linux/arch/arm64/kernel/entry-common.c
Mark Rutland f0c0d4b74d arm64: entry: unmask IRQ in el0_sp()
Currently, the EL0 SP alignment handler masks IRQs unnecessarily. It
does so due to historic code sharing of the EL0 SP and PC alignment
handlers, and branch predictor hardening applicable to the EL0 SP
handler.

We began masking IRQs in the EL0 SP alignment handler in commit:

  5dfc6ed277 ("arm64: entry: Apply BP hardening for high-priority synchronous exception")

... as this shared code with the EL0 PC alignment handler, and branch
predictor hardening made it necessary to disable IRQs for early parts of
the EL0 PC alignment handler. It was not necessary to mask IRQs during
EL0 SP alignment exceptions, but it was not considered harmful to do so.

This masking was carried forward into C code in commit:

  582f95835a ("arm64: entry: convert el0_sync to C")

... where the SP/PC cases were split into separate handlers, and the
masking duplicated.

Subsequently the EL0 PC alignment handler was refactored to perform
branch predictor hardening before unmasking IRQs, in commit:

  bfe298745a ("arm64: entry-common: don't touch daif before bp-hardening")

... but the redundant masking of IRQs was not removed from the EL0 SP
alignment handler.

Let's do so now, and make it interruptible as with most other
synchronous exception handlers.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
2020-03-11 14:34:28 +00:00

333 lines
7.3 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Exception handling code
*
* Copyright (C) 2019 ARM Ltd.
*/
#include <linux/context_tracking.h>
#include <linux/ptrace.h>
#include <linux/thread_info.h>
#include <asm/cpufeature.h>
#include <asm/daifflags.h>
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/kprobes.h>
#include <asm/mmu.h>
#include <asm/sysreg.h>
static void notrace el1_abort(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
local_daif_inherit(regs);
far = untagged_addr(far);
do_mem_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el1_abort);
static void notrace el1_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
local_daif_inherit(regs);
do_sp_pc_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el1_pc);
static void notrace el1_undef(struct pt_regs *regs)
{
local_daif_inherit(regs);
do_undefinstr(regs);
}
NOKPROBE_SYMBOL(el1_undef);
static void notrace el1_inv(struct pt_regs *regs, unsigned long esr)
{
local_daif_inherit(regs);
bad_mode(regs, 0, esr);
}
NOKPROBE_SYMBOL(el1_inv);
static void notrace el1_dbg(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
/*
* The CPU masked interrupts, and we are leaving them masked during
* do_debug_exception(). Update PMR as if we had called
* local_mask_daif().
*/
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
do_debug_exception(far, esr, regs);
}
NOKPROBE_SYMBOL(el1_dbg);
asmlinkage void notrace el1_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_DABT_CUR:
case ESR_ELx_EC_IABT_CUR:
el1_abort(regs, esr);
break;
/*
* We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
* recursive exception when trying to push the initial pt_regs.
*/
case ESR_ELx_EC_PC_ALIGN:
el1_pc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_UNKNOWN:
el1_undef(regs);
break;
case ESR_ELx_EC_BREAKPT_CUR:
case ESR_ELx_EC_SOFTSTP_CUR:
case ESR_ELx_EC_WATCHPT_CUR:
case ESR_ELx_EC_BRK64:
el1_dbg(regs, esr);
break;
default:
el1_inv(regs, esr);
};
}
NOKPROBE_SYMBOL(el1_sync_handler);
static void notrace el0_da(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
far = untagged_addr(far);
do_mem_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el0_da);
static void notrace el0_ia(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
/*
* We've taken an instruction abort from userspace and not yet
* re-enabled IRQs. If the address is a kernel address, apply
* BP hardening prior to enabling IRQs and pre-emption.
*/
if (!is_ttbr0_addr(far))
arm64_apply_bp_hardening();
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el0_ia);
static void notrace el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_acc(esr, regs);
}
NOKPROBE_SYMBOL(el0_fpsimd_acc);
static void notrace el0_sve_acc(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_sve_acc(esr, regs);
}
NOKPROBE_SYMBOL(el0_sve_acc);
static void notrace el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_exc(esr, regs);
}
NOKPROBE_SYMBOL(el0_fpsimd_exc);
static void notrace el0_sys(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_sysinstr(esr, regs);
}
NOKPROBE_SYMBOL(el0_sys);
static void notrace el0_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
if (!is_ttbr0_addr(instruction_pointer(regs)))
arm64_apply_bp_hardening();
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el0_pc);
static void notrace el0_sp(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(regs->sp, esr, regs);
}
NOKPROBE_SYMBOL(el0_sp);
static void notrace el0_undef(struct pt_regs *regs)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_undefinstr(regs);
}
NOKPROBE_SYMBOL(el0_undef);
static void notrace el0_inv(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
bad_el0_sync(regs, 0, esr);
}
NOKPROBE_SYMBOL(el0_inv);
static void notrace el0_dbg(struct pt_regs *regs, unsigned long esr)
{
/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
unsigned long far = read_sysreg(far_el1);
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
user_exit_irqoff();
do_debug_exception(far, esr, regs);
local_daif_restore(DAIF_PROCCTX_NOIRQ);
}
NOKPROBE_SYMBOL(el0_dbg);
static void notrace el0_svc(struct pt_regs *regs)
{
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
do_el0_svc(regs);
}
NOKPROBE_SYMBOL(el0_svc);
asmlinkage void notrace el0_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC64:
el0_svc(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_SVE:
el0_sve_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC64:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_WFx:
el0_sys(regs, esr);
break;
case ESR_ELx_EC_SP_ALIGN:
el0_sp(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
el0_undef(regs);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BRK64:
el0_dbg(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
NOKPROBE_SYMBOL(el0_sync_handler);
#ifdef CONFIG_COMPAT
static void notrace el0_cp15(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_cp15instr(esr, regs);
}
NOKPROBE_SYMBOL(el0_cp15);
static void notrace el0_svc_compat(struct pt_regs *regs)
{
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
do_el0_svc_compat(regs);
}
NOKPROBE_SYMBOL(el0_svc_compat);
asmlinkage void notrace el0_sync_compat_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC32:
el0_svc_compat(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC32:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_LS:
case ESR_ELx_EC_CP14_64:
el0_undef(regs);
break;
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
el0_cp15(regs, esr);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BKPT32:
el0_dbg(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
NOKPROBE_SYMBOL(el0_sync_compat_handler);
#endif /* CONFIG_COMPAT */