ce0d3c0a6f
Boris reported that the sparse_irq protection around __cpu_up() in the
generic code causes a regression on Xen. Xen allocates interrupts and
some more in the xen_cpu_up() function, so it deadlocks on the
sparse_irq_lock.
There is no simple fix for this and we really should have the
protection for all architectures, but for now the only solution is to
move it to x86 where actual wreckage due to the lack of protection has
been observed.
Reported-and-tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Fixes: a899418167
'hotplug: Prevent alloc/free of irq descriptors during cpu up/down'
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: xiao jin <jin.xiao@intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Cc: xen-devel <xen-devel@lists.xenproject.org>
1559 lines
37 KiB
C
1559 lines
37 KiB
C
/*
|
|
* x86 SMP booting functions
|
|
*
|
|
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
|
|
* (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
|
|
* Copyright 2001 Andi Kleen, SuSE Labs.
|
|
*
|
|
* Much of the core SMP work is based on previous work by Thomas Radke, to
|
|
* whom a great many thanks are extended.
|
|
*
|
|
* Thanks to Intel for making available several different Pentium,
|
|
* Pentium Pro and Pentium-II/Xeon MP machines.
|
|
* Original development of Linux SMP code supported by Caldera.
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*
|
|
* Fixes
|
|
* Felix Koop : NR_CPUS used properly
|
|
* Jose Renau : Handle single CPU case.
|
|
* Alan Cox : By repeated request 8) - Total BogoMIPS report.
|
|
* Greg Wright : Fix for kernel stacks panic.
|
|
* Erich Boleyn : MP v1.4 and additional changes.
|
|
* Matthias Sattler : Changes for 2.1 kernel map.
|
|
* Michel Lespinasse : Changes for 2.1 kernel map.
|
|
* Michael Chastain : Change trampoline.S to gnu as.
|
|
* Alan Cox : Dumb bug: 'B' step PPro's are fine
|
|
* Ingo Molnar : Added APIC timers, based on code
|
|
* from Jose Renau
|
|
* Ingo Molnar : various cleanups and rewrites
|
|
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
|
|
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
|
|
* Andi Kleen : Changed for SMP boot into long mode.
|
|
* Martin J. Bligh : Added support for multi-quad systems
|
|
* Dave Jones : Report invalid combinations of Athlon CPUs.
|
|
* Rusty Russell : Hacked into shape for new "hotplug" boot process.
|
|
* Andi Kleen : Converted to new state machine.
|
|
* Ashok Raj : CPU hotplug support
|
|
* Glauber Costa : i386 and x86_64 integration
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/err.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/tboot.h>
|
|
#include <linux/stackprotector.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/cpuidle.h>
|
|
|
|
#include <asm/acpi.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/realmode.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/mwait.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <asm/i8259.h>
|
|
#include <asm/realmode.h>
|
|
#include <asm/misc.h>
|
|
|
|
/* Number of siblings per CPU package */
|
|
int smp_num_siblings = 1;
|
|
EXPORT_SYMBOL(smp_num_siblings);
|
|
|
|
/* Last level cache ID of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
|
|
|
|
/* representing HT siblings of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
|
|
|
|
/* representing HT and core siblings of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
|
|
|
|
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
|
|
|
|
/* Per CPU bogomips and other parameters */
|
|
DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_info);
|
|
|
|
atomic_t init_deasserted;
|
|
|
|
static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
CMOS_WRITE(0xa, 0xf);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
local_flush_tlb();
|
|
pr_debug("1.\n");
|
|
*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
|
|
start_eip >> 4;
|
|
pr_debug("2.\n");
|
|
*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
|
|
start_eip & 0xf;
|
|
pr_debug("3.\n");
|
|
}
|
|
|
|
static inline void smpboot_restore_warm_reset_vector(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Install writable page 0 entry to set BIOS data area.
|
|
*/
|
|
local_flush_tlb();
|
|
|
|
/*
|
|
* Paranoid: Set warm reset code and vector here back
|
|
* to default values.
|
|
*/
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
CMOS_WRITE(0, 0xf);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
|
*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
|
|
}
|
|
|
|
/*
|
|
* Report back to the Boot Processor during boot time or to the caller processor
|
|
* during CPU online.
|
|
*/
|
|
static void smp_callin(void)
|
|
{
|
|
int cpuid, phys_id;
|
|
|
|
/*
|
|
* If waken up by an INIT in an 82489DX configuration
|
|
* we may get here before an INIT-deassert IPI reaches
|
|
* our local APIC. We have to wait for the IPI or we'll
|
|
* lock up on an APIC access.
|
|
*
|
|
* Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
|
|
*/
|
|
cpuid = smp_processor_id();
|
|
if (apic->wait_for_init_deassert && cpuid)
|
|
while (!atomic_read(&init_deasserted))
|
|
cpu_relax();
|
|
|
|
/*
|
|
* (This works even if the APIC is not enabled.)
|
|
*/
|
|
phys_id = read_apic_id();
|
|
|
|
/*
|
|
* the boot CPU has finished the init stage and is spinning
|
|
* on callin_map until we finish. We are free to set up this
|
|
* CPU, first the APIC. (this is probably redundant on most
|
|
* boards)
|
|
*/
|
|
apic_ap_setup();
|
|
|
|
/*
|
|
* Save our processor parameters. Note: this information
|
|
* is needed for clock calibration.
|
|
*/
|
|
smp_store_cpu_info(cpuid);
|
|
|
|
/*
|
|
* Get our bogomips.
|
|
* Update loops_per_jiffy in cpu_data. Previous call to
|
|
* smp_store_cpu_info() stored a value that is close but not as
|
|
* accurate as the value just calculated.
|
|
*/
|
|
calibrate_delay();
|
|
cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
|
|
pr_debug("Stack at about %p\n", &cpuid);
|
|
|
|
/*
|
|
* This must be done before setting cpu_online_mask
|
|
* or calling notify_cpu_starting.
|
|
*/
|
|
set_cpu_sibling_map(raw_smp_processor_id());
|
|
wmb();
|
|
|
|
notify_cpu_starting(cpuid);
|
|
|
|
/*
|
|
* Allow the master to continue.
|
|
*/
|
|
cpumask_set_cpu(cpuid, cpu_callin_mask);
|
|
}
|
|
|
|
static int cpu0_logical_apicid;
|
|
static int enable_start_cpu0;
|
|
/*
|
|
* Activate a secondary processor.
|
|
*/
|
|
static void notrace start_secondary(void *unused)
|
|
{
|
|
/*
|
|
* Don't put *anything* before cpu_init(), SMP booting is too
|
|
* fragile that we want to limit the things done here to the
|
|
* most necessary things.
|
|
*/
|
|
cpu_init();
|
|
x86_cpuinit.early_percpu_clock_init();
|
|
preempt_disable();
|
|
smp_callin();
|
|
|
|
enable_start_cpu0 = 0;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* switch away from the initial page table */
|
|
load_cr3(swapper_pg_dir);
|
|
__flush_tlb_all();
|
|
#endif
|
|
|
|
/* otherwise gcc will move up smp_processor_id before the cpu_init */
|
|
barrier();
|
|
/*
|
|
* Check TSC synchronization with the BP:
|
|
*/
|
|
check_tsc_sync_target();
|
|
|
|
/*
|
|
* Lock vector_lock and initialize the vectors on this cpu
|
|
* before setting the cpu online. We must set it online with
|
|
* vector_lock held to prevent a concurrent setup/teardown
|
|
* from seeing a half valid vector space.
|
|
*/
|
|
lock_vector_lock();
|
|
setup_vector_irq(smp_processor_id());
|
|
set_cpu_online(smp_processor_id(), true);
|
|
unlock_vector_lock();
|
|
cpu_set_state_online(smp_processor_id());
|
|
x86_platform.nmi_init();
|
|
|
|
/* enable local interrupts */
|
|
local_irq_enable();
|
|
|
|
/* to prevent fake stack check failure in clock setup */
|
|
boot_init_stack_canary();
|
|
|
|
x86_cpuinit.setup_percpu_clockev();
|
|
|
|
wmb();
|
|
cpu_startup_entry(CPUHP_ONLINE);
|
|
}
|
|
|
|
void __init smp_store_boot_cpu_info(void)
|
|
{
|
|
int id = 0; /* CPU 0 */
|
|
struct cpuinfo_x86 *c = &cpu_data(id);
|
|
|
|
*c = boot_cpu_data;
|
|
c->cpu_index = id;
|
|
}
|
|
|
|
/*
|
|
* The bootstrap kernel entry code has set these up. Save them for
|
|
* a given CPU
|
|
*/
|
|
void smp_store_cpu_info(int id)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(id);
|
|
|
|
*c = boot_cpu_data;
|
|
c->cpu_index = id;
|
|
/*
|
|
* During boot time, CPU0 has this setup already. Save the info when
|
|
* bringing up AP or offlined CPU0.
|
|
*/
|
|
identify_secondary_cpu(c);
|
|
}
|
|
|
|
static bool
|
|
topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
|
|
return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
|
|
}
|
|
|
|
static bool
|
|
topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
|
|
{
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
|
|
return !WARN_ONCE(!topology_same_node(c, o),
|
|
"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
|
|
"[node: %d != %d]. Ignoring dependency.\n",
|
|
cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
|
|
}
|
|
|
|
#define link_mask(mfunc, c1, c2) \
|
|
do { \
|
|
cpumask_set_cpu((c1), mfunc(c2)); \
|
|
cpumask_set_cpu((c2), mfunc(c1)); \
|
|
} while (0)
|
|
|
|
static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
if (cpu_has_topoext) {
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
|
|
if (c->phys_proc_id == o->phys_proc_id &&
|
|
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
|
|
c->compute_unit_id == o->compute_unit_id)
|
|
return topology_sane(c, o, "smt");
|
|
|
|
} else if (c->phys_proc_id == o->phys_proc_id &&
|
|
c->cpu_core_id == o->cpu_core_id) {
|
|
return topology_sane(c, o, "smt");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
|
|
if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
|
|
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
|
|
return topology_sane(c, o, "llc");
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Unlike the other levels, we do not enforce keeping a
|
|
* multicore group inside a NUMA node. If this happens, we will
|
|
* discard the MC level of the topology later.
|
|
*/
|
|
static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
if (c->phys_proc_id == o->phys_proc_id)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static struct sched_domain_topology_level numa_inside_package_topology[] = {
|
|
#ifdef CONFIG_SCHED_SMT
|
|
{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
|
|
#endif
|
|
#ifdef CONFIG_SCHED_MC
|
|
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
|
|
#endif
|
|
{ NULL, },
|
|
};
|
|
/*
|
|
* set_sched_topology() sets the topology internal to a CPU. The
|
|
* NUMA topologies are layered on top of it to build the full
|
|
* system topology.
|
|
*
|
|
* If NUMA nodes are observed to occur within a CPU package, this
|
|
* function should be called. It forces the sched domain code to
|
|
* only use the SMT level for the CPU portion of the topology.
|
|
* This essentially falls back to relying on NUMA information
|
|
* from the SRAT table to describe the entire system topology
|
|
* (except for hyperthreads).
|
|
*/
|
|
static void primarily_use_numa_for_topology(void)
|
|
{
|
|
set_sched_topology(numa_inside_package_topology);
|
|
}
|
|
|
|
void set_cpu_sibling_map(int cpu)
|
|
{
|
|
bool has_smt = smp_num_siblings > 1;
|
|
bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
struct cpuinfo_x86 *o;
|
|
int i;
|
|
|
|
cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
|
|
|
|
if (!has_mp) {
|
|
cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
|
|
cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
|
|
cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
|
|
c->booted_cores = 1;
|
|
return;
|
|
}
|
|
|
|
for_each_cpu(i, cpu_sibling_setup_mask) {
|
|
o = &cpu_data(i);
|
|
|
|
if ((i == cpu) || (has_smt && match_smt(c, o)))
|
|
link_mask(topology_sibling_cpumask, cpu, i);
|
|
|
|
if ((i == cpu) || (has_mp && match_llc(c, o)))
|
|
link_mask(cpu_llc_shared_mask, cpu, i);
|
|
|
|
}
|
|
|
|
/*
|
|
* This needs a separate iteration over the cpus because we rely on all
|
|
* topology_sibling_cpumask links to be set-up.
|
|
*/
|
|
for_each_cpu(i, cpu_sibling_setup_mask) {
|
|
o = &cpu_data(i);
|
|
|
|
if ((i == cpu) || (has_mp && match_die(c, o))) {
|
|
link_mask(topology_core_cpumask, cpu, i);
|
|
|
|
/*
|
|
* Does this new cpu bringup a new core?
|
|
*/
|
|
if (cpumask_weight(
|
|
topology_sibling_cpumask(cpu)) == 1) {
|
|
/*
|
|
* for each core in package, increment
|
|
* the booted_cores for this new cpu
|
|
*/
|
|
if (cpumask_first(
|
|
topology_sibling_cpumask(i)) == i)
|
|
c->booted_cores++;
|
|
/*
|
|
* increment the core count for all
|
|
* the other cpus in this package
|
|
*/
|
|
if (i != cpu)
|
|
cpu_data(i).booted_cores++;
|
|
} else if (i != cpu && !c->booted_cores)
|
|
c->booted_cores = cpu_data(i).booted_cores;
|
|
}
|
|
if (match_die(c, o) && !topology_same_node(c, o))
|
|
primarily_use_numa_for_topology();
|
|
}
|
|
}
|
|
|
|
/* maps the cpu to the sched domain representing multi-core */
|
|
const struct cpumask *cpu_coregroup_mask(int cpu)
|
|
{
|
|
return cpu_llc_shared_mask(cpu);
|
|
}
|
|
|
|
static void impress_friends(void)
|
|
{
|
|
int cpu;
|
|
unsigned long bogosum = 0;
|
|
/*
|
|
* Allow the user to impress friends.
|
|
*/
|
|
pr_debug("Before bogomips\n");
|
|
for_each_possible_cpu(cpu)
|
|
if (cpumask_test_cpu(cpu, cpu_callout_mask))
|
|
bogosum += cpu_data(cpu).loops_per_jiffy;
|
|
pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
|
|
num_online_cpus(),
|
|
bogosum/(500000/HZ),
|
|
(bogosum/(5000/HZ))%100);
|
|
|
|
pr_debug("Before bogocount - setting activated=1\n");
|
|
}
|
|
|
|
void __inquire_remote_apic(int apicid)
|
|
{
|
|
unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
|
|
const char * const names[] = { "ID", "VERSION", "SPIV" };
|
|
int timeout;
|
|
u32 status;
|
|
|
|
pr_info("Inquiring remote APIC 0x%x...\n", apicid);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
pr_info("... APIC 0x%x %s: ", apicid, names[i]);
|
|
|
|
/*
|
|
* Wait for idle.
|
|
*/
|
|
status = safe_apic_wait_icr_idle();
|
|
if (status)
|
|
pr_cont("a previous APIC delivery may have failed\n");
|
|
|
|
apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
|
|
|
|
timeout = 0;
|
|
do {
|
|
udelay(100);
|
|
status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
|
|
} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
|
|
|
|
switch (status) {
|
|
case APIC_ICR_RR_VALID:
|
|
status = apic_read(APIC_RRR);
|
|
pr_cont("%08x\n", status);
|
|
break;
|
|
default:
|
|
pr_cont("failed\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The Multiprocessor Specification 1.4 (1997) example code suggests
|
|
* that there should be a 10ms delay between the BSP asserting INIT
|
|
* and de-asserting INIT, when starting a remote processor.
|
|
* But that slows boot and resume on modern processors, which include
|
|
* many cores and don't require that delay.
|
|
*
|
|
* Cmdline "init_cpu_udelay=" is available to over-ride this delay.
|
|
* Modern processor families are quirked to remove the delay entirely.
|
|
*/
|
|
#define UDELAY_10MS_DEFAULT 10000
|
|
|
|
static unsigned int init_udelay = UDELAY_10MS_DEFAULT;
|
|
|
|
static int __init cpu_init_udelay(char *str)
|
|
{
|
|
get_option(&str, &init_udelay);
|
|
|
|
return 0;
|
|
}
|
|
early_param("cpu_init_udelay", cpu_init_udelay);
|
|
|
|
static void __init smp_quirk_init_udelay(void)
|
|
{
|
|
/* if cmdline changed it from default, leave it alone */
|
|
if (init_udelay != UDELAY_10MS_DEFAULT)
|
|
return;
|
|
|
|
/* if modern processor, use no delay */
|
|
if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
|
|
((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF)))
|
|
init_udelay = 0;
|
|
}
|
|
|
|
/*
|
|
* Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
|
|
* INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
|
|
* won't ... remember to clear down the APIC, etc later.
|
|
*/
|
|
int
|
|
wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
|
|
{
|
|
unsigned long send_status, accept_status = 0;
|
|
int maxlvt;
|
|
|
|
/* Target chip */
|
|
/* Boot on the stack */
|
|
/* Kick the second */
|
|
apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
|
|
|
|
pr_debug("Waiting for send to finish...\n");
|
|
send_status = safe_apic_wait_icr_idle();
|
|
|
|
/*
|
|
* Give the other CPU some time to accept the IPI.
|
|
*/
|
|
udelay(200);
|
|
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
|
|
maxlvt = lapic_get_maxlvt();
|
|
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
|
|
apic_write(APIC_ESR, 0);
|
|
accept_status = (apic_read(APIC_ESR) & 0xEF);
|
|
}
|
|
pr_debug("NMI sent\n");
|
|
|
|
if (send_status)
|
|
pr_err("APIC never delivered???\n");
|
|
if (accept_status)
|
|
pr_err("APIC delivery error (%lx)\n", accept_status);
|
|
|
|
return (send_status | accept_status);
|
|
}
|
|
|
|
static int
|
|
wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
|
|
{
|
|
unsigned long send_status = 0, accept_status = 0;
|
|
int maxlvt, num_starts, j;
|
|
|
|
maxlvt = lapic_get_maxlvt();
|
|
|
|
/*
|
|
* Be paranoid about clearing APIC errors.
|
|
*/
|
|
if (APIC_INTEGRATED(apic_version[phys_apicid])) {
|
|
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
}
|
|
|
|
pr_debug("Asserting INIT\n");
|
|
|
|
/*
|
|
* Turn INIT on target chip
|
|
*/
|
|
/*
|
|
* Send IPI
|
|
*/
|
|
apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
|
|
phys_apicid);
|
|
|
|
pr_debug("Waiting for send to finish...\n");
|
|
send_status = safe_apic_wait_icr_idle();
|
|
|
|
udelay(init_udelay);
|
|
|
|
pr_debug("Deasserting INIT\n");
|
|
|
|
/* Target chip */
|
|
/* Send IPI */
|
|
apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
|
|
|
|
pr_debug("Waiting for send to finish...\n");
|
|
send_status = safe_apic_wait_icr_idle();
|
|
|
|
mb();
|
|
atomic_set(&init_deasserted, 1);
|
|
|
|
/*
|
|
* Should we send STARTUP IPIs ?
|
|
*
|
|
* Determine this based on the APIC version.
|
|
* If we don't have an integrated APIC, don't send the STARTUP IPIs.
|
|
*/
|
|
if (APIC_INTEGRATED(apic_version[phys_apicid]))
|
|
num_starts = 2;
|
|
else
|
|
num_starts = 0;
|
|
|
|
/*
|
|
* Paravirt / VMI wants a startup IPI hook here to set up the
|
|
* target processor state.
|
|
*/
|
|
startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
|
|
stack_start);
|
|
|
|
/*
|
|
* Run STARTUP IPI loop.
|
|
*/
|
|
pr_debug("#startup loops: %d\n", num_starts);
|
|
|
|
for (j = 1; j <= num_starts; j++) {
|
|
pr_debug("Sending STARTUP #%d\n", j);
|
|
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
pr_debug("After apic_write\n");
|
|
|
|
/*
|
|
* STARTUP IPI
|
|
*/
|
|
|
|
/* Target chip */
|
|
/* Boot on the stack */
|
|
/* Kick the second */
|
|
apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
|
|
phys_apicid);
|
|
|
|
/*
|
|
* Give the other CPU some time to accept the IPI.
|
|
*/
|
|
udelay(300);
|
|
|
|
pr_debug("Startup point 1\n");
|
|
|
|
pr_debug("Waiting for send to finish...\n");
|
|
send_status = safe_apic_wait_icr_idle();
|
|
|
|
/*
|
|
* Give the other CPU some time to accept the IPI.
|
|
*/
|
|
udelay(200);
|
|
|
|
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
|
|
apic_write(APIC_ESR, 0);
|
|
accept_status = (apic_read(APIC_ESR) & 0xEF);
|
|
if (send_status || accept_status)
|
|
break;
|
|
}
|
|
pr_debug("After Startup\n");
|
|
|
|
if (send_status)
|
|
pr_err("APIC never delivered???\n");
|
|
if (accept_status)
|
|
pr_err("APIC delivery error (%lx)\n", accept_status);
|
|
|
|
return (send_status | accept_status);
|
|
}
|
|
|
|
void smp_announce(void)
|
|
{
|
|
int num_nodes = num_online_nodes();
|
|
|
|
printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
|
|
num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
|
|
}
|
|
|
|
/* reduce the number of lines printed when booting a large cpu count system */
|
|
static void announce_cpu(int cpu, int apicid)
|
|
{
|
|
static int current_node = -1;
|
|
int node = early_cpu_to_node(cpu);
|
|
static int width, node_width;
|
|
|
|
if (!width)
|
|
width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
|
|
|
|
if (!node_width)
|
|
node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
|
|
|
|
if (cpu == 1)
|
|
printk(KERN_INFO "x86: Booting SMP configuration:\n");
|
|
|
|
if (system_state == SYSTEM_BOOTING) {
|
|
if (node != current_node) {
|
|
if (current_node > (-1))
|
|
pr_cont("\n");
|
|
current_node = node;
|
|
|
|
printk(KERN_INFO ".... node %*s#%d, CPUs: ",
|
|
node_width - num_digits(node), " ", node);
|
|
}
|
|
|
|
/* Add padding for the BSP */
|
|
if (cpu == 1)
|
|
pr_cont("%*s", width + 1, " ");
|
|
|
|
pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
|
|
|
|
} else
|
|
pr_info("Booting Node %d Processor %d APIC 0x%x\n",
|
|
node, cpu, apicid);
|
|
}
|
|
|
|
static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
|
|
{
|
|
int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
|
|
return NMI_HANDLED;
|
|
|
|
return NMI_DONE;
|
|
}
|
|
|
|
/*
|
|
* Wake up AP by INIT, INIT, STARTUP sequence.
|
|
*
|
|
* Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
|
|
* boot-strap code which is not a desired behavior for waking up BSP. To
|
|
* void the boot-strap code, wake up CPU0 by NMI instead.
|
|
*
|
|
* This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
|
|
* (i.e. physically hot removed and then hot added), NMI won't wake it up.
|
|
* We'll change this code in the future to wake up hard offlined CPU0 if
|
|
* real platform and request are available.
|
|
*/
|
|
static int
|
|
wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
|
|
int *cpu0_nmi_registered)
|
|
{
|
|
int id;
|
|
int boot_error;
|
|
|
|
preempt_disable();
|
|
|
|
/*
|
|
* Wake up AP by INIT, INIT, STARTUP sequence.
|
|
*/
|
|
if (cpu) {
|
|
boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Wake up BSP by nmi.
|
|
*
|
|
* Register a NMI handler to help wake up CPU0.
|
|
*/
|
|
boot_error = register_nmi_handler(NMI_LOCAL,
|
|
wakeup_cpu0_nmi, 0, "wake_cpu0");
|
|
|
|
if (!boot_error) {
|
|
enable_start_cpu0 = 1;
|
|
*cpu0_nmi_registered = 1;
|
|
if (apic->dest_logical == APIC_DEST_LOGICAL)
|
|
id = cpu0_logical_apicid;
|
|
else
|
|
id = apicid;
|
|
boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
|
|
}
|
|
|
|
out:
|
|
preempt_enable();
|
|
|
|
return boot_error;
|
|
}
|
|
|
|
void common_cpu_up(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
/* Just in case we booted with a single CPU. */
|
|
alternatives_enable_smp();
|
|
|
|
per_cpu(current_task, cpu) = idle;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* Stack for startup_32 can be just as for start_secondary onwards */
|
|
irq_ctx_init(cpu);
|
|
per_cpu(cpu_current_top_of_stack, cpu) =
|
|
(unsigned long)task_stack_page(idle) + THREAD_SIZE;
|
|
#else
|
|
clear_tsk_thread_flag(idle, TIF_FORK);
|
|
initial_gs = per_cpu_offset(cpu);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
|
|
* (ie clustered apic addressing mode), this is a LOGICAL apic ID.
|
|
* Returns zero if CPU booted OK, else error code from
|
|
* ->wakeup_secondary_cpu.
|
|
*/
|
|
static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
|
|
{
|
|
volatile u32 *trampoline_status =
|
|
(volatile u32 *) __va(real_mode_header->trampoline_status);
|
|
/* start_ip had better be page-aligned! */
|
|
unsigned long start_ip = real_mode_header->trampoline_start;
|
|
|
|
unsigned long boot_error = 0;
|
|
int cpu0_nmi_registered = 0;
|
|
unsigned long timeout;
|
|
|
|
idle->thread.sp = (unsigned long) (((struct pt_regs *)
|
|
(THREAD_SIZE + task_stack_page(idle))) - 1);
|
|
|
|
early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
|
|
initial_code = (unsigned long)start_secondary;
|
|
stack_start = idle->thread.sp;
|
|
|
|
/*
|
|
* Enable the espfix hack for this CPU
|
|
*/
|
|
#ifdef CONFIG_X86_ESPFIX64
|
|
init_espfix_ap(cpu);
|
|
#endif
|
|
|
|
/* So we see what's up */
|
|
announce_cpu(cpu, apicid);
|
|
|
|
/*
|
|
* This grunge runs the startup process for
|
|
* the targeted processor.
|
|
*/
|
|
|
|
atomic_set(&init_deasserted, 0);
|
|
|
|
if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
|
|
|
|
pr_debug("Setting warm reset code and vector.\n");
|
|
|
|
smpboot_setup_warm_reset_vector(start_ip);
|
|
/*
|
|
* Be paranoid about clearing APIC errors.
|
|
*/
|
|
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* AP might wait on cpu_callout_mask in cpu_init() with
|
|
* cpu_initialized_mask set if previous attempt to online
|
|
* it timed-out. Clear cpu_initialized_mask so that after
|
|
* INIT/SIPI it could start with a clean state.
|
|
*/
|
|
cpumask_clear_cpu(cpu, cpu_initialized_mask);
|
|
smp_mb();
|
|
|
|
/*
|
|
* Wake up a CPU in difference cases:
|
|
* - Use the method in the APIC driver if it's defined
|
|
* Otherwise,
|
|
* - Use an INIT boot APIC message for APs or NMI for BSP.
|
|
*/
|
|
if (apic->wakeup_secondary_cpu)
|
|
boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
|
|
else
|
|
boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
|
|
&cpu0_nmi_registered);
|
|
|
|
if (!boot_error) {
|
|
/*
|
|
* Wait 10s total for a response from AP
|
|
*/
|
|
boot_error = -1;
|
|
timeout = jiffies + 10*HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
|
|
/*
|
|
* Tell AP to proceed with initialization
|
|
*/
|
|
cpumask_set_cpu(cpu, cpu_callout_mask);
|
|
boot_error = 0;
|
|
break;
|
|
}
|
|
udelay(100);
|
|
schedule();
|
|
}
|
|
}
|
|
|
|
if (!boot_error) {
|
|
/*
|
|
* Wait till AP completes initial initialization
|
|
*/
|
|
while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
|
|
/*
|
|
* Allow other tasks to run while we wait for the
|
|
* AP to come online. This also gives a chance
|
|
* for the MTRR work(triggered by the AP coming online)
|
|
* to be completed in the stop machine context.
|
|
*/
|
|
udelay(100);
|
|
schedule();
|
|
}
|
|
}
|
|
|
|
/* mark "stuck" area as not stuck */
|
|
*trampoline_status = 0;
|
|
|
|
if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
|
|
/*
|
|
* Cleanup possible dangling ends...
|
|
*/
|
|
smpboot_restore_warm_reset_vector();
|
|
}
|
|
/*
|
|
* Clean up the nmi handler. Do this after the callin and callout sync
|
|
* to avoid impact of possible long unregister time.
|
|
*/
|
|
if (cpu0_nmi_registered)
|
|
unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
|
|
|
|
return boot_error;
|
|
}
|
|
|
|
int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
int apicid = apic->cpu_present_to_apicid(cpu);
|
|
unsigned long flags;
|
|
int err;
|
|
|
|
WARN_ON(irqs_disabled());
|
|
|
|
pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
|
|
|
|
if (apicid == BAD_APICID ||
|
|
!physid_isset(apicid, phys_cpu_present_map) ||
|
|
!apic->apic_id_valid(apicid)) {
|
|
pr_err("%s: bad cpu %d\n", __func__, cpu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Already booted CPU?
|
|
*/
|
|
if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
|
|
pr_debug("do_boot_cpu %d Already started\n", cpu);
|
|
return -ENOSYS;
|
|
}
|
|
|
|
/*
|
|
* Save current MTRR state in case it was changed since early boot
|
|
* (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
|
|
*/
|
|
mtrr_save_state();
|
|
|
|
/* x86 CPUs take themselves offline, so delayed offline is OK. */
|
|
err = cpu_check_up_prepare(cpu);
|
|
if (err && err != -EBUSY)
|
|
return err;
|
|
|
|
/* the FPU context is blank, nobody can own it */
|
|
__cpu_disable_lazy_restore(cpu);
|
|
|
|
common_cpu_up(cpu, tidle);
|
|
|
|
/*
|
|
* We have to walk the irq descriptors to setup the vector
|
|
* space for the cpu which comes online. Prevent irq
|
|
* alloc/free across the bringup.
|
|
*/
|
|
irq_lock_sparse();
|
|
|
|
err = do_boot_cpu(apicid, cpu, tidle);
|
|
|
|
if (err) {
|
|
irq_unlock_sparse();
|
|
pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Check TSC synchronization with the AP (keep irqs disabled
|
|
* while doing so):
|
|
*/
|
|
local_irq_save(flags);
|
|
check_tsc_sync_source(cpu);
|
|
local_irq_restore(flags);
|
|
|
|
while (!cpu_online(cpu)) {
|
|
cpu_relax();
|
|
touch_nmi_watchdog();
|
|
}
|
|
|
|
irq_unlock_sparse();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* arch_disable_smp_support() - disables SMP support for x86 at runtime
|
|
*/
|
|
void arch_disable_smp_support(void)
|
|
{
|
|
disable_ioapic_support();
|
|
}
|
|
|
|
/*
|
|
* Fall back to non SMP mode after errors.
|
|
*
|
|
* RED-PEN audit/test this more. I bet there is more state messed up here.
|
|
*/
|
|
static __init void disable_smp(void)
|
|
{
|
|
pr_info("SMP disabled\n");
|
|
|
|
disable_ioapic_support();
|
|
|
|
init_cpu_present(cpumask_of(0));
|
|
init_cpu_possible(cpumask_of(0));
|
|
|
|
if (smp_found_config)
|
|
physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
|
|
else
|
|
physid_set_mask_of_physid(0, &phys_cpu_present_map);
|
|
cpumask_set_cpu(0, topology_sibling_cpumask(0));
|
|
cpumask_set_cpu(0, topology_core_cpumask(0));
|
|
}
|
|
|
|
enum {
|
|
SMP_OK,
|
|
SMP_NO_CONFIG,
|
|
SMP_NO_APIC,
|
|
SMP_FORCE_UP,
|
|
};
|
|
|
|
/*
|
|
* Various sanity checks.
|
|
*/
|
|
static int __init smp_sanity_check(unsigned max_cpus)
|
|
{
|
|
preempt_disable();
|
|
|
|
#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
|
|
if (def_to_bigsmp && nr_cpu_ids > 8) {
|
|
unsigned int cpu;
|
|
unsigned nr;
|
|
|
|
pr_warn("More than 8 CPUs detected - skipping them\n"
|
|
"Use CONFIG_X86_BIGSMP\n");
|
|
|
|
nr = 0;
|
|
for_each_present_cpu(cpu) {
|
|
if (nr >= 8)
|
|
set_cpu_present(cpu, false);
|
|
nr++;
|
|
}
|
|
|
|
nr = 0;
|
|
for_each_possible_cpu(cpu) {
|
|
if (nr >= 8)
|
|
set_cpu_possible(cpu, false);
|
|
nr++;
|
|
}
|
|
|
|
nr_cpu_ids = 8;
|
|
}
|
|
#endif
|
|
|
|
if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
|
|
pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
|
|
hard_smp_processor_id());
|
|
|
|
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
|
|
}
|
|
|
|
/*
|
|
* If we couldn't find an SMP configuration at boot time,
|
|
* get out of here now!
|
|
*/
|
|
if (!smp_found_config && !acpi_lapic) {
|
|
preempt_enable();
|
|
pr_notice("SMP motherboard not detected\n");
|
|
return SMP_NO_CONFIG;
|
|
}
|
|
|
|
/*
|
|
* Should not be necessary because the MP table should list the boot
|
|
* CPU too, but we do it for the sake of robustness anyway.
|
|
*/
|
|
if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
|
|
pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
|
|
boot_cpu_physical_apicid);
|
|
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
|
|
}
|
|
preempt_enable();
|
|
|
|
/*
|
|
* If we couldn't find a local APIC, then get out of here now!
|
|
*/
|
|
if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
|
|
!cpu_has_apic) {
|
|
if (!disable_apic) {
|
|
pr_err("BIOS bug, local APIC #%d not detected!...\n",
|
|
boot_cpu_physical_apicid);
|
|
pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
|
|
}
|
|
return SMP_NO_APIC;
|
|
}
|
|
|
|
/*
|
|
* If SMP should be disabled, then really disable it!
|
|
*/
|
|
if (!max_cpus) {
|
|
pr_info("SMP mode deactivated\n");
|
|
return SMP_FORCE_UP;
|
|
}
|
|
|
|
return SMP_OK;
|
|
}
|
|
|
|
static void __init smp_cpu_index_default(void)
|
|
{
|
|
int i;
|
|
struct cpuinfo_x86 *c;
|
|
|
|
for_each_possible_cpu(i) {
|
|
c = &cpu_data(i);
|
|
/* mark all to hotplug */
|
|
c->cpu_index = nr_cpu_ids;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare for SMP bootup. The MP table or ACPI has been read
|
|
* earlier. Just do some sanity checking here and enable APIC mode.
|
|
*/
|
|
void __init native_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
unsigned int i;
|
|
|
|
smp_cpu_index_default();
|
|
|
|
/*
|
|
* Setup boot CPU information
|
|
*/
|
|
smp_store_boot_cpu_info(); /* Final full version of the data */
|
|
cpumask_copy(cpu_callin_mask, cpumask_of(0));
|
|
mb();
|
|
|
|
current_thread_info()->cpu = 0; /* needed? */
|
|
for_each_possible_cpu(i) {
|
|
zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
|
|
zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
|
|
zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
|
|
}
|
|
set_cpu_sibling_map(0);
|
|
|
|
switch (smp_sanity_check(max_cpus)) {
|
|
case SMP_NO_CONFIG:
|
|
disable_smp();
|
|
if (APIC_init_uniprocessor())
|
|
pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
|
|
return;
|
|
case SMP_NO_APIC:
|
|
disable_smp();
|
|
return;
|
|
case SMP_FORCE_UP:
|
|
disable_smp();
|
|
apic_bsp_setup(false);
|
|
return;
|
|
case SMP_OK:
|
|
break;
|
|
}
|
|
|
|
default_setup_apic_routing();
|
|
|
|
if (read_apic_id() != boot_cpu_physical_apicid) {
|
|
panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
|
|
read_apic_id(), boot_cpu_physical_apicid);
|
|
/* Or can we switch back to PIC here? */
|
|
}
|
|
|
|
cpu0_logical_apicid = apic_bsp_setup(false);
|
|
|
|
pr_info("CPU%d: ", 0);
|
|
print_cpu_info(&cpu_data(0));
|
|
|
|
if (is_uv_system())
|
|
uv_system_init();
|
|
|
|
set_mtrr_aps_delayed_init();
|
|
|
|
smp_quirk_init_udelay();
|
|
}
|
|
|
|
void arch_enable_nonboot_cpus_begin(void)
|
|
{
|
|
set_mtrr_aps_delayed_init();
|
|
}
|
|
|
|
void arch_enable_nonboot_cpus_end(void)
|
|
{
|
|
mtrr_aps_init();
|
|
}
|
|
|
|
/*
|
|
* Early setup to make printk work.
|
|
*/
|
|
void __init native_smp_prepare_boot_cpu(void)
|
|
{
|
|
int me = smp_processor_id();
|
|
switch_to_new_gdt(me);
|
|
/* already set me in cpu_online_mask in boot_cpu_init() */
|
|
cpumask_set_cpu(me, cpu_callout_mask);
|
|
cpu_set_state_online(me);
|
|
}
|
|
|
|
void __init native_smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
pr_debug("Boot done\n");
|
|
|
|
nmi_selftest();
|
|
impress_friends();
|
|
setup_ioapic_dest();
|
|
mtrr_aps_init();
|
|
}
|
|
|
|
static int __initdata setup_possible_cpus = -1;
|
|
static int __init _setup_possible_cpus(char *str)
|
|
{
|
|
get_option(&str, &setup_possible_cpus);
|
|
return 0;
|
|
}
|
|
early_param("possible_cpus", _setup_possible_cpus);
|
|
|
|
|
|
/*
|
|
* cpu_possible_mask should be static, it cannot change as cpu's
|
|
* are onlined, or offlined. The reason is per-cpu data-structures
|
|
* are allocated by some modules at init time, and dont expect to
|
|
* do this dynamically on cpu arrival/departure.
|
|
* cpu_present_mask on the other hand can change dynamically.
|
|
* In case when cpu_hotplug is not compiled, then we resort to current
|
|
* behaviour, which is cpu_possible == cpu_present.
|
|
* - Ashok Raj
|
|
*
|
|
* Three ways to find out the number of additional hotplug CPUs:
|
|
* - If the BIOS specified disabled CPUs in ACPI/mptables use that.
|
|
* - The user can overwrite it with possible_cpus=NUM
|
|
* - Otherwise don't reserve additional CPUs.
|
|
* We do this because additional CPUs waste a lot of memory.
|
|
* -AK
|
|
*/
|
|
__init void prefill_possible_map(void)
|
|
{
|
|
int i, possible;
|
|
|
|
/* no processor from mptable or madt */
|
|
if (!num_processors)
|
|
num_processors = 1;
|
|
|
|
i = setup_max_cpus ?: 1;
|
|
if (setup_possible_cpus == -1) {
|
|
possible = num_processors;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
if (setup_max_cpus)
|
|
possible += disabled_cpus;
|
|
#else
|
|
if (possible > i)
|
|
possible = i;
|
|
#endif
|
|
} else
|
|
possible = setup_possible_cpus;
|
|
|
|
total_cpus = max_t(int, possible, num_processors + disabled_cpus);
|
|
|
|
/* nr_cpu_ids could be reduced via nr_cpus= */
|
|
if (possible > nr_cpu_ids) {
|
|
pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
|
|
possible, nr_cpu_ids);
|
|
possible = nr_cpu_ids;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
if (!setup_max_cpus)
|
|
#endif
|
|
if (possible > i) {
|
|
pr_warn("%d Processors exceeds max_cpus limit of %u\n",
|
|
possible, setup_max_cpus);
|
|
possible = i;
|
|
}
|
|
|
|
pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
|
|
possible, max_t(int, possible - num_processors, 0));
|
|
|
|
for (i = 0; i < possible; i++)
|
|
set_cpu_possible(i, true);
|
|
for (; i < NR_CPUS; i++)
|
|
set_cpu_possible(i, false);
|
|
|
|
nr_cpu_ids = possible;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
static void remove_siblinginfo(int cpu)
|
|
{
|
|
int sibling;
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
for_each_cpu(sibling, topology_core_cpumask(cpu)) {
|
|
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
|
|
/*/
|
|
* last thread sibling in this cpu core going down
|
|
*/
|
|
if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
|
|
cpu_data(sibling).booted_cores--;
|
|
}
|
|
|
|
for_each_cpu(sibling, topology_sibling_cpumask(cpu))
|
|
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
|
|
for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
|
|
cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
|
|
cpumask_clear(cpu_llc_shared_mask(cpu));
|
|
cpumask_clear(topology_sibling_cpumask(cpu));
|
|
cpumask_clear(topology_core_cpumask(cpu));
|
|
c->phys_proc_id = 0;
|
|
c->cpu_core_id = 0;
|
|
cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
|
|
}
|
|
|
|
static void __ref remove_cpu_from_maps(int cpu)
|
|
{
|
|
set_cpu_online(cpu, false);
|
|
cpumask_clear_cpu(cpu, cpu_callout_mask);
|
|
cpumask_clear_cpu(cpu, cpu_callin_mask);
|
|
/* was set by cpu_init() */
|
|
cpumask_clear_cpu(cpu, cpu_initialized_mask);
|
|
numa_remove_cpu(cpu);
|
|
}
|
|
|
|
void cpu_disable_common(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
remove_siblinginfo(cpu);
|
|
|
|
/* It's now safe to remove this processor from the online map */
|
|
lock_vector_lock();
|
|
remove_cpu_from_maps(cpu);
|
|
unlock_vector_lock();
|
|
fixup_irqs();
|
|
}
|
|
|
|
int native_cpu_disable(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = check_irq_vectors_for_cpu_disable();
|
|
if (ret)
|
|
return ret;
|
|
|
|
clear_local_APIC();
|
|
cpu_disable_common();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int common_cpu_die(unsigned int cpu)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* We don't do anything here: idle task is faking death itself. */
|
|
|
|
/* They ack this in play_dead() by setting CPU_DEAD */
|
|
if (cpu_wait_death(cpu, 5)) {
|
|
if (system_state == SYSTEM_RUNNING)
|
|
pr_info("CPU %u is now offline\n", cpu);
|
|
} else {
|
|
pr_err("CPU %u didn't die...\n", cpu);
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void native_cpu_die(unsigned int cpu)
|
|
{
|
|
common_cpu_die(cpu);
|
|
}
|
|
|
|
void play_dead_common(void)
|
|
{
|
|
idle_task_exit();
|
|
reset_lazy_tlbstate();
|
|
amd_e400_remove_cpu(raw_smp_processor_id());
|
|
|
|
/* Ack it */
|
|
(void)cpu_report_death();
|
|
|
|
/*
|
|
* With physical CPU hotplug, we should halt the cpu
|
|
*/
|
|
local_irq_disable();
|
|
}
|
|
|
|
static bool wakeup_cpu0(void)
|
|
{
|
|
if (smp_processor_id() == 0 && enable_start_cpu0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We need to flush the caches before going to sleep, lest we have
|
|
* dirty data in our caches when we come back up.
|
|
*/
|
|
static inline void mwait_play_dead(void)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
unsigned int highest_cstate = 0;
|
|
unsigned int highest_subcstate = 0;
|
|
void *mwait_ptr;
|
|
int i;
|
|
|
|
if (!this_cpu_has(X86_FEATURE_MWAIT))
|
|
return;
|
|
if (!this_cpu_has(X86_FEATURE_CLFLUSH))
|
|
return;
|
|
if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
|
|
return;
|
|
|
|
eax = CPUID_MWAIT_LEAF;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
/*
|
|
* eax will be 0 if EDX enumeration is not valid.
|
|
* Initialized below to cstate, sub_cstate value when EDX is valid.
|
|
*/
|
|
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
|
|
eax = 0;
|
|
} else {
|
|
edx >>= MWAIT_SUBSTATE_SIZE;
|
|
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
|
|
if (edx & MWAIT_SUBSTATE_MASK) {
|
|
highest_cstate = i;
|
|
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
|
|
}
|
|
}
|
|
eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
|
|
(highest_subcstate - 1);
|
|
}
|
|
|
|
/*
|
|
* This should be a memory location in a cache line which is
|
|
* unlikely to be touched by other processors. The actual
|
|
* content is immaterial as it is not actually modified in any way.
|
|
*/
|
|
mwait_ptr = ¤t_thread_info()->flags;
|
|
|
|
wbinvd();
|
|
|
|
while (1) {
|
|
/*
|
|
* The CLFLUSH is a workaround for erratum AAI65 for
|
|
* the Xeon 7400 series. It's not clear it is actually
|
|
* needed, but it should be harmless in either case.
|
|
* The WBINVD is insufficient due to the spurious-wakeup
|
|
* case where we return around the loop.
|
|
*/
|
|
mb();
|
|
clflush(mwait_ptr);
|
|
mb();
|
|
__monitor(mwait_ptr, 0, 0);
|
|
mb();
|
|
__mwait(eax, 0);
|
|
/*
|
|
* If NMI wants to wake up CPU0, start CPU0.
|
|
*/
|
|
if (wakeup_cpu0())
|
|
start_cpu0();
|
|
}
|
|
}
|
|
|
|
static inline void hlt_play_dead(void)
|
|
{
|
|
if (__this_cpu_read(cpu_info.x86) >= 4)
|
|
wbinvd();
|
|
|
|
while (1) {
|
|
native_halt();
|
|
/*
|
|
* If NMI wants to wake up CPU0, start CPU0.
|
|
*/
|
|
if (wakeup_cpu0())
|
|
start_cpu0();
|
|
}
|
|
}
|
|
|
|
void native_play_dead(void)
|
|
{
|
|
play_dead_common();
|
|
tboot_shutdown(TB_SHUTDOWN_WFS);
|
|
|
|
mwait_play_dead(); /* Only returns on failure */
|
|
if (cpuidle_play_dead())
|
|
hlt_play_dead();
|
|
}
|
|
|
|
#else /* ... !CONFIG_HOTPLUG_CPU */
|
|
int native_cpu_disable(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
void native_cpu_die(unsigned int cpu)
|
|
{
|
|
/* We said "no" in __cpu_disable */
|
|
BUG();
|
|
}
|
|
|
|
void native_play_dead(void)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
#endif
|