forked from Minki/linux
98801c002f
Validate the PKCS#7 trust chain against the contents of the system keyring. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
458 lines
12 KiB
C
458 lines
12 KiB
C
/* Parse a signed PE binary
|
|
*
|
|
* Copyright (C) 2014 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public Licence
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the Licence, or (at your option) any later version.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "PEFILE: "fmt
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/pe.h>
|
|
#include <linux/asn1.h>
|
|
#include <crypto/pkcs7.h>
|
|
#include <crypto/hash.h>
|
|
#include "verify_pefile.h"
|
|
|
|
/*
|
|
* Parse a PE binary.
|
|
*/
|
|
static int pefile_parse_binary(const void *pebuf, unsigned int pelen,
|
|
struct pefile_context *ctx)
|
|
{
|
|
const struct mz_hdr *mz = pebuf;
|
|
const struct pe_hdr *pe;
|
|
const struct pe32_opt_hdr *pe32;
|
|
const struct pe32plus_opt_hdr *pe64;
|
|
const struct data_directory *ddir;
|
|
const struct data_dirent *dde;
|
|
const struct section_header *secs, *sec;
|
|
size_t cursor, datalen = pelen;
|
|
|
|
kenter("");
|
|
|
|
#define chkaddr(base, x, s) \
|
|
do { \
|
|
if ((x) < base || (s) >= datalen || (x) > datalen - (s)) \
|
|
return -ELIBBAD; \
|
|
} while (0)
|
|
|
|
chkaddr(0, 0, sizeof(*mz));
|
|
if (mz->magic != MZ_MAGIC)
|
|
return -ELIBBAD;
|
|
cursor = sizeof(*mz);
|
|
|
|
chkaddr(cursor, mz->peaddr, sizeof(*pe));
|
|
pe = pebuf + mz->peaddr;
|
|
if (pe->magic != PE_MAGIC)
|
|
return -ELIBBAD;
|
|
cursor = mz->peaddr + sizeof(*pe);
|
|
|
|
chkaddr(0, cursor, sizeof(pe32->magic));
|
|
pe32 = pebuf + cursor;
|
|
pe64 = pebuf + cursor;
|
|
|
|
switch (pe32->magic) {
|
|
case PE_OPT_MAGIC_PE32:
|
|
chkaddr(0, cursor, sizeof(*pe32));
|
|
ctx->image_checksum_offset =
|
|
(unsigned long)&pe32->csum - (unsigned long)pebuf;
|
|
ctx->header_size = pe32->header_size;
|
|
cursor += sizeof(*pe32);
|
|
ctx->n_data_dirents = pe32->data_dirs;
|
|
break;
|
|
|
|
case PE_OPT_MAGIC_PE32PLUS:
|
|
chkaddr(0, cursor, sizeof(*pe64));
|
|
ctx->image_checksum_offset =
|
|
(unsigned long)&pe64->csum - (unsigned long)pebuf;
|
|
ctx->header_size = pe64->header_size;
|
|
cursor += sizeof(*pe64);
|
|
ctx->n_data_dirents = pe64->data_dirs;
|
|
break;
|
|
|
|
default:
|
|
pr_debug("Unknown PEOPT magic = %04hx\n", pe32->magic);
|
|
return -ELIBBAD;
|
|
}
|
|
|
|
pr_debug("checksum @ %x\n", ctx->image_checksum_offset);
|
|
pr_debug("header size = %x\n", ctx->header_size);
|
|
|
|
if (cursor >= ctx->header_size || ctx->header_size >= datalen)
|
|
return -ELIBBAD;
|
|
|
|
if (ctx->n_data_dirents > (ctx->header_size - cursor) / sizeof(*dde))
|
|
return -ELIBBAD;
|
|
|
|
ddir = pebuf + cursor;
|
|
cursor += sizeof(*dde) * ctx->n_data_dirents;
|
|
|
|
ctx->cert_dirent_offset =
|
|
(unsigned long)&ddir->certs - (unsigned long)pebuf;
|
|
ctx->certs_size = ddir->certs.size;
|
|
|
|
if (!ddir->certs.virtual_address || !ddir->certs.size) {
|
|
pr_debug("Unsigned PE binary\n");
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
chkaddr(ctx->header_size, ddir->certs.virtual_address,
|
|
ddir->certs.size);
|
|
ctx->sig_offset = ddir->certs.virtual_address;
|
|
ctx->sig_len = ddir->certs.size;
|
|
pr_debug("cert = %x @%x [%*ph]\n",
|
|
ctx->sig_len, ctx->sig_offset,
|
|
ctx->sig_len, pebuf + ctx->sig_offset);
|
|
|
|
ctx->n_sections = pe->sections;
|
|
if (ctx->n_sections > (ctx->header_size - cursor) / sizeof(*sec))
|
|
return -ELIBBAD;
|
|
ctx->secs = secs = pebuf + cursor;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check and strip the PE wrapper from around the signature and check that the
|
|
* remnant looks something like PKCS#7.
|
|
*/
|
|
static int pefile_strip_sig_wrapper(const void *pebuf,
|
|
struct pefile_context *ctx)
|
|
{
|
|
struct win_certificate wrapper;
|
|
const u8 *pkcs7;
|
|
|
|
if (ctx->sig_len < sizeof(wrapper)) {
|
|
pr_debug("Signature wrapper too short\n");
|
|
return -ELIBBAD;
|
|
}
|
|
|
|
memcpy(&wrapper, pebuf + ctx->sig_offset, sizeof(wrapper));
|
|
pr_debug("sig wrapper = { %x, %x, %x }\n",
|
|
wrapper.length, wrapper.revision, wrapper.cert_type);
|
|
|
|
/* Both pesign and sbsign round up the length of certificate table
|
|
* (in optional header data directories) to 8 byte alignment.
|
|
*/
|
|
if (round_up(wrapper.length, 8) != ctx->sig_len) {
|
|
pr_debug("Signature wrapper len wrong\n");
|
|
return -ELIBBAD;
|
|
}
|
|
if (wrapper.revision != WIN_CERT_REVISION_2_0) {
|
|
pr_debug("Signature is not revision 2.0\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
if (wrapper.cert_type != WIN_CERT_TYPE_PKCS_SIGNED_DATA) {
|
|
pr_debug("Signature certificate type is not PKCS\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/* Looks like actual pkcs signature length is in wrapper->length.
|
|
* size obtained from data dir entries lists the total size of
|
|
* certificate table which is also aligned to octawrod boundary.
|
|
*
|
|
* So set signature length field appropriately.
|
|
*/
|
|
ctx->sig_len = wrapper.length;
|
|
ctx->sig_offset += sizeof(wrapper);
|
|
ctx->sig_len -= sizeof(wrapper);
|
|
if (ctx->sig_len == 0) {
|
|
pr_debug("Signature data missing\n");
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
/* What's left should a PKCS#7 cert */
|
|
pkcs7 = pebuf + ctx->sig_offset;
|
|
if (pkcs7[0] == (ASN1_CONS_BIT | ASN1_SEQ)) {
|
|
if (pkcs7[1] == 0x82 &&
|
|
pkcs7[2] == (((ctx->sig_len - 4) >> 8) & 0xff) &&
|
|
pkcs7[3] == ((ctx->sig_len - 4) & 0xff))
|
|
return 0;
|
|
if (pkcs7[1] == 0x80)
|
|
return 0;
|
|
if (pkcs7[1] > 0x82)
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
pr_debug("Signature data not PKCS#7\n");
|
|
return -ELIBBAD;
|
|
}
|
|
|
|
/*
|
|
* Compare two sections for canonicalisation.
|
|
*/
|
|
static int pefile_compare_shdrs(const void *a, const void *b)
|
|
{
|
|
const struct section_header *shdra = a;
|
|
const struct section_header *shdrb = b;
|
|
int rc;
|
|
|
|
if (shdra->data_addr > shdrb->data_addr)
|
|
return 1;
|
|
if (shdrb->data_addr > shdra->data_addr)
|
|
return -1;
|
|
|
|
if (shdra->virtual_address > shdrb->virtual_address)
|
|
return 1;
|
|
if (shdrb->virtual_address > shdra->virtual_address)
|
|
return -1;
|
|
|
|
rc = strcmp(shdra->name, shdrb->name);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (shdra->virtual_size > shdrb->virtual_size)
|
|
return 1;
|
|
if (shdrb->virtual_size > shdra->virtual_size)
|
|
return -1;
|
|
|
|
if (shdra->raw_data_size > shdrb->raw_data_size)
|
|
return 1;
|
|
if (shdrb->raw_data_size > shdra->raw_data_size)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Load the contents of the PE binary into the digest, leaving out the image
|
|
* checksum and the certificate data block.
|
|
*/
|
|
static int pefile_digest_pe_contents(const void *pebuf, unsigned int pelen,
|
|
struct pefile_context *ctx,
|
|
struct shash_desc *desc)
|
|
{
|
|
unsigned *canon, tmp, loop, i, hashed_bytes;
|
|
int ret;
|
|
|
|
/* Digest the header and data directory, but leave out the image
|
|
* checksum and the data dirent for the signature.
|
|
*/
|
|
ret = crypto_shash_update(desc, pebuf, ctx->image_checksum_offset);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
tmp = ctx->image_checksum_offset + sizeof(uint32_t);
|
|
ret = crypto_shash_update(desc, pebuf + tmp,
|
|
ctx->cert_dirent_offset - tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
tmp = ctx->cert_dirent_offset + sizeof(struct data_dirent);
|
|
ret = crypto_shash_update(desc, pebuf + tmp, ctx->header_size - tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
canon = kcalloc(ctx->n_sections, sizeof(unsigned), GFP_KERNEL);
|
|
if (!canon)
|
|
return -ENOMEM;
|
|
|
|
/* We have to canonicalise the section table, so we perform an
|
|
* insertion sort.
|
|
*/
|
|
canon[0] = 0;
|
|
for (loop = 1; loop < ctx->n_sections; loop++) {
|
|
for (i = 0; i < loop; i++) {
|
|
if (pefile_compare_shdrs(&ctx->secs[canon[i]],
|
|
&ctx->secs[loop]) > 0) {
|
|
memmove(&canon[i + 1], &canon[i],
|
|
(loop - i) * sizeof(canon[0]));
|
|
break;
|
|
}
|
|
}
|
|
canon[i] = loop;
|
|
}
|
|
|
|
hashed_bytes = ctx->header_size;
|
|
for (loop = 0; loop < ctx->n_sections; loop++) {
|
|
i = canon[loop];
|
|
if (ctx->secs[i].raw_data_size == 0)
|
|
continue;
|
|
ret = crypto_shash_update(desc,
|
|
pebuf + ctx->secs[i].data_addr,
|
|
ctx->secs[i].raw_data_size);
|
|
if (ret < 0) {
|
|
kfree(canon);
|
|
return ret;
|
|
}
|
|
hashed_bytes += ctx->secs[i].raw_data_size;
|
|
}
|
|
kfree(canon);
|
|
|
|
if (pelen > hashed_bytes) {
|
|
tmp = hashed_bytes + ctx->certs_size;
|
|
ret = crypto_shash_update(desc,
|
|
pebuf + hashed_bytes,
|
|
pelen - tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Digest the contents of the PE binary, leaving out the image checksum and the
|
|
* certificate data block.
|
|
*/
|
|
static int pefile_digest_pe(const void *pebuf, unsigned int pelen,
|
|
struct pefile_context *ctx)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
struct shash_desc *desc;
|
|
size_t digest_size, desc_size;
|
|
void *digest;
|
|
int ret;
|
|
|
|
kenter(",%u", ctx->digest_algo);
|
|
|
|
/* Allocate the hashing algorithm we're going to need and find out how
|
|
* big the hash operational data will be.
|
|
*/
|
|
tfm = crypto_alloc_shash(hash_algo_name[ctx->digest_algo], 0, 0);
|
|
if (IS_ERR(tfm))
|
|
return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
|
|
|
|
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
|
|
digest_size = crypto_shash_digestsize(tfm);
|
|
|
|
if (digest_size != ctx->digest_len) {
|
|
pr_debug("Digest size mismatch (%zx != %x)\n",
|
|
digest_size, ctx->digest_len);
|
|
ret = -EBADMSG;
|
|
goto error_no_desc;
|
|
}
|
|
pr_debug("Digest: desc=%zu size=%zu\n", desc_size, digest_size);
|
|
|
|
ret = -ENOMEM;
|
|
desc = kzalloc(desc_size + digest_size, GFP_KERNEL);
|
|
if (!desc)
|
|
goto error_no_desc;
|
|
|
|
desc->tfm = tfm;
|
|
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
ret = crypto_shash_init(desc);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = pefile_digest_pe_contents(pebuf, pelen, ctx, desc);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
digest = (void *)desc + desc_size;
|
|
ret = crypto_shash_final(desc, digest);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
pr_debug("Digest calc = [%*ph]\n", ctx->digest_len, digest);
|
|
|
|
/* Check that the PE file digest matches that in the MSCODE part of the
|
|
* PKCS#7 certificate.
|
|
*/
|
|
if (memcmp(digest, ctx->digest, ctx->digest_len) != 0) {
|
|
pr_debug("Digest mismatch\n");
|
|
ret = -EKEYREJECTED;
|
|
} else {
|
|
pr_debug("The digests match!\n");
|
|
}
|
|
|
|
error:
|
|
kfree(desc);
|
|
error_no_desc:
|
|
crypto_free_shash(tfm);
|
|
kleave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* verify_pefile_signature - Verify the signature on a PE binary image
|
|
* @pebuf: Buffer containing the PE binary image
|
|
* @pelen: Length of the binary image
|
|
* @trust_keyring: Signing certificates to use as starting points
|
|
* @_trusted: Set to true if trustworth, false otherwise
|
|
*
|
|
* Validate that the certificate chain inside the PKCS#7 message inside the PE
|
|
* binary image intersects keys we already know and trust.
|
|
*
|
|
* Returns, in order of descending priority:
|
|
*
|
|
* (*) -ELIBBAD if the image cannot be parsed, or:
|
|
*
|
|
* (*) -EKEYREJECTED if a signature failed to match for which we have a valid
|
|
* key, or:
|
|
*
|
|
* (*) 0 if at least one signature chain intersects with the keys in the trust
|
|
* keyring, or:
|
|
*
|
|
* (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
|
|
* chain.
|
|
*
|
|
* (*) -ENOKEY if we couldn't find a match for any of the signature chains in
|
|
* the message.
|
|
*
|
|
* May also return -ENOMEM.
|
|
*/
|
|
int verify_pefile_signature(const void *pebuf, unsigned pelen,
|
|
struct key *trusted_keyring, bool *_trusted)
|
|
{
|
|
struct pkcs7_message *pkcs7;
|
|
struct pefile_context ctx;
|
|
const void *data;
|
|
size_t datalen;
|
|
int ret;
|
|
|
|
kenter("");
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
ret = pefile_parse_binary(pebuf, pelen, &ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = pefile_strip_sig_wrapper(pebuf, &ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pkcs7 = pkcs7_parse_message(pebuf + ctx.sig_offset, ctx.sig_len);
|
|
if (IS_ERR(pkcs7))
|
|
return PTR_ERR(pkcs7);
|
|
ctx.pkcs7 = pkcs7;
|
|
|
|
ret = pkcs7_get_content_data(ctx.pkcs7, &data, &datalen, false);
|
|
if (ret < 0 || datalen == 0) {
|
|
pr_devel("PKCS#7 message does not contain data\n");
|
|
ret = -EBADMSG;
|
|
goto error;
|
|
}
|
|
|
|
ret = mscode_parse(&ctx);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
pr_debug("Digest: %u [%*ph]\n",
|
|
ctx.digest_len, ctx.digest_len, ctx.digest);
|
|
|
|
/* Generate the digest and check against the PKCS7 certificate
|
|
* contents.
|
|
*/
|
|
ret = pefile_digest_pe(pebuf, pelen, &ctx);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = pkcs7_verify(pkcs7);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = pkcs7_validate_trust(pkcs7, trusted_keyring, _trusted);
|
|
|
|
error:
|
|
pkcs7_free_message(ctx.pkcs7);
|
|
return ret;
|
|
}
|