linux/arch/powerpc/platforms/pseries/setup.c
Gavin Shan 8cc7581cdb powerpc/pci: Delay populating pdn
The pdn (struct pci_dn) instances are allocated from memblock or
bootmem when creating PCI controller (hoses) in setup_arch(). PCI
hotplug, which will be supported by proceeding patches, releases
PCI device nodes and their corresponding pdn on unplugging event.
The memory chunks for pdn instances allocated from memblock or
bootmem are hard to reused after being released.

This delays creating pdn by pci_devs_phb_init() from setup_arch()
to core_initcall() so that they are allocated from slab. The memory
consumed by pdn can be released to system without problem during
PCI unplugging time. It indicates that pci_dn is unavailable in
setup_arch() and the the fixup on pdn (like AGP's) can't be carried
out that time. We have to do that in pcibios_root_bridge_prepare()
on maple/pasemi/powermac platforms where/when the pdn is available.
pcibios_root_bridge_prepare is called from subsys_initcall() which
is executed after core_initcall() so the code flow does not change.

At the mean while, the EEH device is created when pdn is populated,
meaning pdn and EEH device have same life cycle. In turn, we needn't
call eeh_dev_init() to create EEH device explicitly.

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-21 15:30:56 +10:00

790 lines
20 KiB
C

/*
* 64-bit pSeries and RS/6000 setup code.
*
* Copyright (C) 1995 Linus Torvalds
* Adapted from 'alpha' version by Gary Thomas
* Modified by Cort Dougan (cort@cs.nmt.edu)
* Modified by PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* bootup setup stuff..
*/
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/tty.h>
#include <linux/major.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/pci.h>
#include <linux/utsname.h>
#include <linux/adb.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/of.h>
#include <linux/of_pci.h>
#include <linux/kexec.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/pci-bridge.h>
#include <asm/iommu.h>
#include <asm/dma.h>
#include <asm/machdep.h>
#include <asm/irq.h>
#include <asm/time.h>
#include <asm/nvram.h>
#include <asm/pmc.h>
#include <asm/xics.h>
#include <asm/ppc-pci.h>
#include <asm/i8259.h>
#include <asm/udbg.h>
#include <asm/smp.h>
#include <asm/firmware.h>
#include <asm/eeh.h>
#include <asm/reg.h>
#include <asm/plpar_wrappers.h>
#include "pseries.h"
int CMO_PrPSP = -1;
int CMO_SecPSP = -1;
unsigned long CMO_PageSize = (ASM_CONST(1) << IOMMU_PAGE_SHIFT_4K);
EXPORT_SYMBOL(CMO_PageSize);
int fwnmi_active; /* TRUE if an FWNMI handler is present */
static void pSeries_show_cpuinfo(struct seq_file *m)
{
struct device_node *root;
const char *model = "";
root = of_find_node_by_path("/");
if (root)
model = of_get_property(root, "model", NULL);
seq_printf(m, "machine\t\t: CHRP %s\n", model);
of_node_put(root);
}
/* Initialize firmware assisted non-maskable interrupts if
* the firmware supports this feature.
*/
static void __init fwnmi_init(void)
{
unsigned long system_reset_addr, machine_check_addr;
int ibm_nmi_register = rtas_token("ibm,nmi-register");
if (ibm_nmi_register == RTAS_UNKNOWN_SERVICE)
return;
/* If the kernel's not linked at zero we point the firmware at low
* addresses anyway, and use a trampoline to get to the real code. */
system_reset_addr = __pa(system_reset_fwnmi) - PHYSICAL_START;
machine_check_addr = __pa(machine_check_fwnmi) - PHYSICAL_START;
if (0 == rtas_call(ibm_nmi_register, 2, 1, NULL, system_reset_addr,
machine_check_addr))
fwnmi_active = 1;
}
static void pseries_8259_cascade(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
unsigned int cascade_irq = i8259_irq();
if (cascade_irq != NO_IRQ)
generic_handle_irq(cascade_irq);
chip->irq_eoi(&desc->irq_data);
}
static void __init pseries_setup_i8259_cascade(void)
{
struct device_node *np, *old, *found = NULL;
unsigned int cascade;
const u32 *addrp;
unsigned long intack = 0;
int naddr;
for_each_node_by_type(np, "interrupt-controller") {
if (of_device_is_compatible(np, "chrp,iic")) {
found = np;
break;
}
}
if (found == NULL) {
printk(KERN_DEBUG "pic: no ISA interrupt controller\n");
return;
}
cascade = irq_of_parse_and_map(found, 0);
if (cascade == NO_IRQ) {
printk(KERN_ERR "pic: failed to map cascade interrupt");
return;
}
pr_debug("pic: cascade mapped to irq %d\n", cascade);
for (old = of_node_get(found); old != NULL ; old = np) {
np = of_get_parent(old);
of_node_put(old);
if (np == NULL)
break;
if (strcmp(np->name, "pci") != 0)
continue;
addrp = of_get_property(np, "8259-interrupt-acknowledge", NULL);
if (addrp == NULL)
continue;
naddr = of_n_addr_cells(np);
intack = addrp[naddr-1];
if (naddr > 1)
intack |= ((unsigned long)addrp[naddr-2]) << 32;
}
if (intack)
printk(KERN_DEBUG "pic: PCI 8259 intack at 0x%016lx\n", intack);
i8259_init(found, intack);
of_node_put(found);
irq_set_chained_handler(cascade, pseries_8259_cascade);
}
static void __init pseries_init_irq(void)
{
xics_init();
pseries_setup_i8259_cascade();
}
static void pseries_lpar_enable_pmcs(void)
{
unsigned long set, reset;
set = 1UL << 63;
reset = 0;
plpar_hcall_norets(H_PERFMON, set, reset);
}
static int pci_dn_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *data)
{
struct of_reconfig_data *rd = data;
struct device_node *parent, *np = rd->dn;
struct pci_dn *pdn;
int err = NOTIFY_OK;
switch (action) {
case OF_RECONFIG_ATTACH_NODE:
parent = of_get_parent(np);
pdn = parent ? PCI_DN(parent) : NULL;
if (pdn)
pci_add_device_node_info(pdn->phb, np);
of_node_put(parent);
break;
case OF_RECONFIG_DETACH_NODE:
pdn = PCI_DN(np);
if (pdn)
list_del(&pdn->list);
break;
default:
err = NOTIFY_DONE;
break;
}
return err;
}
static struct notifier_block pci_dn_reconfig_nb = {
.notifier_call = pci_dn_reconfig_notifier,
};
struct kmem_cache *dtl_cache;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
/*
* Allocate space for the dispatch trace log for all possible cpus
* and register the buffers with the hypervisor. This is used for
* computing time stolen by the hypervisor.
*/
static int alloc_dispatch_logs(void)
{
int cpu, ret;
struct paca_struct *pp;
struct dtl_entry *dtl;
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
return 0;
if (!dtl_cache)
return 0;
for_each_possible_cpu(cpu) {
pp = &paca[cpu];
dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
if (!dtl) {
pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
cpu);
pr_warn("Stolen time statistics will be unreliable\n");
break;
}
pp->dtl_ridx = 0;
pp->dispatch_log = dtl;
pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
pp->dtl_curr = dtl;
}
/* Register the DTL for the current (boot) cpu */
dtl = get_paca()->dispatch_log;
get_paca()->dtl_ridx = 0;
get_paca()->dtl_curr = dtl;
get_paca()->lppaca_ptr->dtl_idx = 0;
/* hypervisor reads buffer length from this field */
dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
ret = register_dtl(hard_smp_processor_id(), __pa(dtl));
if (ret)
pr_err("WARNING: DTL registration of cpu %d (hw %d) failed "
"with %d\n", smp_processor_id(),
hard_smp_processor_id(), ret);
get_paca()->lppaca_ptr->dtl_enable_mask = 2;
return 0;
}
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
static inline int alloc_dispatch_logs(void)
{
return 0;
}
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
static int alloc_dispatch_log_kmem_cache(void)
{
dtl_cache = kmem_cache_create("dtl", DISPATCH_LOG_BYTES,
DISPATCH_LOG_BYTES, 0, NULL);
if (!dtl_cache) {
pr_warn("Failed to create dispatch trace log buffer cache\n");
pr_warn("Stolen time statistics will be unreliable\n");
return 0;
}
return alloc_dispatch_logs();
}
machine_early_initcall(pseries, alloc_dispatch_log_kmem_cache);
static void pseries_lpar_idle(void)
{
/*
* Default handler to go into low thread priority and possibly
* low power mode by ceding processor to hypervisor
*/
/* Indicate to hypervisor that we are idle. */
get_lppaca()->idle = 1;
/*
* Yield the processor to the hypervisor. We return if
* an external interrupt occurs (which are driven prior
* to returning here) or if a prod occurs from another
* processor. When returning here, external interrupts
* are enabled.
*/
cede_processor();
get_lppaca()->idle = 0;
}
/*
* Enable relocation on during exceptions. This has partition wide scope and
* may take a while to complete, if it takes longer than one second we will
* just give up rather than wasting any more time on this - if that turns out
* to ever be a problem in practice we can move this into a kernel thread to
* finish off the process later in boot.
*/
long pSeries_enable_reloc_on_exc(void)
{
long rc;
unsigned int delay, total_delay = 0;
while (1) {
rc = enable_reloc_on_exceptions();
if (!H_IS_LONG_BUSY(rc))
return rc;
delay = get_longbusy_msecs(rc);
total_delay += delay;
if (total_delay > 1000) {
pr_warn("Warning: Giving up waiting to enable "
"relocation on exceptions (%u msec)!\n",
total_delay);
return rc;
}
mdelay(delay);
}
}
EXPORT_SYMBOL(pSeries_enable_reloc_on_exc);
long pSeries_disable_reloc_on_exc(void)
{
long rc;
while (1) {
rc = disable_reloc_on_exceptions();
if (!H_IS_LONG_BUSY(rc))
return rc;
mdelay(get_longbusy_msecs(rc));
}
}
EXPORT_SYMBOL(pSeries_disable_reloc_on_exc);
#ifdef CONFIG_KEXEC
static void pSeries_machine_kexec(struct kimage *image)
{
long rc;
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
rc = pSeries_disable_reloc_on_exc();
if (rc != H_SUCCESS)
pr_warning("Warning: Failed to disable relocation on "
"exceptions: %ld\n", rc);
}
default_machine_kexec(image);
}
#endif
#ifdef __LITTLE_ENDIAN__
long pseries_big_endian_exceptions(void)
{
long rc;
while (1) {
rc = enable_big_endian_exceptions();
if (!H_IS_LONG_BUSY(rc))
return rc;
mdelay(get_longbusy_msecs(rc));
}
}
static long pseries_little_endian_exceptions(void)
{
long rc;
while (1) {
rc = enable_little_endian_exceptions();
if (!H_IS_LONG_BUSY(rc))
return rc;
mdelay(get_longbusy_msecs(rc));
}
}
#endif
static void __init find_and_init_phbs(void)
{
struct device_node *node;
struct pci_controller *phb;
struct device_node *root = of_find_node_by_path("/");
for_each_child_of_node(root, node) {
if (node->type == NULL || (strcmp(node->type, "pci") != 0 &&
strcmp(node->type, "pciex") != 0))
continue;
phb = pcibios_alloc_controller(node);
if (!phb)
continue;
rtas_setup_phb(phb);
pci_process_bridge_OF_ranges(phb, node, 0);
isa_bridge_find_early(phb);
phb->controller_ops = pseries_pci_controller_ops;
}
of_node_put(root);
/*
* PCI_PROBE_ONLY and PCI_REASSIGN_ALL_BUS can be set via properties
* in chosen.
*/
of_pci_check_probe_only();
}
static void __init pSeries_setup_arch(void)
{
set_arch_panic_timeout(10, ARCH_PANIC_TIMEOUT);
/* Discover PIC type and setup ppc_md accordingly */
smp_init_pseries();
/* openpic global configuration register (64-bit format). */
/* openpic Interrupt Source Unit pointer (64-bit format). */
/* python0 facility area (mmio) (64-bit format) REAL address. */
/* init to some ~sane value until calibrate_delay() runs */
loops_per_jiffy = 50000000;
fwnmi_init();
/* By default, only probe PCI (can be overridden by rtas_pci) */
pci_add_flags(PCI_PROBE_ONLY);
/* Find and initialize PCI host bridges */
init_pci_config_tokens();
find_and_init_phbs();
of_reconfig_notifier_register(&pci_dn_reconfig_nb);
pSeries_nvram_init();
if (firmware_has_feature(FW_FEATURE_LPAR)) {
vpa_init(boot_cpuid);
ppc_md.power_save = pseries_lpar_idle;
ppc_md.enable_pmcs = pseries_lpar_enable_pmcs;
} else {
/* No special idle routine */
ppc_md.enable_pmcs = power4_enable_pmcs;
}
ppc_md.pcibios_root_bridge_prepare = pseries_root_bridge_prepare;
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
long rc;
rc = pSeries_enable_reloc_on_exc();
if (rc == H_P2) {
pr_info("Relocation on exceptions not supported\n");
} else if (rc != H_SUCCESS) {
pr_warn("Unable to enable relocation on exceptions: "
"%ld\n", rc);
}
}
}
static int __init pSeries_init_panel(void)
{
/* Manually leave the kernel version on the panel. */
#ifdef __BIG_ENDIAN__
ppc_md.progress("Linux ppc64\n", 0);
#else
ppc_md.progress("Linux ppc64le\n", 0);
#endif
ppc_md.progress(init_utsname()->version, 0);
return 0;
}
machine_arch_initcall(pseries, pSeries_init_panel);
static int pseries_set_dabr(unsigned long dabr, unsigned long dabrx)
{
return plpar_hcall_norets(H_SET_DABR, dabr);
}
static int pseries_set_xdabr(unsigned long dabr, unsigned long dabrx)
{
/* Have to set at least one bit in the DABRX according to PAPR */
if (dabrx == 0 && dabr == 0)
dabrx = DABRX_USER;
/* PAPR says we can only set kernel and user bits */
dabrx &= DABRX_KERNEL | DABRX_USER;
return plpar_hcall_norets(H_SET_XDABR, dabr, dabrx);
}
static int pseries_set_dawr(unsigned long dawr, unsigned long dawrx)
{
/* PAPR says we can't set HYP */
dawrx &= ~DAWRX_HYP;
return plapr_set_watchpoint0(dawr, dawrx);
}
#define CMO_CHARACTERISTICS_TOKEN 44
#define CMO_MAXLENGTH 1026
void pSeries_coalesce_init(void)
{
struct hvcall_mpp_x_data mpp_x_data;
if (firmware_has_feature(FW_FEATURE_CMO) && !h_get_mpp_x(&mpp_x_data))
powerpc_firmware_features |= FW_FEATURE_XCMO;
else
powerpc_firmware_features &= ~FW_FEATURE_XCMO;
}
/**
* fw_cmo_feature_init - FW_FEATURE_CMO is not stored in ibm,hypertas-functions,
* handle that here. (Stolen from parse_system_parameter_string)
*/
static void pSeries_cmo_feature_init(void)
{
char *ptr, *key, *value, *end;
int call_status;
int page_order = IOMMU_PAGE_SHIFT_4K;
pr_debug(" -> fw_cmo_feature_init()\n");
spin_lock(&rtas_data_buf_lock);
memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
NULL,
CMO_CHARACTERISTICS_TOKEN,
__pa(rtas_data_buf),
RTAS_DATA_BUF_SIZE);
if (call_status != 0) {
spin_unlock(&rtas_data_buf_lock);
pr_debug("CMO not available\n");
pr_debug(" <- fw_cmo_feature_init()\n");
return;
}
end = rtas_data_buf + CMO_MAXLENGTH - 2;
ptr = rtas_data_buf + 2; /* step over strlen value */
key = value = ptr;
while (*ptr && (ptr <= end)) {
/* Separate the key and value by replacing '=' with '\0' and
* point the value at the string after the '='
*/
if (ptr[0] == '=') {
ptr[0] = '\0';
value = ptr + 1;
} else if (ptr[0] == '\0' || ptr[0] == ',') {
/* Terminate the string containing the key/value pair */
ptr[0] = '\0';
if (key == value) {
pr_debug("Malformed key/value pair\n");
/* Never found a '=', end processing */
break;
}
if (0 == strcmp(key, "CMOPageSize"))
page_order = simple_strtol(value, NULL, 10);
else if (0 == strcmp(key, "PrPSP"))
CMO_PrPSP = simple_strtol(value, NULL, 10);
else if (0 == strcmp(key, "SecPSP"))
CMO_SecPSP = simple_strtol(value, NULL, 10);
value = key = ptr + 1;
}
ptr++;
}
/* Page size is returned as the power of 2 of the page size,
* convert to the page size in bytes before returning
*/
CMO_PageSize = 1 << page_order;
pr_debug("CMO_PageSize = %lu\n", CMO_PageSize);
if (CMO_PrPSP != -1 || CMO_SecPSP != -1) {
pr_info("CMO enabled\n");
pr_debug("CMO enabled, PrPSP=%d, SecPSP=%d\n", CMO_PrPSP,
CMO_SecPSP);
powerpc_firmware_features |= FW_FEATURE_CMO;
pSeries_coalesce_init();
} else
pr_debug("CMO not enabled, PrPSP=%d, SecPSP=%d\n", CMO_PrPSP,
CMO_SecPSP);
spin_unlock(&rtas_data_buf_lock);
pr_debug(" <- fw_cmo_feature_init()\n");
}
/*
* Early initialization. Relocation is on but do not reference unbolted pages
*/
static void __init pSeries_init_early(void)
{
pr_debug(" -> pSeries_init_early()\n");
#ifdef CONFIG_HVC_CONSOLE
if (firmware_has_feature(FW_FEATURE_LPAR))
hvc_vio_init_early();
#endif
if (firmware_has_feature(FW_FEATURE_XDABR))
ppc_md.set_dabr = pseries_set_xdabr;
else if (firmware_has_feature(FW_FEATURE_DABR))
ppc_md.set_dabr = pseries_set_dabr;
if (firmware_has_feature(FW_FEATURE_SET_MODE))
ppc_md.set_dawr = pseries_set_dawr;
pSeries_cmo_feature_init();
iommu_init_early_pSeries();
pr_debug(" <- pSeries_init_early()\n");
}
/**
* pseries_power_off - tell firmware about how to power off the system.
*
* This function calls either the power-off rtas token in normal cases
* or the ibm,power-off-ups token (if present & requested) in case of
* a power failure. If power-off token is used, power on will only be
* possible with power button press. If ibm,power-off-ups token is used
* it will allow auto poweron after power is restored.
*/
static void pseries_power_off(void)
{
int rc;
int rtas_poweroff_ups_token = rtas_token("ibm,power-off-ups");
if (rtas_flash_term_hook)
rtas_flash_term_hook(SYS_POWER_OFF);
if (rtas_poweron_auto == 0 ||
rtas_poweroff_ups_token == RTAS_UNKNOWN_SERVICE) {
rc = rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1);
printk(KERN_INFO "RTAS power-off returned %d\n", rc);
} else {
rc = rtas_call(rtas_poweroff_ups_token, 0, 1, NULL);
printk(KERN_INFO "RTAS ibm,power-off-ups returned %d\n", rc);
}
for (;;);
}
/*
* Called very early, MMU is off, device-tree isn't unflattened
*/
static int __init pseries_probe_fw_features(unsigned long node,
const char *uname, int depth,
void *data)
{
const char *prop;
int len;
static int hypertas_found;
static int vec5_found;
if (depth != 1)
return 0;
if (!strcmp(uname, "rtas") || !strcmp(uname, "rtas@0")) {
prop = of_get_flat_dt_prop(node, "ibm,hypertas-functions",
&len);
if (prop) {
powerpc_firmware_features |= FW_FEATURE_LPAR;
fw_hypertas_feature_init(prop, len);
}
hypertas_found = 1;
}
if (!strcmp(uname, "chosen")) {
prop = of_get_flat_dt_prop(node, "ibm,architecture-vec-5",
&len);
if (prop)
fw_vec5_feature_init(prop, len);
vec5_found = 1;
}
return hypertas_found && vec5_found;
}
static int __init pSeries_probe(void)
{
unsigned long root = of_get_flat_dt_root();
const char *dtype = of_get_flat_dt_prop(root, "device_type", NULL);
if (dtype == NULL)
return 0;
if (strcmp(dtype, "chrp"))
return 0;
/* Cell blades firmware claims to be chrp while it's not. Until this
* is fixed, we need to avoid those here.
*/
if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0") ||
of_flat_dt_is_compatible(root, "IBM,CBEA"))
return 0;
pr_debug("pSeries detected, looking for LPAR capability...\n");
/* Now try to figure out if we are running on LPAR */
of_scan_flat_dt(pseries_probe_fw_features, NULL);
#ifdef __LITTLE_ENDIAN__
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
long rc;
/*
* Tell the hypervisor that we want our exceptions to
* be taken in little endian mode. If this fails we don't
* want to use BUG() because it will trigger an exception.
*/
rc = pseries_little_endian_exceptions();
if (rc) {
ppc_md.progress("H_SET_MODE LE exception fail", 0);
panic("Could not enable little endian exceptions");
}
}
#endif
if (firmware_has_feature(FW_FEATURE_LPAR))
hpte_init_lpar();
else
hpte_init_native();
pm_power_off = pseries_power_off;
pr_debug("Machine is%s LPAR !\n",
(powerpc_firmware_features & FW_FEATURE_LPAR) ? "" : " not");
return 1;
}
static int pSeries_pci_probe_mode(struct pci_bus *bus)
{
if (firmware_has_feature(FW_FEATURE_LPAR))
return PCI_PROBE_DEVTREE;
return PCI_PROBE_NORMAL;
}
struct pci_controller_ops pseries_pci_controller_ops = {
.probe_mode = pSeries_pci_probe_mode,
};
define_machine(pseries) {
.name = "pSeries",
.probe = pSeries_probe,
.setup_arch = pSeries_setup_arch,
.init_early = pSeries_init_early,
.init_IRQ = pseries_init_irq,
.show_cpuinfo = pSeries_show_cpuinfo,
.log_error = pSeries_log_error,
.pcibios_fixup = pSeries_final_fixup,
.restart = rtas_restart,
.halt = rtas_halt,
.panic = rtas_os_term,
.get_boot_time = rtas_get_boot_time,
.get_rtc_time = rtas_get_rtc_time,
.set_rtc_time = rtas_set_rtc_time,
.calibrate_decr = generic_calibrate_decr,
.progress = rtas_progress,
.system_reset_exception = pSeries_system_reset_exception,
.machine_check_exception = pSeries_machine_check_exception,
#ifdef CONFIG_KEXEC
.machine_kexec = pSeries_machine_kexec,
.kexec_cpu_down = pseries_kexec_cpu_down,
#endif
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
.memory_block_size = pseries_memory_block_size,
#endif
};