linux/drivers/infiniband/core/cache.c
Parav Pandit 943bd984b1 RDMA/core: Allow detaching gid attribute netdevice for RoCE
When there is active traffic through a GID, a QP/AH holds reference to
this GID entry. RoCE GID entry holds reference to its attached
netdevice. Due to this when netdevice is deleted by admin user, its
refcount is not dropped.

Therefore, while deleting RoCE GID, wait for all GID attribute's netdev
users to finish accessing netdev in rcu context.  Once all users done
accessing it, release the netdev refcount.

Signed-off-by: Huy Nguyen <huyn@mellanox.com>
Signed-off-by: Parav Pandit <parav@mellanox.com>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-05-03 11:10:03 -03:00

1554 lines
39 KiB
C

/*
* Copyright (c) 2004 Topspin Communications. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005 Voltaire, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <net/addrconf.h>
#include <rdma/ib_cache.h>
#include "core_priv.h"
struct ib_pkey_cache {
int table_len;
u16 table[0];
};
struct ib_update_work {
struct work_struct work;
struct ib_device *device;
u8 port_num;
bool enforce_security;
};
union ib_gid zgid;
EXPORT_SYMBOL(zgid);
enum gid_attr_find_mask {
GID_ATTR_FIND_MASK_GID = 1UL << 0,
GID_ATTR_FIND_MASK_NETDEV = 1UL << 1,
GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2,
GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3,
};
enum gid_table_entry_state {
GID_TABLE_ENTRY_INVALID = 1,
GID_TABLE_ENTRY_VALID = 2,
/*
* Indicates that entry is pending to be removed, there may
* be active users of this GID entry.
* When last user of the GID entry releases reference to it,
* GID entry is detached from the table.
*/
GID_TABLE_ENTRY_PENDING_DEL = 3,
};
struct roce_gid_ndev_storage {
struct rcu_head rcu_head;
struct net_device *ndev;
};
struct ib_gid_table_entry {
struct kref kref;
struct work_struct del_work;
struct ib_gid_attr attr;
void *context;
/* Store the ndev pointer to release reference later on in
* call_rcu context because by that time gid_table_entry
* and attr might be already freed. So keep a copy of it.
* ndev_storage is freed by rcu callback.
*/
struct roce_gid_ndev_storage *ndev_storage;
enum gid_table_entry_state state;
};
struct ib_gid_table {
int sz;
/* In RoCE, adding a GID to the table requires:
* (a) Find if this GID is already exists.
* (b) Find a free space.
* (c) Write the new GID
*
* Delete requires different set of operations:
* (a) Find the GID
* (b) Delete it.
*
**/
/* Any writer to data_vec must hold this lock and the write side of
* rwlock. Readers must hold only rwlock. All writers must be in a
* sleepable context.
*/
struct mutex lock;
/* rwlock protects data_vec[ix]->state and entry pointer.
*/
rwlock_t rwlock;
struct ib_gid_table_entry **data_vec;
/* bit field, each bit indicates the index of default GID */
u32 default_gid_indices;
};
static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port)
{
struct ib_event event;
event.device = ib_dev;
event.element.port_num = port;
event.event = IB_EVENT_GID_CHANGE;
ib_dispatch_event(&event);
}
static const char * const gid_type_str[] = {
[IB_GID_TYPE_IB] = "IB/RoCE v1",
[IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2",
};
const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
{
if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
return gid_type_str[gid_type];
return "Invalid GID type";
}
EXPORT_SYMBOL(ib_cache_gid_type_str);
/** rdma_is_zero_gid - Check if given GID is zero or not.
* @gid: GID to check
* Returns true if given GID is zero, returns false otherwise.
*/
bool rdma_is_zero_gid(const union ib_gid *gid)
{
return !memcmp(gid, &zgid, sizeof(*gid));
}
EXPORT_SYMBOL(rdma_is_zero_gid);
/** is_gid_index_default - Check if a given index belongs to
* reserved default GIDs or not.
* @table: GID table pointer
* @index: Index to check in GID table
* Returns true if index is one of the reserved default GID index otherwise
* returns false.
*/
static bool is_gid_index_default(const struct ib_gid_table *table,
unsigned int index)
{
return index < 32 && (BIT(index) & table->default_gid_indices);
}
int ib_cache_gid_parse_type_str(const char *buf)
{
unsigned int i;
size_t len;
int err = -EINVAL;
len = strlen(buf);
if (len == 0)
return -EINVAL;
if (buf[len - 1] == '\n')
len--;
for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
len == strlen(gid_type_str[i])) {
err = i;
break;
}
return err;
}
EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port)
{
return device->port_data[port].cache.gid;
}
static bool is_gid_entry_free(const struct ib_gid_table_entry *entry)
{
return !entry;
}
static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry)
{
return entry && entry->state == GID_TABLE_ENTRY_VALID;
}
static void schedule_free_gid(struct kref *kref)
{
struct ib_gid_table_entry *entry =
container_of(kref, struct ib_gid_table_entry, kref);
queue_work(ib_wq, &entry->del_work);
}
static void put_gid_ndev(struct rcu_head *head)
{
struct roce_gid_ndev_storage *storage =
container_of(head, struct roce_gid_ndev_storage, rcu_head);
WARN_ON(!storage->ndev);
/* At this point its safe to release netdev reference,
* as all callers working on gid_attr->ndev are done
* using this netdev.
*/
dev_put(storage->ndev);
kfree(storage);
}
static void free_gid_entry_locked(struct ib_gid_table_entry *entry)
{
struct ib_device *device = entry->attr.device;
u8 port_num = entry->attr.port_num;
struct ib_gid_table *table = rdma_gid_table(device, port_num);
dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__,
port_num, entry->attr.index, entry->attr.gid.raw);
write_lock_irq(&table->rwlock);
/*
* The only way to avoid overwriting NULL in table is
* by comparing if it is same entry in table or not!
* If new entry in table is added by the time we free here,
* don't overwrite the table entry.
*/
if (entry == table->data_vec[entry->attr.index])
table->data_vec[entry->attr.index] = NULL;
/* Now this index is ready to be allocated */
write_unlock_irq(&table->rwlock);
if (entry->ndev_storage)
call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev);
kfree(entry);
}
static void free_gid_entry(struct kref *kref)
{
struct ib_gid_table_entry *entry =
container_of(kref, struct ib_gid_table_entry, kref);
free_gid_entry_locked(entry);
}
/**
* free_gid_work - Release reference to the GID entry
* @work: Work structure to refer to GID entry which needs to be
* deleted.
*
* free_gid_work() frees the entry from the HCA's hardware table
* if provider supports it. It releases reference to netdevice.
*/
static void free_gid_work(struct work_struct *work)
{
struct ib_gid_table_entry *entry =
container_of(work, struct ib_gid_table_entry, del_work);
struct ib_device *device = entry->attr.device;
u8 port_num = entry->attr.port_num;
struct ib_gid_table *table = rdma_gid_table(device, port_num);
mutex_lock(&table->lock);
free_gid_entry_locked(entry);
mutex_unlock(&table->lock);
}
static struct ib_gid_table_entry *
alloc_gid_entry(const struct ib_gid_attr *attr)
{
struct ib_gid_table_entry *entry;
struct net_device *ndev;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return NULL;
ndev = rcu_dereference_protected(attr->ndev, 1);
if (ndev) {
entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage),
GFP_KERNEL);
if (!entry->ndev_storage) {
kfree(entry);
return NULL;
}
dev_hold(ndev);
entry->ndev_storage->ndev = ndev;
}
kref_init(&entry->kref);
memcpy(&entry->attr, attr, sizeof(*attr));
INIT_WORK(&entry->del_work, free_gid_work);
entry->state = GID_TABLE_ENTRY_INVALID;
return entry;
}
static void store_gid_entry(struct ib_gid_table *table,
struct ib_gid_table_entry *entry)
{
entry->state = GID_TABLE_ENTRY_VALID;
dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n",
__func__, entry->attr.port_num, entry->attr.index,
entry->attr.gid.raw);
lockdep_assert_held(&table->lock);
write_lock_irq(&table->rwlock);
table->data_vec[entry->attr.index] = entry;
write_unlock_irq(&table->rwlock);
}
static void get_gid_entry(struct ib_gid_table_entry *entry)
{
kref_get(&entry->kref);
}
static void put_gid_entry(struct ib_gid_table_entry *entry)
{
kref_put(&entry->kref, schedule_free_gid);
}
static void put_gid_entry_locked(struct ib_gid_table_entry *entry)
{
kref_put(&entry->kref, free_gid_entry);
}
static int add_roce_gid(struct ib_gid_table_entry *entry)
{
const struct ib_gid_attr *attr = &entry->attr;
int ret;
if (!attr->ndev) {
dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n",
__func__, attr->port_num, attr->index);
return -EINVAL;
}
if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
ret = attr->device->ops.add_gid(attr, &entry->context);
if (ret) {
dev_err(&attr->device->dev,
"%s GID add failed port=%d index=%d\n",
__func__, attr->port_num, attr->index);
return ret;
}
}
return 0;
}
/**
* del_gid - Delete GID table entry
*
* @ib_dev: IB device whose GID entry to be deleted
* @port: Port number of the IB device
* @table: GID table of the IB device for a port
* @ix: GID entry index to delete
*
*/
static void del_gid(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table, int ix)
{
struct roce_gid_ndev_storage *ndev_storage;
struct ib_gid_table_entry *entry;
lockdep_assert_held(&table->lock);
dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port,
ix, table->data_vec[ix]->attr.gid.raw);
write_lock_irq(&table->rwlock);
entry = table->data_vec[ix];
entry->state = GID_TABLE_ENTRY_PENDING_DEL;
/*
* For non RoCE protocol, GID entry slot is ready to use.
*/
if (!rdma_protocol_roce(ib_dev, port))
table->data_vec[ix] = NULL;
write_unlock_irq(&table->rwlock);
ndev_storage = entry->ndev_storage;
if (ndev_storage) {
entry->ndev_storage = NULL;
rcu_assign_pointer(entry->attr.ndev, NULL);
call_rcu(&ndev_storage->rcu_head, put_gid_ndev);
}
if (rdma_cap_roce_gid_table(ib_dev, port))
ib_dev->ops.del_gid(&entry->attr, &entry->context);
put_gid_entry_locked(entry);
}
/**
* add_modify_gid - Add or modify GID table entry
*
* @table: GID table in which GID to be added or modified
* @attr: Attributes of the GID
*
* Returns 0 on success or appropriate error code. It accepts zero
* GID addition for non RoCE ports for HCA's who report them as valid
* GID. However such zero GIDs are not added to the cache.
*/
static int add_modify_gid(struct ib_gid_table *table,
const struct ib_gid_attr *attr)
{
struct ib_gid_table_entry *entry;
int ret = 0;
/*
* Invalidate any old entry in the table to make it safe to write to
* this index.
*/
if (is_gid_entry_valid(table->data_vec[attr->index]))
del_gid(attr->device, attr->port_num, table, attr->index);
/*
* Some HCA's report multiple GID entries with only one valid GID, and
* leave other unused entries as the zero GID. Convert zero GIDs to
* empty table entries instead of storing them.
*/
if (rdma_is_zero_gid(&attr->gid))
return 0;
entry = alloc_gid_entry(attr);
if (!entry)
return -ENOMEM;
if (rdma_protocol_roce(attr->device, attr->port_num)) {
ret = add_roce_gid(entry);
if (ret)
goto done;
}
store_gid_entry(table, entry);
return 0;
done:
put_gid_entry(entry);
return ret;
}
/* rwlock should be read locked, or lock should be held */
static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
const struct ib_gid_attr *val, bool default_gid,
unsigned long mask, int *pempty)
{
int i = 0;
int found = -1;
int empty = pempty ? -1 : 0;
while (i < table->sz && (found < 0 || empty < 0)) {
struct ib_gid_table_entry *data = table->data_vec[i];
struct ib_gid_attr *attr;
int curr_index = i;
i++;
/* find_gid() is used during GID addition where it is expected
* to return a free entry slot which is not duplicate.
* Free entry slot is requested and returned if pempty is set,
* so lookup free slot only if requested.
*/
if (pempty && empty < 0) {
if (is_gid_entry_free(data) &&
default_gid ==
is_gid_index_default(table, curr_index)) {
/*
* Found an invalid (free) entry; allocate it.
* If default GID is requested, then our
* found slot must be one of the DEFAULT
* reserved slots or we fail.
* This ensures that only DEFAULT reserved
* slots are used for default property GIDs.
*/
empty = curr_index;
}
}
/*
* Additionally find_gid() is used to find valid entry during
* lookup operation; so ignore the entries which are marked as
* pending for removal and the entries which are marked as
* invalid.
*/
if (!is_gid_entry_valid(data))
continue;
if (found >= 0)
continue;
attr = &data->attr;
if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
attr->gid_type != val->gid_type)
continue;
if (mask & GID_ATTR_FIND_MASK_GID &&
memcmp(gid, &data->attr.gid, sizeof(*gid)))
continue;
if (mask & GID_ATTR_FIND_MASK_NETDEV &&
attr->ndev != val->ndev)
continue;
if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
is_gid_index_default(table, curr_index) != default_gid)
continue;
found = curr_index;
}
if (pempty)
*pempty = empty;
return found;
}
static void make_default_gid(struct net_device *dev, union ib_gid *gid)
{
gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
addrconf_ifid_eui48(&gid->raw[8], dev);
}
static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr,
unsigned long mask, bool default_gid)
{
struct ib_gid_table *table;
int ret = 0;
int empty;
int ix;
/* Do not allow adding zero GID in support of
* IB spec version 1.3 section 4.1.1 point (6) and
* section 12.7.10 and section 12.7.20
*/
if (rdma_is_zero_gid(gid))
return -EINVAL;
table = rdma_gid_table(ib_dev, port);
mutex_lock(&table->lock);
ix = find_gid(table, gid, attr, default_gid, mask, &empty);
if (ix >= 0)
goto out_unlock;
if (empty < 0) {
ret = -ENOSPC;
goto out_unlock;
}
attr->device = ib_dev;
attr->index = empty;
attr->port_num = port;
attr->gid = *gid;
ret = add_modify_gid(table, attr);
if (!ret)
dispatch_gid_change_event(ib_dev, port);
out_unlock:
mutex_unlock(&table->lock);
if (ret)
pr_warn("%s: unable to add gid %pI6 error=%d\n",
__func__, gid->raw, ret);
return ret;
}
int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr)
{
unsigned long mask = GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_GID_TYPE |
GID_ATTR_FIND_MASK_NETDEV;
return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
}
static int
_ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr,
unsigned long mask, bool default_gid)
{
struct ib_gid_table *table;
int ret = 0;
int ix;
table = rdma_gid_table(ib_dev, port);
mutex_lock(&table->lock);
ix = find_gid(table, gid, attr, default_gid, mask, NULL);
if (ix < 0) {
ret = -EINVAL;
goto out_unlock;
}
del_gid(ib_dev, port, table, ix);
dispatch_gid_change_event(ib_dev, port);
out_unlock:
mutex_unlock(&table->lock);
if (ret)
pr_debug("%s: can't delete gid %pI6 error=%d\n",
__func__, gid->raw, ret);
return ret;
}
int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr)
{
unsigned long mask = GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_GID_TYPE |
GID_ATTR_FIND_MASK_DEFAULT |
GID_ATTR_FIND_MASK_NETDEV;
return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
}
int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
struct net_device *ndev)
{
struct ib_gid_table *table;
int ix;
bool deleted = false;
table = rdma_gid_table(ib_dev, port);
mutex_lock(&table->lock);
for (ix = 0; ix < table->sz; ix++) {
if (is_gid_entry_valid(table->data_vec[ix]) &&
table->data_vec[ix]->attr.ndev == ndev) {
del_gid(ib_dev, port, table, ix);
deleted = true;
}
}
mutex_unlock(&table->lock);
if (deleted)
dispatch_gid_change_event(ib_dev, port);
return 0;
}
/**
* rdma_find_gid_by_port - Returns the GID entry attributes when it finds
* a valid GID entry for given search parameters. It searches for the specified
* GID value in the local software cache.
* @device: The device to query.
* @gid: The GID value to search for.
* @gid_type: The GID type to search for.
* @port_num: The port number of the device where the GID value should be
* searched.
* @ndev: In RoCE, the net device of the device. NULL means ignore.
*
* Returns sgid attributes if the GID is found with valid reference or
* returns ERR_PTR for the error.
* The caller must invoke rdma_put_gid_attr() to release the reference.
*/
const struct ib_gid_attr *
rdma_find_gid_by_port(struct ib_device *ib_dev,
const union ib_gid *gid,
enum ib_gid_type gid_type,
u8 port, struct net_device *ndev)
{
int local_index;
struct ib_gid_table *table;
unsigned long mask = GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_GID_TYPE;
struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
const struct ib_gid_attr *attr;
unsigned long flags;
if (!rdma_is_port_valid(ib_dev, port))
return ERR_PTR(-ENOENT);
table = rdma_gid_table(ib_dev, port);
if (ndev)
mask |= GID_ATTR_FIND_MASK_NETDEV;
read_lock_irqsave(&table->rwlock, flags);
local_index = find_gid(table, gid, &val, false, mask, NULL);
if (local_index >= 0) {
get_gid_entry(table->data_vec[local_index]);
attr = &table->data_vec[local_index]->attr;
read_unlock_irqrestore(&table->rwlock, flags);
return attr;
}
read_unlock_irqrestore(&table->rwlock, flags);
return ERR_PTR(-ENOENT);
}
EXPORT_SYMBOL(rdma_find_gid_by_port);
/**
* rdma_find_gid_by_filter - Returns the GID table attribute where a
* specified GID value occurs
* @device: The device to query.
* @gid: The GID value to search for.
* @port: The port number of the device where the GID value could be
* searched.
* @filter: The filter function is executed on any matching GID in the table.
* If the filter function returns true, the corresponding index is returned,
* otherwise, we continue searching the GID table. It's guaranteed that
* while filter is executed, ndev field is valid and the structure won't
* change. filter is executed in an atomic context. filter must not be NULL.
*
* rdma_find_gid_by_filter() searches for the specified GID value
* of which the filter function returns true in the port's GID table.
*
*/
const struct ib_gid_attr *rdma_find_gid_by_filter(
struct ib_device *ib_dev, const union ib_gid *gid, u8 port,
bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *,
void *),
void *context)
{
const struct ib_gid_attr *res = ERR_PTR(-ENOENT);
struct ib_gid_table *table;
unsigned long flags;
unsigned int i;
if (!rdma_is_port_valid(ib_dev, port))
return ERR_PTR(-EINVAL);
table = rdma_gid_table(ib_dev, port);
read_lock_irqsave(&table->rwlock, flags);
for (i = 0; i < table->sz; i++) {
struct ib_gid_table_entry *entry = table->data_vec[i];
if (!is_gid_entry_valid(entry))
continue;
if (memcmp(gid, &entry->attr.gid, sizeof(*gid)))
continue;
if (filter(gid, &entry->attr, context)) {
get_gid_entry(entry);
res = &entry->attr;
break;
}
}
read_unlock_irqrestore(&table->rwlock, flags);
return res;
}
static struct ib_gid_table *alloc_gid_table(int sz)
{
struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return NULL;
table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
if (!table->data_vec)
goto err_free_table;
mutex_init(&table->lock);
table->sz = sz;
rwlock_init(&table->rwlock);
return table;
err_free_table:
kfree(table);
return NULL;
}
static void release_gid_table(struct ib_device *device,
struct ib_gid_table *table)
{
bool leak = false;
int i;
if (!table)
return;
for (i = 0; i < table->sz; i++) {
if (is_gid_entry_free(table->data_vec[i]))
continue;
if (kref_read(&table->data_vec[i]->kref) > 1) {
dev_err(&device->dev,
"GID entry ref leak for index %d ref=%d\n", i,
kref_read(&table->data_vec[i]->kref));
leak = true;
}
}
if (leak)
return;
kfree(table->data_vec);
kfree(table);
}
static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table)
{
int i;
bool deleted = false;
if (!table)
return;
mutex_lock(&table->lock);
for (i = 0; i < table->sz; ++i) {
if (is_gid_entry_valid(table->data_vec[i])) {
del_gid(ib_dev, port, table, i);
deleted = true;
}
}
mutex_unlock(&table->lock);
if (deleted)
dispatch_gid_change_event(ib_dev, port);
}
void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
struct net_device *ndev,
unsigned long gid_type_mask,
enum ib_cache_gid_default_mode mode)
{
union ib_gid gid = { };
struct ib_gid_attr gid_attr;
unsigned int gid_type;
unsigned long mask;
mask = GID_ATTR_FIND_MASK_GID_TYPE |
GID_ATTR_FIND_MASK_DEFAULT |
GID_ATTR_FIND_MASK_NETDEV;
memset(&gid_attr, 0, sizeof(gid_attr));
gid_attr.ndev = ndev;
for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
if (1UL << gid_type & ~gid_type_mask)
continue;
gid_attr.gid_type = gid_type;
if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
make_default_gid(ndev, &gid);
__ib_cache_gid_add(ib_dev, port, &gid,
&gid_attr, mask, true);
} else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
_ib_cache_gid_del(ib_dev, port, &gid,
&gid_attr, mask, true);
}
}
}
static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table)
{
unsigned int i;
unsigned long roce_gid_type_mask;
unsigned int num_default_gids;
roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
num_default_gids = hweight_long(roce_gid_type_mask);
/* Reserve starting indices for default GIDs */
for (i = 0; i < num_default_gids && i < table->sz; i++)
table->default_gid_indices |= BIT(i);
}
static void gid_table_release_one(struct ib_device *ib_dev)
{
unsigned int p;
rdma_for_each_port (ib_dev, p) {
release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid);
ib_dev->port_data[p].cache.gid = NULL;
}
}
static int _gid_table_setup_one(struct ib_device *ib_dev)
{
struct ib_gid_table *table;
unsigned int rdma_port;
rdma_for_each_port (ib_dev, rdma_port) {
table = alloc_gid_table(
ib_dev->port_data[rdma_port].immutable.gid_tbl_len);
if (!table)
goto rollback_table_setup;
gid_table_reserve_default(ib_dev, rdma_port, table);
ib_dev->port_data[rdma_port].cache.gid = table;
}
return 0;
rollback_table_setup:
gid_table_release_one(ib_dev);
return -ENOMEM;
}
static void gid_table_cleanup_one(struct ib_device *ib_dev)
{
unsigned int p;
rdma_for_each_port (ib_dev, p)
cleanup_gid_table_port(ib_dev, p,
ib_dev->port_data[p].cache.gid);
}
static int gid_table_setup_one(struct ib_device *ib_dev)
{
int err;
err = _gid_table_setup_one(ib_dev);
if (err)
return err;
rdma_roce_rescan_device(ib_dev);
return err;
}
/**
* rdma_query_gid - Read the GID content from the GID software cache
* @device: Device to query the GID
* @port_num: Port number of the device
* @index: Index of the GID table entry to read
* @gid: Pointer to GID where to store the entry's GID
*
* rdma_query_gid() only reads the GID entry content for requested device,
* port and index. It reads for IB, RoCE and iWarp link layers. It doesn't
* hold any reference to the GID table entry in the HCA or software cache.
*
* Returns 0 on success or appropriate error code.
*
*/
int rdma_query_gid(struct ib_device *device, u8 port_num,
int index, union ib_gid *gid)
{
struct ib_gid_table *table;
unsigned long flags;
int res = -EINVAL;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
table = rdma_gid_table(device, port_num);
read_lock_irqsave(&table->rwlock, flags);
if (index < 0 || index >= table->sz ||
!is_gid_entry_valid(table->data_vec[index]))
goto done;
memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid));
res = 0;
done:
read_unlock_irqrestore(&table->rwlock, flags);
return res;
}
EXPORT_SYMBOL(rdma_query_gid);
/**
* rdma_find_gid - Returns SGID attributes if the matching GID is found.
* @device: The device to query.
* @gid: The GID value to search for.
* @gid_type: The GID type to search for.
* @ndev: In RoCE, the net device of the device. NULL means ignore.
*
* rdma_find_gid() searches for the specified GID value in the software cache.
*
* Returns GID attributes if a valid GID is found or returns ERR_PTR for the
* error. The caller must invoke rdma_put_gid_attr() to release the reference.
*
*/
const struct ib_gid_attr *rdma_find_gid(struct ib_device *device,
const union ib_gid *gid,
enum ib_gid_type gid_type,
struct net_device *ndev)
{
unsigned long mask = GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_GID_TYPE;
struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
unsigned int p;
if (ndev)
mask |= GID_ATTR_FIND_MASK_NETDEV;
rdma_for_each_port(device, p) {
struct ib_gid_table *table;
unsigned long flags;
int index;
table = device->port_data[p].cache.gid;
read_lock_irqsave(&table->rwlock, flags);
index = find_gid(table, gid, &gid_attr_val, false, mask, NULL);
if (index >= 0) {
const struct ib_gid_attr *attr;
get_gid_entry(table->data_vec[index]);
attr = &table->data_vec[index]->attr;
read_unlock_irqrestore(&table->rwlock, flags);
return attr;
}
read_unlock_irqrestore(&table->rwlock, flags);
}
return ERR_PTR(-ENOENT);
}
EXPORT_SYMBOL(rdma_find_gid);
int ib_get_cached_pkey(struct ib_device *device,
u8 port_num,
int index,
u16 *pkey)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int ret = 0;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->port_data[port_num].cache.pkey;
if (index < 0 || index >= cache->table_len)
ret = -EINVAL;
else
*pkey = cache->table[index];
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_get_cached_pkey);
int ib_get_cached_subnet_prefix(struct ib_device *device,
u8 port_num,
u64 *sn_pfx)
{
unsigned long flags;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
*sn_pfx = device->port_data[port_num].cache.subnet_prefix;
read_unlock_irqrestore(&device->cache.lock, flags);
return 0;
}
EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
int ib_find_cached_pkey(struct ib_device *device,
u8 port_num,
u16 pkey,
u16 *index)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int i;
int ret = -ENOENT;
int partial_ix = -1;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->port_data[port_num].cache.pkey;
*index = -1;
for (i = 0; i < cache->table_len; ++i)
if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
if (cache->table[i] & 0x8000) {
*index = i;
ret = 0;
break;
} else
partial_ix = i;
}
if (ret && partial_ix >= 0) {
*index = partial_ix;
ret = 0;
}
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_find_cached_pkey);
int ib_find_exact_cached_pkey(struct ib_device *device,
u8 port_num,
u16 pkey,
u16 *index)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int i;
int ret = -ENOENT;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->port_data[port_num].cache.pkey;
*index = -1;
for (i = 0; i < cache->table_len; ++i)
if (cache->table[i] == pkey) {
*index = i;
ret = 0;
break;
}
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_find_exact_cached_pkey);
int ib_get_cached_lmc(struct ib_device *device,
u8 port_num,
u8 *lmc)
{
unsigned long flags;
int ret = 0;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
*lmc = device->port_data[port_num].cache.lmc;
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_get_cached_lmc);
int ib_get_cached_port_state(struct ib_device *device,
u8 port_num,
enum ib_port_state *port_state)
{
unsigned long flags;
int ret = 0;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
*port_state = device->port_data[port_num].cache.port_state;
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_get_cached_port_state);
/**
* rdma_get_gid_attr - Returns GID attributes for a port of a device
* at a requested gid_index, if a valid GID entry exists.
* @device: The device to query.
* @port_num: The port number on the device where the GID value
* is to be queried.
* @index: Index of the GID table entry whose attributes are to
* be queried.
*
* rdma_get_gid_attr() acquires reference count of gid attributes from the
* cached GID table. Caller must invoke rdma_put_gid_attr() to release
* reference to gid attribute regardless of link layer.
*
* Returns pointer to valid gid attribute or ERR_PTR for the appropriate error
* code.
*/
const struct ib_gid_attr *
rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index)
{
const struct ib_gid_attr *attr = ERR_PTR(-EINVAL);
struct ib_gid_table *table;
unsigned long flags;
if (!rdma_is_port_valid(device, port_num))
return ERR_PTR(-EINVAL);
table = rdma_gid_table(device, port_num);
if (index < 0 || index >= table->sz)
return ERR_PTR(-EINVAL);
read_lock_irqsave(&table->rwlock, flags);
if (!is_gid_entry_valid(table->data_vec[index]))
goto done;
get_gid_entry(table->data_vec[index]);
attr = &table->data_vec[index]->attr;
done:
read_unlock_irqrestore(&table->rwlock, flags);
return attr;
}
EXPORT_SYMBOL(rdma_get_gid_attr);
/**
* rdma_put_gid_attr - Release reference to the GID attribute
* @attr: Pointer to the GID attribute whose reference
* needs to be released.
*
* rdma_put_gid_attr() must be used to release reference whose
* reference is acquired using rdma_get_gid_attr() or any APIs
* which returns a pointer to the ib_gid_attr regardless of link layer
* of IB or RoCE.
*
*/
void rdma_put_gid_attr(const struct ib_gid_attr *attr)
{
struct ib_gid_table_entry *entry =
container_of(attr, struct ib_gid_table_entry, attr);
put_gid_entry(entry);
}
EXPORT_SYMBOL(rdma_put_gid_attr);
/**
* rdma_hold_gid_attr - Get reference to existing GID attribute
*
* @attr: Pointer to the GID attribute whose reference
* needs to be taken.
*
* Increase the reference count to a GID attribute to keep it from being
* freed. Callers are required to already be holding a reference to attribute.
*
*/
void rdma_hold_gid_attr(const struct ib_gid_attr *attr)
{
struct ib_gid_table_entry *entry =
container_of(attr, struct ib_gid_table_entry, attr);
get_gid_entry(entry);
}
EXPORT_SYMBOL(rdma_hold_gid_attr);
/**
* rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice
* which must be in UP state.
*
* @attr:Pointer to the GID attribute
*
* Returns pointer to netdevice if the netdevice was attached to GID and
* netdevice is in UP state. Caller must hold RCU lock as this API
* reads the netdev flags which can change while netdevice migrates to
* different net namespace. Returns ERR_PTR with error code otherwise.
*
*/
struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr)
{
struct ib_gid_table_entry *entry =
container_of(attr, struct ib_gid_table_entry, attr);
struct ib_device *device = entry->attr.device;
struct net_device *ndev = ERR_PTR(-ENODEV);
u8 port_num = entry->attr.port_num;
struct ib_gid_table *table;
unsigned long flags;
bool valid;
table = rdma_gid_table(device, port_num);
read_lock_irqsave(&table->rwlock, flags);
valid = is_gid_entry_valid(table->data_vec[attr->index]);
if (valid) {
ndev = rcu_dereference(attr->ndev);
if (!ndev ||
(ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0)))
ndev = ERR_PTR(-ENODEV);
}
read_unlock_irqrestore(&table->rwlock, flags);
return ndev;
}
EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu);
static int get_lower_dev_vlan(struct net_device *lower_dev, void *data)
{
u16 *vlan_id = data;
if (is_vlan_dev(lower_dev))
*vlan_id = vlan_dev_vlan_id(lower_dev);
/* We are interested only in first level vlan device, so
* always return 1 to stop iterating over next level devices.
*/
return 1;
}
/**
* rdma_read_gid_l2_fields - Read the vlan ID and source MAC address
* of a GID entry.
*
* @attr: GID attribute pointer whose L2 fields to be read
* @vlan_id: Pointer to vlan id to fill up if the GID entry has
* vlan id. It is optional.
* @smac: Pointer to smac to fill up for a GID entry. It is optional.
*
* rdma_read_gid_l2_fields() returns 0 on success and returns vlan id
* (if gid entry has vlan) and source MAC, or returns error.
*/
int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr,
u16 *vlan_id, u8 *smac)
{
struct net_device *ndev;
rcu_read_lock();
ndev = rcu_dereference(attr->ndev);
if (!ndev) {
rcu_read_unlock();
return -ENODEV;
}
if (smac)
ether_addr_copy(smac, ndev->dev_addr);
if (vlan_id) {
*vlan_id = 0xffff;
if (is_vlan_dev(ndev)) {
*vlan_id = vlan_dev_vlan_id(ndev);
} else {
/* If the netdev is upper device and if it's lower
* device is vlan device, consider vlan id of the
* the lower vlan device for this gid entry.
*/
netdev_walk_all_lower_dev_rcu(attr->ndev,
get_lower_dev_vlan, vlan_id);
}
}
rcu_read_unlock();
return 0;
}
EXPORT_SYMBOL(rdma_read_gid_l2_fields);
static int config_non_roce_gid_cache(struct ib_device *device,
u8 port, int gid_tbl_len)
{
struct ib_gid_attr gid_attr = {};
struct ib_gid_table *table;
int ret = 0;
int i;
gid_attr.device = device;
gid_attr.port_num = port;
table = rdma_gid_table(device, port);
mutex_lock(&table->lock);
for (i = 0; i < gid_tbl_len; ++i) {
if (!device->ops.query_gid)
continue;
ret = device->ops.query_gid(device, port, i, &gid_attr.gid);
if (ret) {
dev_warn(&device->dev,
"query_gid failed (%d) for index %d\n", ret,
i);
goto err;
}
gid_attr.index = i;
add_modify_gid(table, &gid_attr);
}
err:
mutex_unlock(&table->lock);
return ret;
}
static void ib_cache_update(struct ib_device *device,
u8 port,
bool enforce_security)
{
struct ib_port_attr *tprops = NULL;
struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache;
int i;
int ret;
if (!rdma_is_port_valid(device, port))
return;
tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
if (!tprops)
return;
ret = ib_query_port(device, port, tprops);
if (ret) {
dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret);
goto err;
}
if (!rdma_protocol_roce(device, port)) {
ret = config_non_roce_gid_cache(device, port,
tprops->gid_tbl_len);
if (ret)
goto err;
}
pkey_cache = kmalloc(struct_size(pkey_cache, table,
tprops->pkey_tbl_len),
GFP_KERNEL);
if (!pkey_cache)
goto err;
pkey_cache->table_len = tprops->pkey_tbl_len;
for (i = 0; i < pkey_cache->table_len; ++i) {
ret = ib_query_pkey(device, port, i, pkey_cache->table + i);
if (ret) {
dev_warn(&device->dev,
"ib_query_pkey failed (%d) for index %d\n",
ret, i);
goto err;
}
}
write_lock_irq(&device->cache.lock);
old_pkey_cache = device->port_data[port].cache.pkey;
device->port_data[port].cache.pkey = pkey_cache;
device->port_data[port].cache.lmc = tprops->lmc;
device->port_data[port].cache.port_state = tprops->state;
device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix;
write_unlock_irq(&device->cache.lock);
if (enforce_security)
ib_security_cache_change(device,
port,
tprops->subnet_prefix);
kfree(old_pkey_cache);
kfree(tprops);
return;
err:
kfree(pkey_cache);
kfree(tprops);
}
static void ib_cache_task(struct work_struct *_work)
{
struct ib_update_work *work =
container_of(_work, struct ib_update_work, work);
ib_cache_update(work->device,
work->port_num,
work->enforce_security);
kfree(work);
}
static void ib_cache_event(struct ib_event_handler *handler,
struct ib_event *event)
{
struct ib_update_work *work;
if (event->event == IB_EVENT_PORT_ERR ||
event->event == IB_EVENT_PORT_ACTIVE ||
event->event == IB_EVENT_LID_CHANGE ||
event->event == IB_EVENT_PKEY_CHANGE ||
event->event == IB_EVENT_SM_CHANGE ||
event->event == IB_EVENT_CLIENT_REREGISTER ||
event->event == IB_EVENT_GID_CHANGE) {
work = kmalloc(sizeof *work, GFP_ATOMIC);
if (work) {
INIT_WORK(&work->work, ib_cache_task);
work->device = event->device;
work->port_num = event->element.port_num;
if (event->event == IB_EVENT_PKEY_CHANGE ||
event->event == IB_EVENT_GID_CHANGE)
work->enforce_security = true;
else
work->enforce_security = false;
queue_work(ib_wq, &work->work);
}
}
}
int ib_cache_setup_one(struct ib_device *device)
{
unsigned int p;
int err;
rwlock_init(&device->cache.lock);
err = gid_table_setup_one(device);
if (err)
return err;
rdma_for_each_port (device, p)
ib_cache_update(device, p, true);
INIT_IB_EVENT_HANDLER(&device->cache.event_handler,
device, ib_cache_event);
ib_register_event_handler(&device->cache.event_handler);
return 0;
}
void ib_cache_release_one(struct ib_device *device)
{
unsigned int p;
/*
* The release function frees all the cache elements.
* This function should be called as part of freeing
* all the device's resources when the cache could no
* longer be accessed.
*/
rdma_for_each_port (device, p)
kfree(device->port_data[p].cache.pkey);
gid_table_release_one(device);
}
void ib_cache_cleanup_one(struct ib_device *device)
{
/* The cleanup function unregisters the event handler,
* waits for all in-progress workqueue elements and cleans
* up the GID cache. This function should be called after
* the device was removed from the devices list and all
* clients were removed, so the cache exists but is
* non-functional and shouldn't be updated anymore.
*/
ib_unregister_event_handler(&device->cache.event_handler);
flush_workqueue(ib_wq);
gid_table_cleanup_one(device);
/*
* Flush the wq second time for any pending GID delete work.
*/
flush_workqueue(ib_wq);
}