linux/arch/powerpc/kvm/powerpc.c
Linus Torvalds 4899a36f91 powerpc updates for 6.1
- Remove our now never-true definitions for pgd_huge() and p4d_leaf().
 
  - Add pte_needs_flush() and huge_pmd_needs_flush() for 64-bit.
 
  - Add support for syscall wrappers.
 
  - Add support for KFENCE on 64-bit.
 
  - Update 64-bit HV KVM to use the new guest state entry/exit accounting API.
 
  - Support execute-only memory when using the Radix MMU (P9 or later).
 
  - Implement CONFIG_PARAVIRT_TIME_ACCOUNTING for pseries guests.
 
  - Updates to our linker script to move more data into read-only sections.
 
  - Allow the VDSO to be randomised on 32-bit.
 
  - Many other small features and fixes.
 
 Thanks to: Andrew Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Athira Rajeev, Christophe
 Leroy, David Hildenbrand, Disha Goel, Fabiano Rosas, Gaosheng Cui, Gustavo A. R. Silva,
 Haren Myneni, Hari Bathini, Jilin Yuan, Joel Stanley, Kajol Jain, Kees Cook, Krzysztof
 Kozlowski, Laurent Dufour, Liang He, Li Huafei, Lukas Bulwahn, Madhavan Srinivasan, Nathan
 Chancellor, Nathan Lynch, Nicholas Miehlbradt, Nicholas Piggin, Pali Rohár, Rohan McLure,
 Russell Currey, Sachin Sant, Segher Boessenkool, Shrikanth Hegde, Tyrel Datwyler, Wolfram
 Sang, ye xingchen, Zheng Yongjun.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAmNCpBMTHG1wZUBlbGxl
 cm1hbi5pZC5hdQAKCRBR6+o8yOGlgDx3EACCf86iumFF3RyvENtDwoTRgH3H0z2E
 /ZC4LKrtxgaPFJzKUT4F0kLK85Hw5GzMEKK42NIhAB0o5vFwmEzxOtnlHOyEufAm
 EDIZDIfxV2J9Qx/cW2DSojPj/o9O6noXwhw9SBqMwiDWd8gXmNgOUEklAO7aR7Vq
 Ne2N2FLMNthZydCoHR6dAEjfe2ceFXP5cALwzQO+ILDdZQ0UcF2Yq4yw/gEDoCrB
 FH7mmE7UaQQHvYzo85VTZu7XfUys1P7kUcnhVurOg7/07ITnvnQR+itKZXC+bSft
 1K7ULtjd2QiCgxZA/apFc3lO46kqHVFsB3onRQw12/Ku5vfGFfY0L0iK97OgM4s0
 0u4r+J7A+MM5YBJVVjwZ6woYO5CWMHYKBZepxOpcvftPxj1LNkiHsryqKILGISEC
 aIY/lI0hpeNU4QshDMXzSTgeb/VF9O5cGPncTPkOFbXxD4RpVyz8tSngsG1+D8lj
 S6B2h3k4A14rnblLOxP22jcedBlTYQcRQS4vwr0a7+63QTjfSJ12xT3ucIAKU9f7
 65rVSS/igbrfxqHDmrd60WWZBMXeK0Zy7YIG6iYPTxpP31eFpSp9wtDlV7V2+EH2
 F2p+TJY8aTA8UW+2L5gigN3RsBeeEB8zxJkB14ivICM7+XzVu11PxPDqjDZYkfzC
 ueKKvCcHhHAYqQ==
 =TFBA
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-6.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:

 - Remove our now never-true definitions for pgd_huge() and p4d_leaf().

 - Add pte_needs_flush() and huge_pmd_needs_flush() for 64-bit.

 - Add support for syscall wrappers.

 - Add support for KFENCE on 64-bit.

 - Update 64-bit HV KVM to use the new guest state entry/exit accounting
   API.

 - Support execute-only memory when using the Radix MMU (P9 or later).

 - Implement CONFIG_PARAVIRT_TIME_ACCOUNTING for pseries guests.

 - Updates to our linker script to move more data into read-only
   sections.

 - Allow the VDSO to be randomised on 32-bit.

 - Many other small features and fixes.

Thanks to Andrew Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Athira
Rajeev, Christophe Leroy, David Hildenbrand, Disha Goel, Fabiano Rosas,
Gaosheng Cui, Gustavo A. R. Silva, Haren Myneni, Hari Bathini, Jilin
Yuan, Joel Stanley, Kajol Jain, Kees Cook, Krzysztof Kozlowski, Laurent
Dufour, Liang He, Li Huafei, Lukas Bulwahn, Madhavan Srinivasan, Nathan
Chancellor, Nathan Lynch, Nicholas Miehlbradt, Nicholas Piggin, Pali
Rohár, Rohan McLure, Russell Currey, Sachin Sant, Segher Boessenkool,
Shrikanth Hegde, Tyrel Datwyler, Wolfram Sang, ye xingchen, and Zheng
Yongjun.

* tag 'powerpc-6.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (214 commits)
  KVM: PPC: Book3S HV: Fix stack frame regs marker
  powerpc: Don't add __powerpc_ prefix to syscall entry points
  powerpc/64s/interrupt: Fix stack frame regs marker
  powerpc/64: Fix msr_check_and_set/clear MSR[EE] race
  powerpc/64s/interrupt: Change must-hard-mask interrupt check from BUG to WARN
  powerpc/pseries: Add firmware details to the hardware description
  powerpc/powernv: Add opal details to the hardware description
  powerpc: Add device-tree model to the hardware description
  powerpc/64: Add logical PVR to the hardware description
  powerpc: Add PVR & CPU name to hardware description
  powerpc: Add hardware description string
  powerpc/configs: Enable PPC_UV in powernv_defconfig
  powerpc/configs: Update config files for removed/renamed symbols
  powerpc/mm: Fix UBSAN warning reported on hugetlb
  powerpc/mm: Always update max/min_low_pfn in mem_topology_setup()
  powerpc/mm/book3s/hash: Rename flush_tlb_pmd_range
  powerpc: Drops STABS_DEBUG from linker scripts
  powerpc/64s: Remove lost/old comment
  powerpc/64s: Remove old STAB comment
  powerpc: remove orphan systbl_chk.sh
  ...
2022-10-09 14:05:15 -07:00

2552 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright IBM Corp. 2007
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
#include <linux/hrtimer.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
#include <linux/of.h>
#include <asm/cputable.h>
#include <linux/uaccess.h>
#include <asm/kvm_ppc.h>
#include <asm/cputhreads.h>
#include <asm/irqflags.h>
#include <asm/iommu.h>
#include <asm/switch_to.h>
#include <asm/xive.h>
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
#include <asm/ultravisor.h>
#include <asm/setup.h>
#include "timing.h"
#include "irq.h"
#include "../mm/mmu_decl.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
}
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
{
return kvm_arch_vcpu_runnable(vcpu);
}
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
return false;
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return 1;
}
/*
* Common checks before entering the guest world. Call with interrupts
* disabled.
*
* returns:
*
* == 1 if we're ready to go into guest state
* <= 0 if we need to go back to the host with return value
*/
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
int r;
WARN_ON(irqs_disabled());
hard_irq_disable();
while (true) {
if (need_resched()) {
local_irq_enable();
cond_resched();
hard_irq_disable();
continue;
}
if (signal_pending(current)) {
kvmppc_account_exit(vcpu, SIGNAL_EXITS);
vcpu->run->exit_reason = KVM_EXIT_INTR;
r = -EINTR;
break;
}
vcpu->mode = IN_GUEST_MODE;
/*
* Reading vcpu->requests must happen after setting vcpu->mode,
* so we don't miss a request because the requester sees
* OUTSIDE_GUEST_MODE and assumes we'll be checking requests
* before next entering the guest (and thus doesn't IPI).
* This also orders the write to mode from any reads
* to the page tables done while the VCPU is running.
* Please see the comment in kvm_flush_remote_tlbs.
*/
smp_mb();
if (kvm_request_pending(vcpu)) {
/* Make sure we process requests preemptable */
local_irq_enable();
trace_kvm_check_requests(vcpu);
r = kvmppc_core_check_requests(vcpu);
hard_irq_disable();
if (r > 0)
continue;
break;
}
if (kvmppc_core_prepare_to_enter(vcpu)) {
/* interrupts got enabled in between, so we
are back at square 1 */
continue;
}
guest_enter_irqoff();
return 1;
}
/* return to host */
local_irq_enable();
return r;
}
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
int i;
shared->sprg0 = swab64(shared->sprg0);
shared->sprg1 = swab64(shared->sprg1);
shared->sprg2 = swab64(shared->sprg2);
shared->sprg3 = swab64(shared->sprg3);
shared->srr0 = swab64(shared->srr0);
shared->srr1 = swab64(shared->srr1);
shared->dar = swab64(shared->dar);
shared->msr = swab64(shared->msr);
shared->dsisr = swab32(shared->dsisr);
shared->int_pending = swab32(shared->int_pending);
for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
shared->sr[i] = swab32(shared->sr[i]);
}
#endif
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
int nr = kvmppc_get_gpr(vcpu, 11);
int r;
unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
unsigned long r2 = 0;
if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
/* 32 bit mode */
param1 &= 0xffffffff;
param2 &= 0xffffffff;
param3 &= 0xffffffff;
param4 &= 0xffffffff;
}
switch (nr) {
case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
{
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
/* Book3S can be little endian, find it out here */
int shared_big_endian = true;
if (vcpu->arch.intr_msr & MSR_LE)
shared_big_endian = false;
if (shared_big_endian != vcpu->arch.shared_big_endian)
kvmppc_swab_shared(vcpu);
vcpu->arch.shared_big_endian = shared_big_endian;
#endif
if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
/*
* Older versions of the Linux magic page code had
* a bug where they would map their trampoline code
* NX. If that's the case, remove !PR NX capability.
*/
vcpu->arch.disable_kernel_nx = true;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
#ifdef CONFIG_PPC_64K_PAGES
/*
* Make sure our 4k magic page is in the same window of a 64k
* page within the guest and within the host's page.
*/
if ((vcpu->arch.magic_page_pa & 0xf000) !=
((ulong)vcpu->arch.shared & 0xf000)) {
void *old_shared = vcpu->arch.shared;
ulong shared = (ulong)vcpu->arch.shared;
void *new_shared;
shared &= PAGE_MASK;
shared |= vcpu->arch.magic_page_pa & 0xf000;
new_shared = (void*)shared;
memcpy(new_shared, old_shared, 0x1000);
vcpu->arch.shared = new_shared;
}
#endif
r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
r = EV_SUCCESS;
break;
}
case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
r = EV_SUCCESS;
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
/* Second return value is in r4 */
break;
case EV_HCALL_TOKEN(EV_IDLE):
r = EV_SUCCESS;
kvm_vcpu_halt(vcpu);
break;
default:
r = EV_UNIMPLEMENTED;
break;
}
kvmppc_set_gpr(vcpu, 4, r2);
return r;
}
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
int r = false;
/* We have to know what CPU to virtualize */
if (!vcpu->arch.pvr)
goto out;
/* PAPR only works with book3s_64 */
if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
goto out;
/* HV KVM can only do PAPR mode for now */
if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
goto out;
#ifdef CONFIG_KVM_BOOKE_HV
if (!cpu_has_feature(CPU_FTR_EMB_HV))
goto out;
#endif
r = true;
out:
vcpu->arch.sane = r;
return r ? 0 : -EINVAL;
}
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
{
enum emulation_result er;
int r;
er = kvmppc_emulate_loadstore(vcpu);
switch (er) {
case EMULATE_DONE:
/* Future optimization: only reload non-volatiles if they were
* actually modified. */
r = RESUME_GUEST_NV;
break;
case EMULATE_AGAIN:
r = RESUME_GUEST;
break;
case EMULATE_DO_MMIO:
vcpu->run->exit_reason = KVM_EXIT_MMIO;
/* We must reload nonvolatiles because "update" load/store
* instructions modify register state. */
/* Future optimization: only reload non-volatiles if they were
* actually modified. */
r = RESUME_HOST_NV;
break;
case EMULATE_FAIL:
{
u32 last_inst;
kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
last_inst);
/*
* Injecting a Data Storage here is a bit more
* accurate since the instruction that caused the
* access could still be a valid one.
*/
if (!IS_ENABLED(CONFIG_BOOKE)) {
ulong dsisr = DSISR_BADACCESS;
if (vcpu->mmio_is_write)
dsisr |= DSISR_ISSTORE;
kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr);
} else {
/*
* BookE does not send a SIGBUS on a bad
* fault, so use a Program interrupt instead
* to avoid a fault loop.
*/
kvmppc_core_queue_program(vcpu, 0);
}
r = RESUME_GUEST;
break;
}
default:
WARN_ON(1);
r = RESUME_GUEST;
}
return r;
}
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
struct kvmppc_pte pte;
int r = -EINVAL;
vcpu->stat.st++;
if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
size);
if ((!r) || (r == -EAGAIN))
return r;
r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
XLATE_WRITE, &pte);
if (r < 0)
return r;
*eaddr = pte.raddr;
if (!pte.may_write)
return -EPERM;
/* Magic page override */
if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
void *magic = vcpu->arch.shared;
magic += pte.eaddr & 0xfff;
memcpy(magic, ptr, size);
return EMULATE_DONE;
}
if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
return EMULATE_DO_MMIO;
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);
int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
struct kvmppc_pte pte;
int rc = -EINVAL;
vcpu->stat.ld++;
if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
size);
if ((!rc) || (rc == -EAGAIN))
return rc;
rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
XLATE_READ, &pte);
if (rc)
return rc;
*eaddr = pte.raddr;
if (!pte.may_read)
return -EPERM;
if (!data && !pte.may_execute)
return -ENOEXEC;
/* Magic page override */
if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
void *magic = vcpu->arch.shared;
magic += pte.eaddr & 0xfff;
memcpy(ptr, magic, size);
return EMULATE_DONE;
}
kvm_vcpu_srcu_read_lock(vcpu);
rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
kvm_vcpu_srcu_read_unlock(vcpu);
if (rc)
return EMULATE_DO_MMIO;
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);
int kvm_arch_hardware_enable(void)
{
return 0;
}
int kvm_arch_hardware_setup(void *opaque)
{
return 0;
}
int kvm_arch_check_processor_compat(void *opaque)
{
return kvmppc_core_check_processor_compat();
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
struct kvmppc_ops *kvm_ops = NULL;
int r;
/*
* if we have both HV and PR enabled, default is HV
*/
if (type == 0) {
if (kvmppc_hv_ops)
kvm_ops = kvmppc_hv_ops;
else
kvm_ops = kvmppc_pr_ops;
if (!kvm_ops)
goto err_out;
} else if (type == KVM_VM_PPC_HV) {
if (!kvmppc_hv_ops)
goto err_out;
kvm_ops = kvmppc_hv_ops;
} else if (type == KVM_VM_PPC_PR) {
if (!kvmppc_pr_ops)
goto err_out;
kvm_ops = kvmppc_pr_ops;
} else
goto err_out;
if (!try_module_get(kvm_ops->owner))
return -ENOENT;
kvm->arch.kvm_ops = kvm_ops;
r = kvmppc_core_init_vm(kvm);
if (r)
module_put(kvm_ops->owner);
return r;
err_out:
return -EINVAL;
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
#ifdef CONFIG_KVM_XICS
/*
* We call kick_all_cpus_sync() to ensure that all
* CPUs have executed any pending IPIs before we
* continue and free VCPUs structures below.
*/
if (is_kvmppc_hv_enabled(kvm))
kick_all_cpus_sync();
#endif
kvm_destroy_vcpus(kvm);
mutex_lock(&kvm->lock);
kvmppc_core_destroy_vm(kvm);
mutex_unlock(&kvm->lock);
/* drop the module reference */
module_put(kvm->arch.kvm_ops->owner);
}
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
/* Assume we're using HV mode when the HV module is loaded */
int hv_enabled = kvmppc_hv_ops ? 1 : 0;
if (kvm) {
/*
* Hooray - we know which VM type we're running on. Depend on
* that rather than the guess above.
*/
hv_enabled = is_kvmppc_hv_enabled(kvm);
}
switch (ext) {
#ifdef CONFIG_BOOKE
case KVM_CAP_PPC_BOOKE_SREGS:
case KVM_CAP_PPC_BOOKE_WATCHDOG:
case KVM_CAP_PPC_EPR:
#else
case KVM_CAP_PPC_SEGSTATE:
case KVM_CAP_PPC_HIOR:
case KVM_CAP_PPC_PAPR:
#endif
case KVM_CAP_PPC_UNSET_IRQ:
case KVM_CAP_PPC_IRQ_LEVEL:
case KVM_CAP_ENABLE_CAP:
case KVM_CAP_ONE_REG:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_DEVICE_CTRL:
case KVM_CAP_IMMEDIATE_EXIT:
case KVM_CAP_SET_GUEST_DEBUG:
r = 1;
break;
case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
case KVM_CAP_PPC_PAIRED_SINGLES:
case KVM_CAP_PPC_OSI:
case KVM_CAP_PPC_GET_PVINFO:
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
case KVM_CAP_SW_TLB:
#endif
/* We support this only for PR */
r = !hv_enabled;
break;
#ifdef CONFIG_KVM_MPIC
case KVM_CAP_IRQ_MPIC:
r = 1;
break;
#endif
#ifdef CONFIG_PPC_BOOK3S_64
case KVM_CAP_SPAPR_TCE:
case KVM_CAP_SPAPR_TCE_64:
r = 1;
break;
case KVM_CAP_SPAPR_TCE_VFIO:
r = !!cpu_has_feature(CPU_FTR_HVMODE);
break;
case KVM_CAP_PPC_RTAS:
case KVM_CAP_PPC_FIXUP_HCALL:
case KVM_CAP_PPC_ENABLE_HCALL:
#ifdef CONFIG_KVM_XICS
case KVM_CAP_IRQ_XICS:
#endif
case KVM_CAP_PPC_GET_CPU_CHAR:
r = 1;
break;
#ifdef CONFIG_KVM_XIVE
case KVM_CAP_PPC_IRQ_XIVE:
/*
* We need XIVE to be enabled on the platform (implies
* a POWER9 processor) and the PowerNV platform, as
* nested is not yet supported.
*/
r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
kvmppc_xive_native_supported();
break;
#endif
case KVM_CAP_PPC_ALLOC_HTAB:
r = hv_enabled;
break;
#endif /* CONFIG_PPC_BOOK3S_64 */
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_SMT:
r = 0;
if (kvm) {
if (kvm->arch.emul_smt_mode > 1)
r = kvm->arch.emul_smt_mode;
else
r = kvm->arch.smt_mode;
} else if (hv_enabled) {
if (cpu_has_feature(CPU_FTR_ARCH_300))
r = 1;
else
r = threads_per_subcore;
}
break;
case KVM_CAP_PPC_SMT_POSSIBLE:
r = 1;
if (hv_enabled) {
if (!cpu_has_feature(CPU_FTR_ARCH_300))
r = ((threads_per_subcore << 1) - 1);
else
/* P9 can emulate dbells, so allow any mode */
r = 8 | 4 | 2 | 1;
}
break;
case KVM_CAP_PPC_RMA:
r = 0;
break;
case KVM_CAP_PPC_HWRNG:
r = kvmppc_hwrng_present();
break;
case KVM_CAP_PPC_MMU_RADIX:
r = !!(hv_enabled && radix_enabled());
break;
case KVM_CAP_PPC_MMU_HASH_V3:
r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
kvmppc_hv_ops->hash_v3_possible());
break;
case KVM_CAP_PPC_NESTED_HV:
r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
!kvmppc_hv_ops->enable_nested(NULL));
break;
#endif
case KVM_CAP_SYNC_MMU:
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
r = hv_enabled;
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
r = 1;
#else
r = 0;
#endif
break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_HTAB_FD:
r = hv_enabled;
break;
#endif
case KVM_CAP_NR_VCPUS:
/*
* Recommending a number of CPUs is somewhat arbitrary; we
* return the number of present CPUs for -HV (since a host
* will have secondary threads "offline"), and for other KVM
* implementations just count online CPUs.
*/
if (hv_enabled)
r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
else
r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
break;
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_MAX_VCPU_ID:
r = KVM_MAX_VCPU_IDS;
break;
#ifdef CONFIG_PPC_BOOK3S_64
case KVM_CAP_PPC_GET_SMMU_INFO:
r = 1;
break;
case KVM_CAP_SPAPR_MULTITCE:
r = 1;
break;
case KVM_CAP_SPAPR_RESIZE_HPT:
r = !!hv_enabled;
break;
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_FWNMI:
r = hv_enabled;
break;
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
case KVM_CAP_PPC_HTM:
r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
(hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
break;
#endif
#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
case KVM_CAP_PPC_SECURE_GUEST:
r = hv_enabled && kvmppc_hv_ops->enable_svm &&
!kvmppc_hv_ops->enable_svm(NULL);
break;
case KVM_CAP_PPC_DAWR1:
r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
!kvmppc_hv_ops->enable_dawr1(NULL));
break;
case KVM_CAP_PPC_RPT_INVALIDATE:
r = 1;
break;
#endif
case KVM_CAP_PPC_AIL_MODE_3:
r = 0;
/*
* KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
* The POWER9s can support it if the guest runs in hash mode,
* but QEMU doesn't necessarily query the capability in time.
*/
if (hv_enabled) {
if (kvmhv_on_pseries()) {
if (pseries_reloc_on_exception())
r = 1;
} else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
r = 1;
}
}
break;
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
return -EINVAL;
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
kvmppc_core_free_memslot(kvm, slot);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
return kvmppc_core_prepare_memory_region(kvm, old, new, change);
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
kvmppc_core_commit_memory_region(kvm, old, new, change);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvmppc_core_flush_memslot(kvm, slot);
}
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
return 0;
}
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
kvmppc_decrementer_func(vcpu);
return HRTIMER_NORESTART;
}
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
{
int err;
hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
#ifdef CONFIG_KVM_EXIT_TIMING
mutex_init(&vcpu->arch.exit_timing_lock);
#endif
err = kvmppc_subarch_vcpu_init(vcpu);
if (err)
return err;
err = kvmppc_core_vcpu_create(vcpu);
if (err)
goto out_vcpu_uninit;
rcuwait_init(&vcpu->arch.wait);
vcpu->arch.waitp = &vcpu->arch.wait;
return 0;
out_vcpu_uninit:
kvmppc_subarch_vcpu_uninit(vcpu);
return err;
}
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
/* Make sure we're not using the vcpu anymore */
hrtimer_cancel(&vcpu->arch.dec_timer);
switch (vcpu->arch.irq_type) {
case KVMPPC_IRQ_MPIC:
kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
break;
case KVMPPC_IRQ_XICS:
if (xics_on_xive())
kvmppc_xive_cleanup_vcpu(vcpu);
else
kvmppc_xics_free_icp(vcpu);
break;
case KVMPPC_IRQ_XIVE:
kvmppc_xive_native_cleanup_vcpu(vcpu);
break;
}
kvmppc_core_vcpu_free(vcpu);
kvmppc_subarch_vcpu_uninit(vcpu);
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return kvmppc_core_pending_dec(vcpu);
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
#ifdef CONFIG_BOOKE
/*
* vrsave (formerly usprg0) isn't used by Linux, but may
* be used by the guest.
*
* On non-booke this is associated with Altivec and
* is handled by code in book3s.c.
*/
mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
kvmppc_core_vcpu_load(vcpu, cpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvmppc_core_vcpu_put(vcpu);
#ifdef CONFIG_BOOKE
vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
}
/*
* irq_bypass_add_producer and irq_bypass_del_producer are only
* useful if the architecture supports PCI passthrough.
* irq_bypass_stop and irq_bypass_start are not needed and so
* kvm_ops are not defined for them.
*/
bool kvm_arch_has_irq_bypass(void)
{
return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
struct irq_bypass_producer *prod)
{
struct kvm_kernel_irqfd *irqfd =
container_of(cons, struct kvm_kernel_irqfd, consumer);
struct kvm *kvm = irqfd->kvm;
if (kvm->arch.kvm_ops->irq_bypass_add_producer)
return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
return 0;
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
struct irq_bypass_producer *prod)
{
struct kvm_kernel_irqfd *irqfd =
container_of(cons, struct kvm_kernel_irqfd, consumer);
struct kvm *kvm = irqfd->kvm;
if (kvm->arch.kvm_ops->irq_bypass_del_producer)
kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
int offset;
if ((index != 0) && (index != 1))
return -1;
#ifdef __BIG_ENDIAN
offset = index;
#else
offset = 1 - index;
#endif
return offset;
}
static inline int kvmppc_get_vsr_word_offset(int index)
{
int offset;
if ((index > 3) || (index < 0))
return -1;
#ifdef __BIG_ENDIAN
offset = index;
#else
offset = 3 - index;
#endif
return offset;
}
static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
u64 gpr)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
if (index >= 32) {
val.vval = VCPU_VSX_VR(vcpu, index - 32);
val.vsxval[offset] = gpr;
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
} else {
VCPU_VSX_FPR(vcpu, index, offset) = gpr;
}
}
static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
u64 gpr)
{
union kvmppc_one_reg val;
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (index >= 32) {
val.vval = VCPU_VSX_VR(vcpu, index - 32);
val.vsxval[0] = gpr;
val.vsxval[1] = gpr;
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
} else {
VCPU_VSX_FPR(vcpu, index, 0) = gpr;
VCPU_VSX_FPR(vcpu, index, 1) = gpr;
}
}
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
u32 gpr)
{
union kvmppc_one_reg val;
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (index >= 32) {
val.vsx32val[0] = gpr;
val.vsx32val[1] = gpr;
val.vsx32val[2] = gpr;
val.vsx32val[3] = gpr;
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
} else {
val.vsx32val[0] = gpr;
val.vsx32val[1] = gpr;
VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
}
}
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
u32 gpr32)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
int dword_offset, word_offset;
if (offset == -1)
return;
if (index >= 32) {
val.vval = VCPU_VSX_VR(vcpu, index - 32);
val.vsx32val[offset] = gpr32;
VCPU_VSX_VR(vcpu, index - 32) = val.vval;
} else {
dword_offset = offset / 2;
word_offset = offset % 2;
val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
val.vsx32val[word_offset] = gpr32;
VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
}
}
#endif /* CONFIG_VSX */
#ifdef CONFIG_ALTIVEC
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
int index, int element_size)
{
int offset;
int elts = sizeof(vector128)/element_size;
if ((index < 0) || (index >= elts))
return -1;
if (kvmppc_need_byteswap(vcpu))
offset = elts - index - 1;
else
offset = index;
return offset;
}
static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
int index)
{
return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}
static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
int index)
{
return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}
static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
int index)
{
return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}
static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
int index)
{
return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
u64 gpr)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vmx_dword_offset(vcpu,
vcpu->arch.mmio_vmx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
val.vval = VCPU_VSX_VR(vcpu, index);
val.vsxval[offset] = gpr;
VCPU_VSX_VR(vcpu, index) = val.vval;
}
static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
u32 gpr32)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vmx_word_offset(vcpu,
vcpu->arch.mmio_vmx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
val.vval = VCPU_VSX_VR(vcpu, index);
val.vsx32val[offset] = gpr32;
VCPU_VSX_VR(vcpu, index) = val.vval;
}
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
u16 gpr16)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vmx_hword_offset(vcpu,
vcpu->arch.mmio_vmx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
val.vval = VCPU_VSX_VR(vcpu, index);
val.vsx16val[offset] = gpr16;
VCPU_VSX_VR(vcpu, index) = val.vval;
}
static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
u8 gpr8)
{
union kvmppc_one_reg val;
int offset = kvmppc_get_vmx_byte_offset(vcpu,
vcpu->arch.mmio_vmx_offset);
int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
if (offset == -1)
return;
val.vval = VCPU_VSX_VR(vcpu, index);
val.vsx8val[offset] = gpr8;
VCPU_VSX_VR(vcpu, index) = val.vval;
}
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
u64 fprd;
preempt_disable();
enable_kernel_fp();
asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
: "fr0");
preempt_enable();
return fprd;
}
static inline u32 dp_to_sp(u64 fprd)
{
u32 fprs;
preempt_disable();
enable_kernel_fp();
asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
: "fr0");
preempt_enable();
return fprs;
}
#else
#define sp_to_dp(x) (x)
#define dp_to_sp(x) (x)
#endif /* CONFIG_PPC_FPU */
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u64 gpr;
if (run->mmio.len > sizeof(gpr))
return;
if (!vcpu->arch.mmio_host_swabbed) {
switch (run->mmio.len) {
case 8: gpr = *(u64 *)run->mmio.data; break;
case 4: gpr = *(u32 *)run->mmio.data; break;
case 2: gpr = *(u16 *)run->mmio.data; break;
case 1: gpr = *(u8 *)run->mmio.data; break;
}
} else {
switch (run->mmio.len) {
case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
case 1: gpr = *(u8 *)run->mmio.data; break;
}
}
/* conversion between single and double precision */
if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
gpr = sp_to_dp(gpr);
if (vcpu->arch.mmio_sign_extend) {
switch (run->mmio.len) {
#ifdef CONFIG_PPC64
case 4:
gpr = (s64)(s32)gpr;
break;
#endif
case 2:
gpr = (s64)(s16)gpr;
break;
case 1:
gpr = (s64)(s8)gpr;
break;
}
}
switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
case KVM_MMIO_REG_GPR:
kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
break;
case KVM_MMIO_REG_FPR:
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
break;
#ifdef CONFIG_PPC_BOOK3S
case KVM_MMIO_REG_QPR:
vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
break;
case KVM_MMIO_REG_FQPR:
VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
break;
#endif
#ifdef CONFIG_VSX
case KVM_MMIO_REG_VSX:
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
kvmppc_set_vsr_dword(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
kvmppc_set_vsr_word(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type ==
KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
kvmppc_set_vsr_dword_dump(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type ==
KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
kvmppc_set_vsr_word_dump(vcpu, gpr);
break;
#endif
#ifdef CONFIG_ALTIVEC
case KVM_MMIO_REG_VMX:
if (vcpu->kvm->arch.kvm_ops->giveup_ext)
vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
kvmppc_set_vmx_dword(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
kvmppc_set_vmx_word(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type ==
KVMPPC_VMX_COPY_HWORD)
kvmppc_set_vmx_hword(vcpu, gpr);
else if (vcpu->arch.mmio_copy_type ==
KVMPPC_VMX_COPY_BYTE)
kvmppc_set_vmx_byte(vcpu, gpr);
break;
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_MMIO_REG_NESTED_GPR:
if (kvmppc_need_byteswap(vcpu))
gpr = swab64(gpr);
kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
sizeof(gpr));
break;
#endif
default:
BUG();
}
}
static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes,
int is_default_endian, int sign_extend)
{
struct kvm_run *run = vcpu->run;
int idx, ret;
bool host_swabbed;
/* Pity C doesn't have a logical XOR operator */
if (kvmppc_need_byteswap(vcpu)) {
host_swabbed = is_default_endian;
} else {
host_swabbed = !is_default_endian;
}
if (bytes > sizeof(run->mmio.data))
return EMULATE_FAIL;
run->mmio.phys_addr = vcpu->arch.paddr_accessed;
run->mmio.len = bytes;
run->mmio.is_write = 0;
vcpu->arch.io_gpr = rt;
vcpu->arch.mmio_host_swabbed = host_swabbed;
vcpu->mmio_needed = 1;
vcpu->mmio_is_write = 0;
vcpu->arch.mmio_sign_extend = sign_extend;
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
bytes, &run->mmio.data);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (!ret) {
kvmppc_complete_mmio_load(vcpu);
vcpu->mmio_needed = 0;
return EMULATE_DONE;
}
return EMULATE_DO_MMIO;
}
int kvmppc_handle_load(struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes,
int is_default_endian)
{
return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
}
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes,
int is_default_endian)
{
return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
}
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes,
int is_default_endian, int mmio_sign_extend)
{
enum emulation_result emulated = EMULATE_DONE;
/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
if (vcpu->arch.mmio_vsx_copy_nums > 4)
return EMULATE_FAIL;
while (vcpu->arch.mmio_vsx_copy_nums) {
emulated = __kvmppc_handle_load(vcpu, rt, bytes,
is_default_endian, mmio_sign_extend);
if (emulated != EMULATE_DONE)
break;
vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
vcpu->arch.mmio_vsx_copy_nums--;
vcpu->arch.mmio_vsx_offset++;
}
return emulated;
}
#endif /* CONFIG_VSX */
int kvmppc_handle_store(struct kvm_vcpu *vcpu,
u64 val, unsigned int bytes, int is_default_endian)
{
struct kvm_run *run = vcpu->run;
void *data = run->mmio.data;
int idx, ret;
bool host_swabbed;
/* Pity C doesn't have a logical XOR operator */
if (kvmppc_need_byteswap(vcpu)) {
host_swabbed = is_default_endian;
} else {
host_swabbed = !is_default_endian;
}
if (bytes > sizeof(run->mmio.data))
return EMULATE_FAIL;
run->mmio.phys_addr = vcpu->arch.paddr_accessed;
run->mmio.len = bytes;
run->mmio.is_write = 1;
vcpu->mmio_needed = 1;
vcpu->mmio_is_write = 1;
if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
val = dp_to_sp(val);
/* Store the value at the lowest bytes in 'data'. */
if (!host_swabbed) {
switch (bytes) {
case 8: *(u64 *)data = val; break;
case 4: *(u32 *)data = val; break;
case 2: *(u16 *)data = val; break;
case 1: *(u8 *)data = val; break;
}
} else {
switch (bytes) {
case 8: *(u64 *)data = swab64(val); break;
case 4: *(u32 *)data = swab32(val); break;
case 2: *(u16 *)data = swab16(val); break;
case 1: *(u8 *)data = val; break;
}
}
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
bytes, &run->mmio.data);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (!ret) {
vcpu->mmio_needed = 0;
return EMULATE_DONE;
}
return EMULATE_DO_MMIO;
}
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
u32 dword_offset, word_offset;
union kvmppc_one_reg reg;
int vsx_offset = 0;
int copy_type = vcpu->arch.mmio_copy_type;
int result = 0;
switch (copy_type) {
case KVMPPC_VSX_COPY_DWORD:
vsx_offset =
kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
if (vsx_offset == -1) {
result = -1;
break;
}
if (rs < 32) {
*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
} else {
reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
*val = reg.vsxval[vsx_offset];
}
break;
case KVMPPC_VSX_COPY_WORD:
vsx_offset =
kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
if (vsx_offset == -1) {
result = -1;
break;
}
if (rs < 32) {
dword_offset = vsx_offset / 2;
word_offset = vsx_offset % 2;
reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
*val = reg.vsx32val[word_offset];
} else {
reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
*val = reg.vsx32val[vsx_offset];
}
break;
default:
result = -1;
break;
}
return result;
}
int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
int rs, unsigned int bytes, int is_default_endian)
{
u64 val;
enum emulation_result emulated = EMULATE_DONE;
vcpu->arch.io_gpr = rs;
/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
if (vcpu->arch.mmio_vsx_copy_nums > 4)
return EMULATE_FAIL;
while (vcpu->arch.mmio_vsx_copy_nums) {
if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
return EMULATE_FAIL;
emulated = kvmppc_handle_store(vcpu,
val, bytes, is_default_endian);
if (emulated != EMULATE_DONE)
break;
vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
vcpu->arch.mmio_vsx_copy_nums--;
vcpu->arch.mmio_vsx_offset++;
}
return emulated;
}
static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
enum emulation_result emulated = EMULATE_FAIL;
int r;
vcpu->arch.paddr_accessed += run->mmio.len;
if (!vcpu->mmio_is_write) {
emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
} else {
emulated = kvmppc_handle_vsx_store(vcpu,
vcpu->arch.io_gpr, run->mmio.len, 1);
}
switch (emulated) {
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
r = RESUME_HOST;
break;
case EMULATE_FAIL:
pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
r = RESUME_HOST;
break;
default:
r = RESUME_GUEST;
break;
}
return r;
}
#endif /* CONFIG_VSX */
#ifdef CONFIG_ALTIVEC
int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
unsigned int rt, unsigned int bytes, int is_default_endian)
{
enum emulation_result emulated = EMULATE_DONE;
if (vcpu->arch.mmio_vmx_copy_nums > 2)
return EMULATE_FAIL;
while (vcpu->arch.mmio_vmx_copy_nums) {
emulated = __kvmppc_handle_load(vcpu, rt, bytes,
is_default_endian, 0);
if (emulated != EMULATE_DONE)
break;
vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
vcpu->arch.mmio_vmx_copy_nums--;
vcpu->arch.mmio_vmx_offset++;
}
return emulated;
}
static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
union kvmppc_one_reg reg;
int vmx_offset = 0;
int result = 0;
vmx_offset =
kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
if (vmx_offset == -1)
return -1;
reg.vval = VCPU_VSX_VR(vcpu, index);
*val = reg.vsxval[vmx_offset];
return result;
}
static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
union kvmppc_one_reg reg;
int vmx_offset = 0;
int result = 0;
vmx_offset =
kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
if (vmx_offset == -1)
return -1;
reg.vval = VCPU_VSX_VR(vcpu, index);
*val = reg.vsx32val[vmx_offset];
return result;
}
static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
union kvmppc_one_reg reg;
int vmx_offset = 0;
int result = 0;
vmx_offset =
kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
if (vmx_offset == -1)
return -1;
reg.vval = VCPU_VSX_VR(vcpu, index);
*val = reg.vsx16val[vmx_offset];
return result;
}
static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
union kvmppc_one_reg reg;
int vmx_offset = 0;
int result = 0;
vmx_offset =
kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
if (vmx_offset == -1)
return -1;
reg.vval = VCPU_VSX_VR(vcpu, index);
*val = reg.vsx8val[vmx_offset];
return result;
}
int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
unsigned int rs, unsigned int bytes, int is_default_endian)
{
u64 val = 0;
unsigned int index = rs & KVM_MMIO_REG_MASK;
enum emulation_result emulated = EMULATE_DONE;
if (vcpu->arch.mmio_vmx_copy_nums > 2)
return EMULATE_FAIL;
vcpu->arch.io_gpr = rs;
while (vcpu->arch.mmio_vmx_copy_nums) {
switch (vcpu->arch.mmio_copy_type) {
case KVMPPC_VMX_COPY_DWORD:
if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
return EMULATE_FAIL;
break;
case KVMPPC_VMX_COPY_WORD:
if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
return EMULATE_FAIL;
break;
case KVMPPC_VMX_COPY_HWORD:
if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
return EMULATE_FAIL;
break;
case KVMPPC_VMX_COPY_BYTE:
if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
return EMULATE_FAIL;
break;
default:
return EMULATE_FAIL;
}
emulated = kvmppc_handle_store(vcpu, val, bytes,
is_default_endian);
if (emulated != EMULATE_DONE)
break;
vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
vcpu->arch.mmio_vmx_copy_nums--;
vcpu->arch.mmio_vmx_offset++;
}
return emulated;
}
static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
enum emulation_result emulated = EMULATE_FAIL;
int r;
vcpu->arch.paddr_accessed += run->mmio.len;
if (!vcpu->mmio_is_write) {
emulated = kvmppc_handle_vmx_load(vcpu,
vcpu->arch.io_gpr, run->mmio.len, 1);
} else {
emulated = kvmppc_handle_vmx_store(vcpu,
vcpu->arch.io_gpr, run->mmio.len, 1);
}
switch (emulated) {
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
r = RESUME_HOST;
break;
case EMULATE_FAIL:
pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
r = RESUME_HOST;
break;
default:
r = RESUME_GUEST;
break;
}
return r;
}
#endif /* CONFIG_ALTIVEC */
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r = 0;
union kvmppc_one_reg val;
int size;
size = one_reg_size(reg->id);
if (size > sizeof(val))
return -EINVAL;
r = kvmppc_get_one_reg(vcpu, reg->id, &val);
if (r == -EINVAL) {
r = 0;
switch (reg->id) {
#ifdef CONFIG_ALTIVEC
case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
break;
case KVM_REG_PPC_VSCR:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
break;
case KVM_REG_PPC_VRSAVE:
val = get_reg_val(reg->id, vcpu->arch.vrsave);
break;
#endif /* CONFIG_ALTIVEC */
default:
r = -EINVAL;
break;
}
}
if (r)
return r;
if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
r = -EFAULT;
return r;
}
int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r;
union kvmppc_one_reg val;
int size;
size = one_reg_size(reg->id);
if (size > sizeof(val))
return -EINVAL;
if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
return -EFAULT;
r = kvmppc_set_one_reg(vcpu, reg->id, &val);
if (r == -EINVAL) {
r = 0;
switch (reg->id) {
#ifdef CONFIG_ALTIVEC
case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
break;
case KVM_REG_PPC_VSCR:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
break;
case KVM_REG_PPC_VRSAVE:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vrsave = set_reg_val(reg->id, val);
break;
#endif /* CONFIG_ALTIVEC */
default:
r = -EINVAL;
break;
}
}
return r;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
int r;
vcpu_load(vcpu);
if (vcpu->mmio_needed) {
vcpu->mmio_needed = 0;
if (!vcpu->mmio_is_write)
kvmppc_complete_mmio_load(vcpu);
#ifdef CONFIG_VSX
if (vcpu->arch.mmio_vsx_copy_nums > 0) {
vcpu->arch.mmio_vsx_copy_nums--;
vcpu->arch.mmio_vsx_offset++;
}
if (vcpu->arch.mmio_vsx_copy_nums > 0) {
r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
if (r == RESUME_HOST) {
vcpu->mmio_needed = 1;
goto out;
}
}
#endif
#ifdef CONFIG_ALTIVEC
if (vcpu->arch.mmio_vmx_copy_nums > 0) {
vcpu->arch.mmio_vmx_copy_nums--;
vcpu->arch.mmio_vmx_offset++;
}
if (vcpu->arch.mmio_vmx_copy_nums > 0) {
r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
if (r == RESUME_HOST) {
vcpu->mmio_needed = 1;
goto out;
}
}
#endif
} else if (vcpu->arch.osi_needed) {
u64 *gprs = run->osi.gprs;
int i;
for (i = 0; i < 32; i++)
kvmppc_set_gpr(vcpu, i, gprs[i]);
vcpu->arch.osi_needed = 0;
} else if (vcpu->arch.hcall_needed) {
int i;
kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
for (i = 0; i < 9; ++i)
kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
vcpu->arch.hcall_needed = 0;
#ifdef CONFIG_BOOKE
} else if (vcpu->arch.epr_needed) {
kvmppc_set_epr(vcpu, run->epr.epr);
vcpu->arch.epr_needed = 0;
#endif
}
kvm_sigset_activate(vcpu);
if (run->immediate_exit)
r = -EINTR;
else
r = kvmppc_vcpu_run(vcpu);
kvm_sigset_deactivate(vcpu);
#ifdef CONFIG_ALTIVEC
out:
#endif
/*
* We're already returning to userspace, don't pass the
* RESUME_HOST flags along.
*/
if (r > 0)
r = 0;
vcpu_put(vcpu);
return r;
}
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
if (irq->irq == KVM_INTERRUPT_UNSET) {
kvmppc_core_dequeue_external(vcpu);
return 0;
}
kvmppc_core_queue_external(vcpu, irq);
kvm_vcpu_kick(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_PPC_OSI:
r = 0;
vcpu->arch.osi_enabled = true;
break;
case KVM_CAP_PPC_PAPR:
r = 0;
vcpu->arch.papr_enabled = true;
break;
case KVM_CAP_PPC_EPR:
r = 0;
if (cap->args[0])
vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
else
vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
break;
#ifdef CONFIG_BOOKE
case KVM_CAP_PPC_BOOKE_WATCHDOG:
r = 0;
vcpu->arch.watchdog_enabled = true;
break;
#endif
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
case KVM_CAP_SW_TLB: {
struct kvm_config_tlb cfg;
void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
r = -EFAULT;
if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
break;
r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
break;
}
#endif
#ifdef CONFIG_KVM_MPIC
case KVM_CAP_IRQ_MPIC: {
struct fd f;
struct kvm_device *dev;
r = -EBADF;
f = fdget(cap->args[0]);
if (!f.file)
break;
r = -EPERM;
dev = kvm_device_from_filp(f.file);
if (dev)
r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
fdput(f);
break;
}
#endif
#ifdef CONFIG_KVM_XICS
case KVM_CAP_IRQ_XICS: {
struct fd f;
struct kvm_device *dev;
r = -EBADF;
f = fdget(cap->args[0]);
if (!f.file)
break;
r = -EPERM;
dev = kvm_device_from_filp(f.file);
if (dev) {
if (xics_on_xive())
r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
else
r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
}
fdput(f);
break;
}
#endif /* CONFIG_KVM_XICS */
#ifdef CONFIG_KVM_XIVE
case KVM_CAP_PPC_IRQ_XIVE: {
struct fd f;
struct kvm_device *dev;
r = -EBADF;
f = fdget(cap->args[0]);
if (!f.file)
break;
r = -ENXIO;
if (!xive_enabled())
break;
r = -EPERM;
dev = kvm_device_from_filp(f.file);
if (dev)
r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
cap->args[1]);
fdput(f);
break;
}
#endif /* CONFIG_KVM_XIVE */
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
case KVM_CAP_PPC_FWNMI:
r = -EINVAL;
if (!is_kvmppc_hv_enabled(vcpu->kvm))
break;
r = 0;
vcpu->kvm->arch.fwnmi_enabled = true;
break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
default:
r = -EINVAL;
break;
}
if (!r)
r = kvmppc_sanity_check(vcpu);
return r;
}
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
if (kvm->arch.mpic)
return true;
#endif
#ifdef CONFIG_KVM_XICS
if (kvm->arch.xics || kvm->arch.xive)
return true;
#endif
return false;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL;
}
long kvm_arch_vcpu_async_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
if (ioctl == KVM_INTERRUPT) {
struct kvm_interrupt irq;
if (copy_from_user(&irq, argp, sizeof(irq)))
return -EFAULT;
return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
}
return -ENOIOCTLCMD;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_ENABLE_CAP:
{
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
goto out;
vcpu_load(vcpu);
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
vcpu_put(vcpu);
break;
}
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG:
{
struct kvm_one_reg reg;
r = -EFAULT;
if (copy_from_user(&reg, argp, sizeof(reg)))
goto out;
if (ioctl == KVM_SET_ONE_REG)
r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
else
r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
break;
}
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
case KVM_DIRTY_TLB: {
struct kvm_dirty_tlb dirty;
r = -EFAULT;
if (copy_from_user(&dirty, argp, sizeof(dirty)))
goto out;
vcpu_load(vcpu);
r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
vcpu_put(vcpu);
break;
}
#endif
default:
r = -EINVAL;
}
out:
return r;
}
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
u32 inst_sc1 = 0x44000022;
pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
pvinfo->hcall[1] = cpu_to_be32(inst_nop);
pvinfo->hcall[2] = cpu_to_be32(inst_nop);
pvinfo->hcall[3] = cpu_to_be32(inst_nop);
#else
u32 inst_lis = 0x3c000000;
u32 inst_ori = 0x60000000;
u32 inst_sc = 0x44000002;
u32 inst_imm_mask = 0xffff;
/*
* The hypercall to get into KVM from within guest context is as
* follows:
*
* lis r0, r0, KVM_SC_MAGIC_R0@h
* ori r0, KVM_SC_MAGIC_R0@l
* sc
* nop
*/
pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
pvinfo->hcall[2] = cpu_to_be32(inst_sc);
pvinfo->hcall[3] = cpu_to_be32(inst_nop);
#endif
pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
return 0;
}
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
bool line_status)
{
if (!irqchip_in_kernel(kvm))
return -ENXIO;
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
irq_event->irq, irq_event->level,
line_status);
return 0;
}
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
case KVM_CAP_PPC_ENABLE_HCALL: {
unsigned long hcall = cap->args[0];
r = -EINVAL;
if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
cap->args[1] > 1)
break;
if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
break;
if (cap->args[1])
set_bit(hcall / 4, kvm->arch.enabled_hcalls);
else
clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
r = 0;
break;
}
case KVM_CAP_PPC_SMT: {
unsigned long mode = cap->args[0];
unsigned long flags = cap->args[1];
r = -EINVAL;
if (kvm->arch.kvm_ops->set_smt_mode)
r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
break;
}
case KVM_CAP_PPC_NESTED_HV:
r = -EINVAL;
if (!is_kvmppc_hv_enabled(kvm) ||
!kvm->arch.kvm_ops->enable_nested)
break;
r = kvm->arch.kvm_ops->enable_nested(kvm);
break;
#endif
#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
case KVM_CAP_PPC_SECURE_GUEST:
r = -EINVAL;
if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
break;
r = kvm->arch.kvm_ops->enable_svm(kvm);
break;
case KVM_CAP_PPC_DAWR1:
r = -EINVAL;
if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
break;
r = kvm->arch.kvm_ops->enable_dawr1(kvm);
break;
#endif
default:
r = -EINVAL;
break;
}
return r;
}
#ifdef CONFIG_PPC_BOOK3S_64
/*
* These functions check whether the underlying hardware is safe
* against attacks based on observing the effects of speculatively
* executed instructions, and whether it supplies instructions for
* use in workarounds. The information comes from firmware, either
* via the device tree on powernv platforms or from an hcall on
* pseries platforms.
*/
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
struct h_cpu_char_result c;
unsigned long rc;
if (!machine_is(pseries))
return -ENOTTY;
rc = plpar_get_cpu_characteristics(&c);
if (rc == H_SUCCESS) {
cp->character = c.character;
cp->behaviour = c.behaviour;
cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
}
return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
return -ENOTTY;
}
#endif
static inline bool have_fw_feat(struct device_node *fw_features,
const char *state, const char *name)
{
struct device_node *np;
bool r = false;
np = of_get_child_by_name(fw_features, name);
if (np) {
r = of_property_read_bool(np, state);
of_node_put(np);
}
return r;
}
static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
struct device_node *np, *fw_features;
int r;
memset(cp, 0, sizeof(*cp));
r = pseries_get_cpu_char(cp);
if (r != -ENOTTY)
return r;
np = of_find_node_by_name(NULL, "ibm,opal");
if (np) {
fw_features = of_get_child_by_name(np, "fw-features");
of_node_put(np);
if (!fw_features)
return 0;
if (have_fw_feat(fw_features, "enabled",
"inst-spec-barrier-ori31,31,0"))
cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
if (have_fw_feat(fw_features, "enabled",
"fw-bcctrl-serialized"))
cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
if (have_fw_feat(fw_features, "enabled",
"inst-l1d-flush-ori30,30,0"))
cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
if (have_fw_feat(fw_features, "enabled",
"inst-l1d-flush-trig2"))
cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
if (have_fw_feat(fw_features, "enabled",
"fw-l1d-thread-split"))
cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
if (have_fw_feat(fw_features, "enabled",
"fw-count-cache-disabled"))
cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
if (have_fw_feat(fw_features, "enabled",
"fw-count-cache-flush-bcctr2,0,0"))
cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
if (have_fw_feat(fw_features, "enabled",
"speculation-policy-favor-security"))
cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
if (!have_fw_feat(fw_features, "disabled",
"needs-l1d-flush-msr-pr-0-to-1"))
cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
if (!have_fw_feat(fw_features, "disabled",
"needs-spec-barrier-for-bound-checks"))
cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
if (have_fw_feat(fw_features, "enabled",
"needs-count-cache-flush-on-context-switch"))
cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
of_node_put(fw_features);
}
return 0;
}
#endif
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm __maybe_unused = filp->private_data;
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_PPC_GET_PVINFO: {
struct kvm_ppc_pvinfo pvinfo;
memset(&pvinfo, 0, sizeof(pvinfo));
r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
r = -EFAULT;
goto out;
}
break;
}
#ifdef CONFIG_SPAPR_TCE_IOMMU
case KVM_CREATE_SPAPR_TCE_64: {
struct kvm_create_spapr_tce_64 create_tce_64;
r = -EFAULT;
if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
goto out;
if (create_tce_64.flags) {
r = -EINVAL;
goto out;
}
r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
goto out;
}
case KVM_CREATE_SPAPR_TCE: {
struct kvm_create_spapr_tce create_tce;
struct kvm_create_spapr_tce_64 create_tce_64;
r = -EFAULT;
if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
goto out;
create_tce_64.liobn = create_tce.liobn;
create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
create_tce_64.offset = 0;
create_tce_64.size = create_tce.window_size >>
IOMMU_PAGE_SHIFT_4K;
create_tce_64.flags = 0;
r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
goto out;
}
#endif
#ifdef CONFIG_PPC_BOOK3S_64
case KVM_PPC_GET_SMMU_INFO: {
struct kvm_ppc_smmu_info info;
struct kvm *kvm = filp->private_data;
memset(&info, 0, sizeof(info));
r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
r = -EFAULT;
break;
}
case KVM_PPC_RTAS_DEFINE_TOKEN: {
struct kvm *kvm = filp->private_data;
r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
break;
}
case KVM_PPC_CONFIGURE_V3_MMU: {
struct kvm *kvm = filp->private_data;
struct kvm_ppc_mmuv3_cfg cfg;
r = -EINVAL;
if (!kvm->arch.kvm_ops->configure_mmu)
goto out;
r = -EFAULT;
if (copy_from_user(&cfg, argp, sizeof(cfg)))
goto out;
r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
break;
}
case KVM_PPC_GET_RMMU_INFO: {
struct kvm *kvm = filp->private_data;
struct kvm_ppc_rmmu_info info;
r = -EINVAL;
if (!kvm->arch.kvm_ops->get_rmmu_info)
goto out;
r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
r = -EFAULT;
break;
}
case KVM_PPC_GET_CPU_CHAR: {
struct kvm_ppc_cpu_char cpuchar;
r = kvmppc_get_cpu_char(&cpuchar);
if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
r = -EFAULT;
break;
}
case KVM_PPC_SVM_OFF: {
struct kvm *kvm = filp->private_data;
r = 0;
if (!kvm->arch.kvm_ops->svm_off)
goto out;
r = kvm->arch.kvm_ops->svm_off(kvm);
break;
}
default: {
struct kvm *kvm = filp->private_data;
r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
}
#else /* CONFIG_PPC_BOOK3S_64 */
default:
r = -ENOTTY;
#endif
}
out:
return r;
}
static DEFINE_IDA(lpid_inuse);
static unsigned long nr_lpids;
long kvmppc_alloc_lpid(void)
{
int lpid;
/* The host LPID must always be 0 (allocation starts at 1) */
lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
if (lpid < 0) {
if (lpid == -ENOMEM)
pr_err("%s: Out of memory\n", __func__);
else
pr_err("%s: No LPIDs free\n", __func__);
return -ENOMEM;
}
return lpid;
}
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
void kvmppc_free_lpid(long lpid)
{
ida_free(&lpid_inuse, lpid);
}
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
/* nr_lpids_param includes the host LPID */
void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
nr_lpids = nr_lpids_param;
}
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
int kvm_arch_init(void *opaque)
{
return 0;
}
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
{
if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
}
int kvm_arch_create_vm_debugfs(struct kvm *kvm)
{
if (kvm->arch.kvm_ops->create_vm_debugfs)
kvm->arch.kvm_ops->create_vm_debugfs(kvm);
return 0;
}