO and the CQE declares
|
|
* CQHCI_CAP_CS, initialize the crypto support. This involves reading the
|
|
* crypto capability registers, initializing the blk_crypto_profile, clearing
|
|
* all keyslots, and enabling 128-bit task descriptors.
|
|
*
|
|
* Return: 0 if crypto was initialized or isn't supported; whether
|
|
* MMC_CAP2_CRYPTO remains set indicates which one of those cases it is.
|
|
* Also can return a negative errno value on unexpected error.
|
|
*/
|
|
int cqhci_crypto_init(struct cqhci_host *cq_host)
|
|
{
|
|
struct mmc_host *mmc = cq_host->mmc;
|
|
struct device *dev = mmc_dev(mmc);
|
|
struct blk_crypto_profile *profile = &mmc->crypto_profile;
|
|
unsigned int num_keyslots;
|
|
unsigned int cap_idx;
|
|
enum blk_crypto_mode_num blk_mode_num;
|
|
unsigned int slot;
|
|
int err = 0;
|
|
|
|
if (!(mmc->caps2 & MMC_CAP2_CRYPTO) ||
|
|
!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
|
|
goto out;
|
|
|
|
cq_host->crypto_capabilities.reg_val =
|
|
cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP));
|
|
|
|
cq_host->crypto_cfg_register =
|
|
(u32)cq_host->crypto_capabilities.config_array_ptr * 0x100;
|
|
|
|
cq_host->crypto_cap_array =
|
|
devm_kcalloc(dev, cq_host->crypto_capabilities.num_crypto_cap,
|
|
sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL);
|
|
if (!cq_host->crypto_cap_array) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* CCAP.CFGC is off by one, so the actual number of crypto
|
|
* configurations (a.k.a. keyslots) is CCAP.CFGC + 1.
|
|
*/
|
|
num_keyslots = cq_host->crypto_capabilities.config_count + 1;
|
|
|
|
err = devm_blk_crypto_profile_init(dev, profile, num_keyslots);
|
|
if (err)
|
|
goto out;
|
|
|
|
profile->ll_ops = cqhci_crypto_ops;
|
|
profile->dev = dev;
|
|
|
|
/* Unfortunately, CQHCI crypto only supports 32 DUN bits. */
|
|
profile->max_dun_bytes_supported = 4;
|
|
|
|
/*
|
|
* Cache all the crypto capabilities and advertise the supported crypto
|
|
* modes and data unit sizes to the block layer.
|
|
*/
|
|
for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap;
|
|
cap_idx++) {
|
|
cq_host->crypto_cap_array[cap_idx].reg_val =
|
|
cpu_to_le32(cqhci_readl(cq_host,
|
|
CQHCI_CRYPTOCAP +
|
|
cap_idx * sizeof(__le32)));
|
|
blk_mode_num = cqhci_find_blk_crypto_mode(
|
|
cq_host->crypto_cap_array[cap_idx]);
|
|
if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
|
|
continue;
|
|
profile->modes_supported[blk_mode_num] |=
|
|
cq_host->crypto_cap_array[cap_idx].sdus_mask * 512;
|
|
}
|
|
|
|
/* Clear all the keyslots so that we start in a known state. */
|
|
for (slot = 0; slot < num_keyslots; slot++)
|
|
cqhci_crypto_clear_keyslot(cq_host, slot);
|
|
|
|
/* CQHCI crypto requires the use of 128-bit task descriptors. */
|
|
cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
mmc->caps2 &= ~MMC_CAP2_CRYPTO;
|
|
return err;
|
|
}
|