03ffbcdd78
Pull irq updates from Thomas Gleixner: "The irq department delivers: - Expand the generic infrastructure handling the irq migration on CPU hotplug and convert X86 over to it. (Thomas Gleixner) Aside of consolidating code this is a preparatory change for: - Finalizing the affinity management for multi-queue devices. The main change here is to shut down interrupts which are affine to a outgoing CPU and reenabling them when the CPU comes online again. That avoids moving interrupts pointlessly around and breaking and reestablishing affinities for no value. (Christoph Hellwig) Note: This contains also the BLOCK-MQ and NVME changes which depend on the rework of the irq core infrastructure. Jens acked them and agreed that they should go with the irq changes. - Consolidation of irq domain code (Marc Zyngier) - State tracking consolidation in the core code (Jeffy Chen) - Add debug infrastructure for hierarchical irq domains (Thomas Gleixner) - Infrastructure enhancement for managing generic interrupt chips via devmem (Bartosz Golaszewski) - Constification work all over the place (Tobias Klauser) - Two new interrupt controller drivers for MVEBU (Thomas Petazzoni) - The usual set of fixes, updates and enhancements all over the place" * 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (112 commits) irqchip/or1k-pic: Fix interrupt acknowledgement irqchip/irq-mvebu-gicp: Allocate enough memory for spi_bitmap irqchip/gic-v3: Fix out-of-bound access in gic_set_affinity nvme: Allocate queues for all possible CPUs blk-mq: Create hctx for each present CPU blk-mq: Include all present CPUs in the default queue mapping genirq: Avoid unnecessary low level irq function calls genirq: Set irq masked state when initializing irq_desc genirq/timings: Add infrastructure for estimating the next interrupt arrival time genirq/timings: Add infrastructure to track the interrupt timings genirq/debugfs: Remove pointless NULL pointer check irqchip/gic-v3-its: Don't assume GICv3 hardware supports 16bit INTID irqchip/gic-v3-its: Add ACPI NUMA node mapping irqchip/gic-v3-its-platform-msi: Make of_device_ids const irqchip/gic-v3-its: Make of_device_ids const irqchip/irq-mvebu-icu: Add new driver for Marvell ICU irqchip/irq-mvebu-gicp: Add new driver for Marvell GICP dt-bindings/interrupt-controller: Add DT binding for the Marvell ICU genirq/irqdomain: Remove auto-recursive hierarchy support irqchip/MSI: Use irq_domain_update_bus_token instead of an open coded access ...
995 lines
26 KiB
C
995 lines
26 KiB
C
/*
|
|
* Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc.
|
|
*
|
|
* Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
|
|
* Moved from arch/x86/kernel/apic/io_apic.c.
|
|
* Jiang Liu <jiang.liu@linux.intel.com>
|
|
* Enable support of hierarchical irqdomains
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/irqdomain.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/i8259.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/irq_remapping.h>
|
|
|
|
struct apic_chip_data {
|
|
struct irq_cfg cfg;
|
|
cpumask_var_t domain;
|
|
cpumask_var_t old_domain;
|
|
u8 move_in_progress : 1;
|
|
};
|
|
|
|
struct irq_domain *x86_vector_domain;
|
|
EXPORT_SYMBOL_GPL(x86_vector_domain);
|
|
static DEFINE_RAW_SPINLOCK(vector_lock);
|
|
static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask;
|
|
static struct irq_chip lapic_controller;
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY];
|
|
#endif
|
|
|
|
void lock_vector_lock(void)
|
|
{
|
|
/* Used to the online set of cpus does not change
|
|
* during assign_irq_vector.
|
|
*/
|
|
raw_spin_lock(&vector_lock);
|
|
}
|
|
|
|
void unlock_vector_lock(void)
|
|
{
|
|
raw_spin_unlock(&vector_lock);
|
|
}
|
|
|
|
static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data)
|
|
{
|
|
if (!irq_data)
|
|
return NULL;
|
|
|
|
while (irq_data->parent_data)
|
|
irq_data = irq_data->parent_data;
|
|
|
|
return irq_data->chip_data;
|
|
}
|
|
|
|
struct irq_cfg *irqd_cfg(struct irq_data *irq_data)
|
|
{
|
|
struct apic_chip_data *data = apic_chip_data(irq_data);
|
|
|
|
return data ? &data->cfg : NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irqd_cfg);
|
|
|
|
struct irq_cfg *irq_cfg(unsigned int irq)
|
|
{
|
|
return irqd_cfg(irq_get_irq_data(irq));
|
|
}
|
|
|
|
static struct apic_chip_data *alloc_apic_chip_data(int node)
|
|
{
|
|
struct apic_chip_data *data;
|
|
|
|
data = kzalloc_node(sizeof(*data), GFP_KERNEL, node);
|
|
if (!data)
|
|
return NULL;
|
|
if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node))
|
|
goto out_data;
|
|
if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node))
|
|
goto out_domain;
|
|
return data;
|
|
out_domain:
|
|
free_cpumask_var(data->domain);
|
|
out_data:
|
|
kfree(data);
|
|
return NULL;
|
|
}
|
|
|
|
static void free_apic_chip_data(struct apic_chip_data *data)
|
|
{
|
|
if (data) {
|
|
free_cpumask_var(data->domain);
|
|
free_cpumask_var(data->old_domain);
|
|
kfree(data);
|
|
}
|
|
}
|
|
|
|
static int __assign_irq_vector(int irq, struct apic_chip_data *d,
|
|
const struct cpumask *mask,
|
|
struct irq_data *irqdata)
|
|
{
|
|
/*
|
|
* NOTE! The local APIC isn't very good at handling
|
|
* multiple interrupts at the same interrupt level.
|
|
* As the interrupt level is determined by taking the
|
|
* vector number and shifting that right by 4, we
|
|
* want to spread these out a bit so that they don't
|
|
* all fall in the same interrupt level.
|
|
*
|
|
* Also, we've got to be careful not to trash gate
|
|
* 0x80, because int 0x80 is hm, kind of importantish. ;)
|
|
*/
|
|
static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
|
|
static int current_offset = VECTOR_OFFSET_START % 16;
|
|
int cpu, vector;
|
|
|
|
/*
|
|
* If there is still a move in progress or the previous move has not
|
|
* been cleaned up completely, tell the caller to come back later.
|
|
*/
|
|
if (d->move_in_progress ||
|
|
cpumask_intersects(d->old_domain, cpu_online_mask))
|
|
return -EBUSY;
|
|
|
|
/* Only try and allocate irqs on cpus that are present */
|
|
cpumask_clear(d->old_domain);
|
|
cpumask_clear(searched_cpumask);
|
|
cpu = cpumask_first_and(mask, cpu_online_mask);
|
|
while (cpu < nr_cpu_ids) {
|
|
int new_cpu, offset;
|
|
|
|
/* Get the possible target cpus for @mask/@cpu from the apic */
|
|
apic->vector_allocation_domain(cpu, vector_cpumask, mask);
|
|
|
|
/*
|
|
* Clear the offline cpus from @vector_cpumask for searching
|
|
* and verify whether the result overlaps with @mask. If true,
|
|
* then the call to apic->cpu_mask_to_apicid() will
|
|
* succeed as well. If not, no point in trying to find a
|
|
* vector in this mask.
|
|
*/
|
|
cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask);
|
|
if (!cpumask_intersects(vector_searchmask, mask))
|
|
goto next_cpu;
|
|
|
|
if (cpumask_subset(vector_cpumask, d->domain)) {
|
|
if (cpumask_equal(vector_cpumask, d->domain))
|
|
goto success;
|
|
/*
|
|
* Mark the cpus which are not longer in the mask for
|
|
* cleanup.
|
|
*/
|
|
cpumask_andnot(d->old_domain, d->domain, vector_cpumask);
|
|
vector = d->cfg.vector;
|
|
goto update;
|
|
}
|
|
|
|
vector = current_vector;
|
|
offset = current_offset;
|
|
next:
|
|
vector += 16;
|
|
if (vector >= first_system_vector) {
|
|
offset = (offset + 1) % 16;
|
|
vector = FIRST_EXTERNAL_VECTOR + offset;
|
|
}
|
|
|
|
/* If the search wrapped around, try the next cpu */
|
|
if (unlikely(current_vector == vector))
|
|
goto next_cpu;
|
|
|
|
if (test_bit(vector, used_vectors))
|
|
goto next;
|
|
|
|
for_each_cpu(new_cpu, vector_searchmask) {
|
|
if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector]))
|
|
goto next;
|
|
}
|
|
/* Found one! */
|
|
current_vector = vector;
|
|
current_offset = offset;
|
|
/* Schedule the old vector for cleanup on all cpus */
|
|
if (d->cfg.vector)
|
|
cpumask_copy(d->old_domain, d->domain);
|
|
for_each_cpu(new_cpu, vector_searchmask)
|
|
per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq);
|
|
goto update;
|
|
|
|
next_cpu:
|
|
/*
|
|
* We exclude the current @vector_cpumask from the requested
|
|
* @mask and try again with the next online cpu in the
|
|
* result. We cannot modify @mask, so we use @vector_cpumask
|
|
* as a temporary buffer here as it will be reassigned when
|
|
* calling apic->vector_allocation_domain() above.
|
|
*/
|
|
cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask);
|
|
cpumask_andnot(vector_cpumask, mask, searched_cpumask);
|
|
cpu = cpumask_first_and(vector_cpumask, cpu_online_mask);
|
|
continue;
|
|
}
|
|
return -ENOSPC;
|
|
|
|
update:
|
|
/*
|
|
* Exclude offline cpus from the cleanup mask and set the
|
|
* move_in_progress flag when the result is not empty.
|
|
*/
|
|
cpumask_and(d->old_domain, d->old_domain, cpu_online_mask);
|
|
d->move_in_progress = !cpumask_empty(d->old_domain);
|
|
d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0;
|
|
d->cfg.vector = vector;
|
|
cpumask_copy(d->domain, vector_cpumask);
|
|
success:
|
|
/*
|
|
* Cache destination APIC IDs into cfg->dest_apicid. This cannot fail
|
|
* as we already established, that mask & d->domain & cpu_online_mask
|
|
* is not empty.
|
|
*
|
|
* vector_searchmask is a subset of d->domain and has the offline
|
|
* cpus masked out.
|
|
*/
|
|
cpumask_and(vector_searchmask, vector_searchmask, mask);
|
|
BUG_ON(apic->cpu_mask_to_apicid(vector_searchmask, irqdata,
|
|
&d->cfg.dest_apicid));
|
|
return 0;
|
|
}
|
|
|
|
static int assign_irq_vector(int irq, struct apic_chip_data *data,
|
|
const struct cpumask *mask,
|
|
struct irq_data *irqdata)
|
|
{
|
|
int err;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
err = __assign_irq_vector(irq, data, mask, irqdata);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
return err;
|
|
}
|
|
|
|
static int assign_irq_vector_policy(int irq, int node,
|
|
struct apic_chip_data *data,
|
|
struct irq_alloc_info *info,
|
|
struct irq_data *irqdata)
|
|
{
|
|
if (info && info->mask)
|
|
return assign_irq_vector(irq, data, info->mask, irqdata);
|
|
if (node != NUMA_NO_NODE &&
|
|
assign_irq_vector(irq, data, cpumask_of_node(node), irqdata) == 0)
|
|
return 0;
|
|
return assign_irq_vector(irq, data, apic->target_cpus(), irqdata);
|
|
}
|
|
|
|
static void clear_irq_vector(int irq, struct apic_chip_data *data)
|
|
{
|
|
struct irq_desc *desc;
|
|
int cpu, vector;
|
|
|
|
if (!data->cfg.vector)
|
|
return;
|
|
|
|
vector = data->cfg.vector;
|
|
for_each_cpu_and(cpu, data->domain, cpu_online_mask)
|
|
per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
|
|
|
|
data->cfg.vector = 0;
|
|
cpumask_clear(data->domain);
|
|
|
|
/*
|
|
* If move is in progress or the old_domain mask is not empty,
|
|
* i.e. the cleanup IPI has not been processed yet, we need to remove
|
|
* the old references to desc from all cpus vector tables.
|
|
*/
|
|
if (!data->move_in_progress && cpumask_empty(data->old_domain))
|
|
return;
|
|
|
|
desc = irq_to_desc(irq);
|
|
for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) {
|
|
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
|
|
vector++) {
|
|
if (per_cpu(vector_irq, cpu)[vector] != desc)
|
|
continue;
|
|
per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
|
|
break;
|
|
}
|
|
}
|
|
data->move_in_progress = 0;
|
|
}
|
|
|
|
void init_irq_alloc_info(struct irq_alloc_info *info,
|
|
const struct cpumask *mask)
|
|
{
|
|
memset(info, 0, sizeof(*info));
|
|
info->mask = mask;
|
|
}
|
|
|
|
void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
|
|
{
|
|
if (src)
|
|
*dst = *src;
|
|
else
|
|
memset(dst, 0, sizeof(*dst));
|
|
}
|
|
|
|
static void x86_vector_free_irqs(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs)
|
|
{
|
|
struct apic_chip_data *apic_data;
|
|
struct irq_data *irq_data;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i);
|
|
if (irq_data && irq_data->chip_data) {
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
clear_irq_vector(virq + i, irq_data->chip_data);
|
|
apic_data = irq_data->chip_data;
|
|
irq_domain_reset_irq_data(irq_data);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
free_apic_chip_data(apic_data);
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
if (virq + i < nr_legacy_irqs())
|
|
legacy_irq_data[virq + i] = NULL;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *arg)
|
|
{
|
|
struct irq_alloc_info *info = arg;
|
|
struct apic_chip_data *data;
|
|
struct irq_data *irq_data;
|
|
int i, err, node;
|
|
|
|
if (disable_apic)
|
|
return -ENXIO;
|
|
|
|
/* Currently vector allocator can't guarantee contiguous allocations */
|
|
if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
|
|
return -ENOSYS;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
BUG_ON(!irq_data);
|
|
node = irq_data_get_node(irq_data);
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i])
|
|
data = legacy_irq_data[virq + i];
|
|
else
|
|
#endif
|
|
data = alloc_apic_chip_data(node);
|
|
if (!data) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
irq_data->chip = &lapic_controller;
|
|
irq_data->chip_data = data;
|
|
irq_data->hwirq = virq + i;
|
|
err = assign_irq_vector_policy(virq + i, node, data, info,
|
|
irq_data);
|
|
if (err)
|
|
goto error;
|
|
/*
|
|
* If the apic destination mode is physical, then the
|
|
* effective affinity is restricted to a single target
|
|
* CPU. Mark the interrupt accordingly.
|
|
*/
|
|
if (!apic->irq_dest_mode)
|
|
irqd_set_single_target(irq_data);
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
x86_vector_free_irqs(domain, virq, i + 1);
|
|
return err;
|
|
}
|
|
|
|
static const struct irq_domain_ops x86_vector_domain_ops = {
|
|
.alloc = x86_vector_alloc_irqs,
|
|
.free = x86_vector_free_irqs,
|
|
};
|
|
|
|
int __init arch_probe_nr_irqs(void)
|
|
{
|
|
int nr;
|
|
|
|
if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
|
|
nr_irqs = NR_VECTORS * nr_cpu_ids;
|
|
|
|
nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
|
|
#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
|
|
/*
|
|
* for MSI and HT dyn irq
|
|
*/
|
|
if (gsi_top <= NR_IRQS_LEGACY)
|
|
nr += 8 * nr_cpu_ids;
|
|
else
|
|
nr += gsi_top * 16;
|
|
#endif
|
|
if (nr < nr_irqs)
|
|
nr_irqs = nr;
|
|
|
|
/*
|
|
* We don't know if PIC is present at this point so we need to do
|
|
* probe() to get the right number of legacy IRQs.
|
|
*/
|
|
return legacy_pic->probe();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
static void __init init_legacy_irqs(void)
|
|
{
|
|
int i, node = cpu_to_node(0);
|
|
struct apic_chip_data *data;
|
|
|
|
/*
|
|
* For legacy IRQ's, start with assigning irq0 to irq15 to
|
|
* ISA_IRQ_VECTOR(i) for all cpu's.
|
|
*/
|
|
for (i = 0; i < nr_legacy_irqs(); i++) {
|
|
data = legacy_irq_data[i] = alloc_apic_chip_data(node);
|
|
BUG_ON(!data);
|
|
|
|
data->cfg.vector = ISA_IRQ_VECTOR(i);
|
|
cpumask_setall(data->domain);
|
|
irq_set_chip_data(i, data);
|
|
}
|
|
}
|
|
#else
|
|
static inline void init_legacy_irqs(void) { }
|
|
#endif
|
|
|
|
int __init arch_early_irq_init(void)
|
|
{
|
|
struct fwnode_handle *fn;
|
|
|
|
init_legacy_irqs();
|
|
|
|
fn = irq_domain_alloc_named_fwnode("VECTOR");
|
|
BUG_ON(!fn);
|
|
x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
|
|
NULL);
|
|
BUG_ON(x86_vector_domain == NULL);
|
|
irq_domain_free_fwnode(fn);
|
|
irq_set_default_host(x86_vector_domain);
|
|
|
|
arch_init_msi_domain(x86_vector_domain);
|
|
arch_init_htirq_domain(x86_vector_domain);
|
|
|
|
BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL));
|
|
BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
|
|
BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL));
|
|
|
|
return arch_early_ioapic_init();
|
|
}
|
|
|
|
/* Initialize vector_irq on a new cpu */
|
|
static void __setup_vector_irq(int cpu)
|
|
{
|
|
struct apic_chip_data *data;
|
|
struct irq_desc *desc;
|
|
int irq, vector;
|
|
|
|
/* Mark the inuse vectors */
|
|
for_each_irq_desc(irq, desc) {
|
|
struct irq_data *idata = irq_desc_get_irq_data(desc);
|
|
|
|
data = apic_chip_data(idata);
|
|
if (!data || !cpumask_test_cpu(cpu, data->domain))
|
|
continue;
|
|
vector = data->cfg.vector;
|
|
per_cpu(vector_irq, cpu)[vector] = desc;
|
|
}
|
|
/* Mark the free vectors */
|
|
for (vector = 0; vector < NR_VECTORS; ++vector) {
|
|
desc = per_cpu(vector_irq, cpu)[vector];
|
|
if (IS_ERR_OR_NULL(desc))
|
|
continue;
|
|
|
|
data = apic_chip_data(irq_desc_get_irq_data(desc));
|
|
if (!cpumask_test_cpu(cpu, data->domain))
|
|
per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the vector to irq mappings. Must be called with vector_lock held.
|
|
*/
|
|
void setup_vector_irq(int cpu)
|
|
{
|
|
int irq;
|
|
|
|
lockdep_assert_held(&vector_lock);
|
|
/*
|
|
* On most of the platforms, legacy PIC delivers the interrupts on the
|
|
* boot cpu. But there are certain platforms where PIC interrupts are
|
|
* delivered to multiple cpu's. If the legacy IRQ is handled by the
|
|
* legacy PIC, for the new cpu that is coming online, setup the static
|
|
* legacy vector to irq mapping:
|
|
*/
|
|
for (irq = 0; irq < nr_legacy_irqs(); irq++)
|
|
per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq);
|
|
|
|
__setup_vector_irq(cpu);
|
|
}
|
|
|
|
static int apic_retrigger_irq(struct irq_data *irq_data)
|
|
{
|
|
struct apic_chip_data *data = apic_chip_data(irq_data);
|
|
unsigned long flags;
|
|
int cpu;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
cpu = cpumask_first_and(data->domain, cpu_online_mask);
|
|
apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void apic_ack_edge(struct irq_data *data)
|
|
{
|
|
irq_complete_move(irqd_cfg(data));
|
|
irq_move_irq(data);
|
|
ack_APIC_irq();
|
|
}
|
|
|
|
static int apic_set_affinity(struct irq_data *irq_data,
|
|
const struct cpumask *dest, bool force)
|
|
{
|
|
struct apic_chip_data *data = irq_data->chip_data;
|
|
int err, irq = irq_data->irq;
|
|
|
|
if (!IS_ENABLED(CONFIG_SMP))
|
|
return -EPERM;
|
|
|
|
if (!cpumask_intersects(dest, cpu_online_mask))
|
|
return -EINVAL;
|
|
|
|
err = assign_irq_vector(irq, data, dest, irq_data);
|
|
return err ? err : IRQ_SET_MASK_OK;
|
|
}
|
|
|
|
static struct irq_chip lapic_controller = {
|
|
.name = "APIC",
|
|
.irq_ack = apic_ack_edge,
|
|
.irq_set_affinity = apic_set_affinity,
|
|
.irq_retrigger = apic_retrigger_irq,
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void __send_cleanup_vector(struct apic_chip_data *data)
|
|
{
|
|
raw_spin_lock(&vector_lock);
|
|
cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
|
|
data->move_in_progress = 0;
|
|
if (!cpumask_empty(data->old_domain))
|
|
apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR);
|
|
raw_spin_unlock(&vector_lock);
|
|
}
|
|
|
|
void send_cleanup_vector(struct irq_cfg *cfg)
|
|
{
|
|
struct apic_chip_data *data;
|
|
|
|
data = container_of(cfg, struct apic_chip_data, cfg);
|
|
if (data->move_in_progress)
|
|
__send_cleanup_vector(data);
|
|
}
|
|
|
|
asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
|
|
{
|
|
unsigned vector, me;
|
|
|
|
entering_ack_irq();
|
|
|
|
/* Prevent vectors vanishing under us */
|
|
raw_spin_lock(&vector_lock);
|
|
|
|
me = smp_processor_id();
|
|
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
|
|
struct apic_chip_data *data;
|
|
struct irq_desc *desc;
|
|
unsigned int irr;
|
|
|
|
retry:
|
|
desc = __this_cpu_read(vector_irq[vector]);
|
|
if (IS_ERR_OR_NULL(desc))
|
|
continue;
|
|
|
|
if (!raw_spin_trylock(&desc->lock)) {
|
|
raw_spin_unlock(&vector_lock);
|
|
cpu_relax();
|
|
raw_spin_lock(&vector_lock);
|
|
goto retry;
|
|
}
|
|
|
|
data = apic_chip_data(irq_desc_get_irq_data(desc));
|
|
if (!data)
|
|
goto unlock;
|
|
|
|
/*
|
|
* Nothing to cleanup if irq migration is in progress
|
|
* or this cpu is not set in the cleanup mask.
|
|
*/
|
|
if (data->move_in_progress ||
|
|
!cpumask_test_cpu(me, data->old_domain))
|
|
goto unlock;
|
|
|
|
/*
|
|
* We have two cases to handle here:
|
|
* 1) vector is unchanged but the target mask got reduced
|
|
* 2) vector and the target mask has changed
|
|
*
|
|
* #1 is obvious, but in #2 we have two vectors with the same
|
|
* irq descriptor: the old and the new vector. So we need to
|
|
* make sure that we only cleanup the old vector. The new
|
|
* vector has the current @vector number in the config and
|
|
* this cpu is part of the target mask. We better leave that
|
|
* one alone.
|
|
*/
|
|
if (vector == data->cfg.vector &&
|
|
cpumask_test_cpu(me, data->domain))
|
|
goto unlock;
|
|
|
|
irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
|
|
/*
|
|
* Check if the vector that needs to be cleanedup is
|
|
* registered at the cpu's IRR. If so, then this is not
|
|
* the best time to clean it up. Lets clean it up in the
|
|
* next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
|
|
* to myself.
|
|
*/
|
|
if (irr & (1 << (vector % 32))) {
|
|
apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
|
|
goto unlock;
|
|
}
|
|
__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
|
|
cpumask_clear_cpu(me, data->old_domain);
|
|
unlock:
|
|
raw_spin_unlock(&desc->lock);
|
|
}
|
|
|
|
raw_spin_unlock(&vector_lock);
|
|
|
|
exiting_irq();
|
|
}
|
|
|
|
static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
|
|
{
|
|
unsigned me;
|
|
struct apic_chip_data *data;
|
|
|
|
data = container_of(cfg, struct apic_chip_data, cfg);
|
|
if (likely(!data->move_in_progress))
|
|
return;
|
|
|
|
me = smp_processor_id();
|
|
if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain))
|
|
__send_cleanup_vector(data);
|
|
}
|
|
|
|
void irq_complete_move(struct irq_cfg *cfg)
|
|
{
|
|
__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
|
|
}
|
|
|
|
/*
|
|
* Called from fixup_irqs() with @desc->lock held and interrupts disabled.
|
|
*/
|
|
void irq_force_complete_move(struct irq_desc *desc)
|
|
{
|
|
struct irq_data *irqdata;
|
|
struct apic_chip_data *data;
|
|
struct irq_cfg *cfg;
|
|
unsigned int cpu;
|
|
|
|
/*
|
|
* The function is called for all descriptors regardless of which
|
|
* irqdomain they belong to. For example if an IRQ is provided by
|
|
* an irq_chip as part of a GPIO driver, the chip data for that
|
|
* descriptor is specific to the irq_chip in question.
|
|
*
|
|
* Check first that the chip_data is what we expect
|
|
* (apic_chip_data) before touching it any further.
|
|
*/
|
|
irqdata = irq_domain_get_irq_data(x86_vector_domain,
|
|
irq_desc_get_irq(desc));
|
|
if (!irqdata)
|
|
return;
|
|
|
|
data = apic_chip_data(irqdata);
|
|
cfg = data ? &data->cfg : NULL;
|
|
|
|
if (!cfg)
|
|
return;
|
|
|
|
/*
|
|
* This is tricky. If the cleanup of @data->old_domain has not been
|
|
* done yet, then the following setaffinity call will fail with
|
|
* -EBUSY. This can leave the interrupt in a stale state.
|
|
*
|
|
* All CPUs are stuck in stop machine with interrupts disabled so
|
|
* calling __irq_complete_move() would be completely pointless.
|
|
*/
|
|
raw_spin_lock(&vector_lock);
|
|
/*
|
|
* Clean out all offline cpus (including the outgoing one) from the
|
|
* old_domain mask.
|
|
*/
|
|
cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
|
|
|
|
/*
|
|
* If move_in_progress is cleared and the old_domain mask is empty,
|
|
* then there is nothing to cleanup. fixup_irqs() will take care of
|
|
* the stale vectors on the outgoing cpu.
|
|
*/
|
|
if (!data->move_in_progress && cpumask_empty(data->old_domain)) {
|
|
raw_spin_unlock(&vector_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* 1) The interrupt is in move_in_progress state. That means that we
|
|
* have not seen an interrupt since the io_apic was reprogrammed to
|
|
* the new vector.
|
|
*
|
|
* 2) The interrupt has fired on the new vector, but the cleanup IPIs
|
|
* have not been processed yet.
|
|
*/
|
|
if (data->move_in_progress) {
|
|
/*
|
|
* In theory there is a race:
|
|
*
|
|
* set_ioapic(new_vector) <-- Interrupt is raised before update
|
|
* is effective, i.e. it's raised on
|
|
* the old vector.
|
|
*
|
|
* So if the target cpu cannot handle that interrupt before
|
|
* the old vector is cleaned up, we get a spurious interrupt
|
|
* and in the worst case the ioapic irq line becomes stale.
|
|
*
|
|
* But in case of cpu hotplug this should be a non issue
|
|
* because if the affinity update happens right before all
|
|
* cpus rendevouz in stop machine, there is no way that the
|
|
* interrupt can be blocked on the target cpu because all cpus
|
|
* loops first with interrupts enabled in stop machine, so the
|
|
* old vector is not yet cleaned up when the interrupt fires.
|
|
*
|
|
* So the only way to run into this issue is if the delivery
|
|
* of the interrupt on the apic/system bus would be delayed
|
|
* beyond the point where the target cpu disables interrupts
|
|
* in stop machine. I doubt that it can happen, but at least
|
|
* there is a theroretical chance. Virtualization might be
|
|
* able to expose this, but AFAICT the IOAPIC emulation is not
|
|
* as stupid as the real hardware.
|
|
*
|
|
* Anyway, there is nothing we can do about that at this point
|
|
* w/o refactoring the whole fixup_irq() business completely.
|
|
* We print at least the irq number and the old vector number,
|
|
* so we have the necessary information when a problem in that
|
|
* area arises.
|
|
*/
|
|
pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
|
|
irqdata->irq, cfg->old_vector);
|
|
}
|
|
/*
|
|
* If old_domain is not empty, then other cpus still have the irq
|
|
* descriptor set in their vector array. Clean it up.
|
|
*/
|
|
for_each_cpu(cpu, data->old_domain)
|
|
per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED;
|
|
|
|
/* Cleanup the left overs of the (half finished) move */
|
|
cpumask_clear(data->old_domain);
|
|
data->move_in_progress = 0;
|
|
raw_spin_unlock(&vector_lock);
|
|
}
|
|
#endif
|
|
|
|
static void __init print_APIC_field(int base)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_DEBUG);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
pr_cont("%08x", apic_read(base + i*0x10));
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
static void __init print_local_APIC(void *dummy)
|
|
{
|
|
unsigned int i, v, ver, maxlvt;
|
|
u64 icr;
|
|
|
|
pr_debug("printing local APIC contents on CPU#%d/%d:\n",
|
|
smp_processor_id(), hard_smp_processor_id());
|
|
v = apic_read(APIC_ID);
|
|
pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
|
|
v = apic_read(APIC_LVR);
|
|
pr_info("... APIC VERSION: %08x\n", v);
|
|
ver = GET_APIC_VERSION(v);
|
|
maxlvt = lapic_get_maxlvt();
|
|
|
|
v = apic_read(APIC_TASKPRI);
|
|
pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
|
|
|
|
/* !82489DX */
|
|
if (APIC_INTEGRATED(ver)) {
|
|
if (!APIC_XAPIC(ver)) {
|
|
v = apic_read(APIC_ARBPRI);
|
|
pr_debug("... APIC ARBPRI: %08x (%02x)\n",
|
|
v, v & APIC_ARBPRI_MASK);
|
|
}
|
|
v = apic_read(APIC_PROCPRI);
|
|
pr_debug("... APIC PROCPRI: %08x\n", v);
|
|
}
|
|
|
|
/*
|
|
* Remote read supported only in the 82489DX and local APIC for
|
|
* Pentium processors.
|
|
*/
|
|
if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
|
|
v = apic_read(APIC_RRR);
|
|
pr_debug("... APIC RRR: %08x\n", v);
|
|
}
|
|
|
|
v = apic_read(APIC_LDR);
|
|
pr_debug("... APIC LDR: %08x\n", v);
|
|
if (!x2apic_enabled()) {
|
|
v = apic_read(APIC_DFR);
|
|
pr_debug("... APIC DFR: %08x\n", v);
|
|
}
|
|
v = apic_read(APIC_SPIV);
|
|
pr_debug("... APIC SPIV: %08x\n", v);
|
|
|
|
pr_debug("... APIC ISR field:\n");
|
|
print_APIC_field(APIC_ISR);
|
|
pr_debug("... APIC TMR field:\n");
|
|
print_APIC_field(APIC_TMR);
|
|
pr_debug("... APIC IRR field:\n");
|
|
print_APIC_field(APIC_IRR);
|
|
|
|
/* !82489DX */
|
|
if (APIC_INTEGRATED(ver)) {
|
|
/* Due to the Pentium erratum 3AP. */
|
|
if (maxlvt > 3)
|
|
apic_write(APIC_ESR, 0);
|
|
|
|
v = apic_read(APIC_ESR);
|
|
pr_debug("... APIC ESR: %08x\n", v);
|
|
}
|
|
|
|
icr = apic_icr_read();
|
|
pr_debug("... APIC ICR: %08x\n", (u32)icr);
|
|
pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
|
|
|
|
v = apic_read(APIC_LVTT);
|
|
pr_debug("... APIC LVTT: %08x\n", v);
|
|
|
|
if (maxlvt > 3) {
|
|
/* PC is LVT#4. */
|
|
v = apic_read(APIC_LVTPC);
|
|
pr_debug("... APIC LVTPC: %08x\n", v);
|
|
}
|
|
v = apic_read(APIC_LVT0);
|
|
pr_debug("... APIC LVT0: %08x\n", v);
|
|
v = apic_read(APIC_LVT1);
|
|
pr_debug("... APIC LVT1: %08x\n", v);
|
|
|
|
if (maxlvt > 2) {
|
|
/* ERR is LVT#3. */
|
|
v = apic_read(APIC_LVTERR);
|
|
pr_debug("... APIC LVTERR: %08x\n", v);
|
|
}
|
|
|
|
v = apic_read(APIC_TMICT);
|
|
pr_debug("... APIC TMICT: %08x\n", v);
|
|
v = apic_read(APIC_TMCCT);
|
|
pr_debug("... APIC TMCCT: %08x\n", v);
|
|
v = apic_read(APIC_TDCR);
|
|
pr_debug("... APIC TDCR: %08x\n", v);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
|
|
v = apic_read(APIC_EFEAT);
|
|
maxlvt = (v >> 16) & 0xff;
|
|
pr_debug("... APIC EFEAT: %08x\n", v);
|
|
v = apic_read(APIC_ECTRL);
|
|
pr_debug("... APIC ECTRL: %08x\n", v);
|
|
for (i = 0; i < maxlvt; i++) {
|
|
v = apic_read(APIC_EILVTn(i));
|
|
pr_debug("... APIC EILVT%d: %08x\n", i, v);
|
|
}
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
|
|
static void __init print_local_APICs(int maxcpu)
|
|
{
|
|
int cpu;
|
|
|
|
if (!maxcpu)
|
|
return;
|
|
|
|
preempt_disable();
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu >= maxcpu)
|
|
break;
|
|
smp_call_function_single(cpu, print_local_APIC, NULL, 1);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
static void __init print_PIC(void)
|
|
{
|
|
unsigned int v;
|
|
unsigned long flags;
|
|
|
|
if (!nr_legacy_irqs())
|
|
return;
|
|
|
|
pr_debug("\nprinting PIC contents\n");
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
|
|
v = inb(0xa1) << 8 | inb(0x21);
|
|
pr_debug("... PIC IMR: %04x\n", v);
|
|
|
|
v = inb(0xa0) << 8 | inb(0x20);
|
|
pr_debug("... PIC IRR: %04x\n", v);
|
|
|
|
outb(0x0b, 0xa0);
|
|
outb(0x0b, 0x20);
|
|
v = inb(0xa0) << 8 | inb(0x20);
|
|
outb(0x0a, 0xa0);
|
|
outb(0x0a, 0x20);
|
|
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
|
|
pr_debug("... PIC ISR: %04x\n", v);
|
|
|
|
v = inb(0x4d1) << 8 | inb(0x4d0);
|
|
pr_debug("... PIC ELCR: %04x\n", v);
|
|
}
|
|
|
|
static int show_lapic __initdata = 1;
|
|
static __init int setup_show_lapic(char *arg)
|
|
{
|
|
int num = -1;
|
|
|
|
if (strcmp(arg, "all") == 0) {
|
|
show_lapic = CONFIG_NR_CPUS;
|
|
} else {
|
|
get_option(&arg, &num);
|
|
if (num >= 0)
|
|
show_lapic = num;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("show_lapic=", setup_show_lapic);
|
|
|
|
static int __init print_ICs(void)
|
|
{
|
|
if (apic_verbosity == APIC_QUIET)
|
|
return 0;
|
|
|
|
print_PIC();
|
|
|
|
/* don't print out if apic is not there */
|
|
if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
|
|
return 0;
|
|
|
|
print_local_APICs(show_lapic);
|
|
print_IO_APICs();
|
|
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(print_ICs);
|