linux/drivers/gpu/drm/i915/intel_bios.c
Rodrigo Vivi bfd7ebdac3 drm/i915: Parse VBT PSR block.
PSR (aka SRD) block is defined at VBT and currently being used.
Mainly/At-least to configure the amount of idle_frames require to get
back to PSR Entry.

Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Reviewed-by: Durgadoss R <durgadoss.r@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-12-03 09:35:05 +01:00

1315 lines
36 KiB
C

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <linux/dmi.h>
#include <drm/drm_dp_helper.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "intel_bios.h"
#define SLAVE_ADDR1 0x70
#define SLAVE_ADDR2 0x72
static int panel_type;
static void *
find_section(struct bdb_header *bdb, int section_id)
{
u8 *base = (u8 *)bdb;
int index = 0;
u16 total, current_size;
u8 current_id;
/* skip to first section */
index += bdb->header_size;
total = bdb->bdb_size;
/* walk the sections looking for section_id */
while (index + 3 < total) {
current_id = *(base + index);
index++;
current_size = *((u16 *)(base + index));
index += 2;
if (index + current_size > total)
return NULL;
if (current_id == section_id)
return base + index;
index += current_size;
}
return NULL;
}
static u16
get_blocksize(void *p)
{
u16 *block_ptr, block_size;
block_ptr = (u16 *)((char *)p - 2);
block_size = *block_ptr;
return block_size;
}
static void
fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
const struct lvds_dvo_timing *dvo_timing)
{
panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
dvo_timing->hactive_lo;
panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
dvo_timing->hsync_pulse_width;
panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
dvo_timing->vactive_lo;
panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
dvo_timing->vsync_off;
panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
dvo_timing->vsync_pulse_width;
panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
panel_fixed_mode->clock = dvo_timing->clock * 10;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
if (dvo_timing->hsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dvo_timing->vsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
/* Some VBTs have bogus h/vtotal values */
if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
drm_mode_set_name(panel_fixed_mode);
}
static bool
lvds_dvo_timing_equal_size(const struct lvds_dvo_timing *a,
const struct lvds_dvo_timing *b)
{
if (a->hactive_hi != b->hactive_hi ||
a->hactive_lo != b->hactive_lo)
return false;
if (a->hsync_off_hi != b->hsync_off_hi ||
a->hsync_off_lo != b->hsync_off_lo)
return false;
if (a->hsync_pulse_width != b->hsync_pulse_width)
return false;
if (a->hblank_hi != b->hblank_hi ||
a->hblank_lo != b->hblank_lo)
return false;
if (a->vactive_hi != b->vactive_hi ||
a->vactive_lo != b->vactive_lo)
return false;
if (a->vsync_off != b->vsync_off)
return false;
if (a->vsync_pulse_width != b->vsync_pulse_width)
return false;
if (a->vblank_hi != b->vblank_hi ||
a->vblank_lo != b->vblank_lo)
return false;
return true;
}
static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
int index)
{
/*
* the size of fp_timing varies on the different platform.
* So calculate the DVO timing relative offset in LVDS data
* entry to get the DVO timing entry
*/
int lfp_data_size =
lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
int dvo_timing_offset =
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
}
/* get lvds_fp_timing entry
* this function may return NULL if the corresponding entry is invalid
*/
static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_header *bdb,
const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs,
int index)
{
size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
size_t ofs;
if (index >= ARRAY_SIZE(ptrs->ptr))
return NULL;
ofs = ptrs->ptr[index].fp_timing_offset;
if (ofs < data_ofs ||
ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
return NULL;
return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
}
/* Try to find integrated panel data */
static void
parse_lfp_panel_data(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
const struct bdb_lvds_options *lvds_options;
const struct bdb_lvds_lfp_data *lvds_lfp_data;
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
const struct lvds_dvo_timing *panel_dvo_timing;
const struct lvds_fp_timing *fp_timing;
struct drm_display_mode *panel_fixed_mode;
int i, downclock, drrs_mode;
lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
if (!lvds_options)
return;
dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
if (lvds_options->panel_type == 0xff)
return;
panel_type = lvds_options->panel_type;
drrs_mode = (lvds_options->dps_panel_type_bits
>> (panel_type * 2)) & MODE_MASK;
/*
* VBT has static DRRS = 0 and seamless DRRS = 2.
* The below piece of code is required to adjust vbt.drrs_type
* to match the enum drrs_support_type.
*/
switch (drrs_mode) {
case 0:
dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
DRM_DEBUG_KMS("DRRS supported mode is static\n");
break;
case 2:
dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
break;
default:
dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
break;
}
lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
if (!lvds_lfp_data)
return;
lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
if (!lvds_lfp_data_ptrs)
return;
dev_priv->vbt.lvds_vbt = 1;
panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
lvds_options->panel_type);
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
/*
* Iterate over the LVDS panel timing info to find the lowest clock
* for the native resolution.
*/
downclock = panel_dvo_timing->clock;
for (i = 0; i < 16; i++) {
const struct lvds_dvo_timing *dvo_timing;
dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
i);
if (lvds_dvo_timing_equal_size(dvo_timing, panel_dvo_timing) &&
dvo_timing->clock < downclock)
downclock = dvo_timing->clock;
}
if (downclock < panel_dvo_timing->clock && i915.lvds_downclock) {
dev_priv->lvds_downclock_avail = 1;
dev_priv->lvds_downclock = downclock * 10;
DRM_DEBUG_KMS("LVDS downclock is found in VBT. "
"Normal Clock %dKHz, downclock %dKHz\n",
panel_fixed_mode->clock, 10*downclock);
}
fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
lvds_lfp_data_ptrs,
lvds_options->panel_type);
if (fp_timing) {
/* check the resolution, just to be sure */
if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
fp_timing->y_res == panel_fixed_mode->vdisplay) {
dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
dev_priv->vbt.bios_lvds_val);
}
}
}
static void
parse_lfp_backlight(struct drm_i915_private *dev_priv, struct bdb_header *bdb)
{
const struct bdb_lfp_backlight_data *backlight_data;
const struct bdb_lfp_backlight_data_entry *entry;
backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
if (!backlight_data)
return;
if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
backlight_data->entry_size);
return;
}
entry = &backlight_data->data[panel_type];
dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
if (!dev_priv->vbt.backlight.present) {
DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
entry->type);
return;
}
dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
"active %s, min brightness %u, level %u\n",
dev_priv->vbt.backlight.pwm_freq_hz,
dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
dev_priv->vbt.backlight.min_brightness,
backlight_data->level[panel_type]);
}
/* Try to find sdvo panel data */
static void
parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct lvds_dvo_timing *dvo_timing;
struct drm_display_mode *panel_fixed_mode;
int index;
index = i915.vbt_sdvo_panel_type;
if (index == -2) {
DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
return;
}
if (index == -1) {
struct bdb_sdvo_lvds_options *sdvo_lvds_options;
sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
if (!sdvo_lvds_options)
return;
index = sdvo_lvds_options->panel_type;
}
dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS);
if (!dvo_timing)
return;
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, dvo_timing + index);
dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
}
static int intel_bios_ssc_frequency(struct drm_device *dev,
bool alternate)
{
switch (INTEL_INFO(dev)->gen) {
case 2:
return alternate ? 66667 : 48000;
case 3:
case 4:
return alternate ? 100000 : 96000;
default:
return alternate ? 100000 : 120000;
}
}
static void
parse_general_features(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct drm_device *dev = dev_priv->dev;
struct bdb_general_features *general;
general = find_section(bdb, BDB_GENERAL_FEATURES);
if (general) {
dev_priv->vbt.int_tv_support = general->int_tv_support;
dev_priv->vbt.int_crt_support = general->int_crt_support;
dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
dev_priv->vbt.lvds_ssc_freq =
intel_bios_ssc_frequency(dev, general->ssc_freq);
dev_priv->vbt.display_clock_mode = general->display_clock_mode;
dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
dev_priv->vbt.int_tv_support,
dev_priv->vbt.int_crt_support,
dev_priv->vbt.lvds_use_ssc,
dev_priv->vbt.lvds_ssc_freq,
dev_priv->vbt.display_clock_mode,
dev_priv->vbt.fdi_rx_polarity_inverted);
}
}
static void
parse_general_definitions(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct bdb_general_definitions *general;
general = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (general) {
u16 block_size = get_blocksize(general);
if (block_size >= sizeof(*general)) {
int bus_pin = general->crt_ddc_gmbus_pin;
DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
if (intel_gmbus_is_port_valid(bus_pin))
dev_priv->vbt.crt_ddc_pin = bus_pin;
} else {
DRM_DEBUG_KMS("BDB_GD too small (%d). Invalid.\n",
block_size);
}
}
}
static void
parse_sdvo_device_mapping(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct sdvo_device_mapping *p_mapping;
struct bdb_general_definitions *p_defs;
union child_device_config *p_child;
int i, child_device_num, count;
u16 block_size;
p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!p_defs) {
DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n");
return;
}
/* judge whether the size of child device meets the requirements.
* If the child device size obtained from general definition block
* is different with sizeof(struct child_device_config), skip the
* parsing of sdvo device info
*/
if (p_defs->child_dev_size != sizeof(*p_child)) {
/* different child dev size . Ignore it */
DRM_DEBUG_KMS("different child size is found. Invalid.\n");
return;
}
/* get the block size of general definitions */
block_size = get_blocksize(p_defs);
/* get the number of child device */
child_device_num = (block_size - sizeof(*p_defs)) /
sizeof(*p_child);
count = 0;
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->old.device_type) {
/* skip the device block if device type is invalid */
continue;
}
if (p_child->old.slave_addr != SLAVE_ADDR1 &&
p_child->old.slave_addr != SLAVE_ADDR2) {
/*
* If the slave address is neither 0x70 nor 0x72,
* it is not a SDVO device. Skip it.
*/
continue;
}
if (p_child->old.dvo_port != DEVICE_PORT_DVOB &&
p_child->old.dvo_port != DEVICE_PORT_DVOC) {
/* skip the incorrect SDVO port */
DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
continue;
}
DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
" %s port\n",
p_child->old.slave_addr,
(p_child->old.dvo_port == DEVICE_PORT_DVOB) ?
"SDVOB" : "SDVOC");
p_mapping = &(dev_priv->sdvo_mappings[p_child->old.dvo_port - 1]);
if (!p_mapping->initialized) {
p_mapping->dvo_port = p_child->old.dvo_port;
p_mapping->slave_addr = p_child->old.slave_addr;
p_mapping->dvo_wiring = p_child->old.dvo_wiring;
p_mapping->ddc_pin = p_child->old.ddc_pin;
p_mapping->i2c_pin = p_child->old.i2c_pin;
p_mapping->initialized = 1;
DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
p_mapping->dvo_port,
p_mapping->slave_addr,
p_mapping->dvo_wiring,
p_mapping->ddc_pin,
p_mapping->i2c_pin);
} else {
DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
"two SDVO device.\n");
}
if (p_child->old.slave2_addr) {
/* Maybe this is a SDVO device with multiple inputs */
/* And the mapping info is not added */
DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
" is a SDVO device with multiple inputs.\n");
}
count++;
}
if (!count) {
/* No SDVO device info is found */
DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
}
return;
}
static void
parse_driver_features(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct bdb_driver_features *driver;
driver = find_section(bdb, BDB_DRIVER_FEATURES);
if (!driver)
return;
if (driver->lvds_config == BDB_DRIVER_FEATURE_EDP)
dev_priv->vbt.edp_support = 1;
if (driver->dual_frequency)
dev_priv->render_reclock_avail = true;
DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
/*
* If DRRS is not supported, drrs_type has to be set to 0.
* This is because, VBT is configured in such a way that
* static DRRS is 0 and DRRS not supported is represented by
* driver->drrs_enabled=false
*/
if (!driver->drrs_enabled)
dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
}
static void
parse_edp(struct drm_i915_private *dev_priv, struct bdb_header *bdb)
{
struct bdb_edp *edp;
struct edp_power_seq *edp_pps;
struct edp_link_params *edp_link_params;
edp = find_section(bdb, BDB_EDP);
if (!edp) {
if (dev_priv->vbt.edp_support)
DRM_DEBUG_KMS("No eDP BDB found but eDP panel supported.\n");
return;
}
switch ((edp->color_depth >> (panel_type * 2)) & 3) {
case EDP_18BPP:
dev_priv->vbt.edp_bpp = 18;
break;
case EDP_24BPP:
dev_priv->vbt.edp_bpp = 24;
break;
case EDP_30BPP:
dev_priv->vbt.edp_bpp = 30;
break;
}
/* Get the eDP sequencing and link info */
edp_pps = &edp->power_seqs[panel_type];
edp_link_params = &edp->link_params[panel_type];
dev_priv->vbt.edp_pps = *edp_pps;
switch (edp_link_params->rate) {
case EDP_RATE_1_62:
dev_priv->vbt.edp_rate = DP_LINK_BW_1_62;
break;
case EDP_RATE_2_7:
dev_priv->vbt.edp_rate = DP_LINK_BW_2_7;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
edp_link_params->rate);
break;
}
switch (edp_link_params->lanes) {
case EDP_LANE_1:
dev_priv->vbt.edp_lanes = 1;
break;
case EDP_LANE_2:
dev_priv->vbt.edp_lanes = 2;
break;
case EDP_LANE_4:
dev_priv->vbt.edp_lanes = 4;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
edp_link_params->lanes);
break;
}
switch (edp_link_params->preemphasis) {
case EDP_PREEMPHASIS_NONE:
dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
break;
case EDP_PREEMPHASIS_3_5dB:
dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
break;
case EDP_PREEMPHASIS_6dB:
dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
break;
case EDP_PREEMPHASIS_9_5dB:
dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
edp_link_params->preemphasis);
break;
}
switch (edp_link_params->vswing) {
case EDP_VSWING_0_4V:
dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
break;
case EDP_VSWING_0_6V:
dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
break;
case EDP_VSWING_0_8V:
dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
break;
case EDP_VSWING_1_2V:
dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
edp_link_params->vswing);
break;
}
}
static void
parse_psr(struct drm_i915_private *dev_priv, struct bdb_header *bdb)
{
struct bdb_psr *psr;
struct psr_table *psr_table;
psr = find_section(bdb, BDB_PSR);
if (!psr) {
DRM_DEBUG_KMS("No PSR BDB found.\n");
return;
}
psr_table = &psr->psr_table[panel_type];
dev_priv->vbt.psr.full_link = psr_table->full_link;
dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
/* Allowed VBT values goes from 0 to 15 */
dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
switch (psr_table->lines_to_wait) {
case 0:
dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
break;
case 1:
dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
break;
case 2:
dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
break;
case 3:
dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
break;
default:
DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
psr_table->lines_to_wait);
break;
}
dev_priv->vbt.psr.tp1_wakeup_time = psr_table->tp1_wakeup_time;
dev_priv->vbt.psr.tp2_tp3_wakeup_time = psr_table->tp2_tp3_wakeup_time;
}
static u8 *goto_next_sequence(u8 *data, int *size)
{
u16 len;
int tmp = *size;
if (--tmp < 0)
return NULL;
/* goto first element */
data++;
while (1) {
switch (*data) {
case MIPI_SEQ_ELEM_SEND_PKT:
/*
* skip by this element payload size
* skip elem id, command flag and data type
*/
tmp -= 5;
if (tmp < 0)
return NULL;
data += 3;
len = *((u16 *)data);
tmp -= len;
if (tmp < 0)
return NULL;
/* skip by len */
data = data + 2 + len;
break;
case MIPI_SEQ_ELEM_DELAY:
/* skip by elem id, and delay is 4 bytes */
tmp -= 5;
if (tmp < 0)
return NULL;
data += 5;
break;
case MIPI_SEQ_ELEM_GPIO:
tmp -= 3;
if (tmp < 0)
return NULL;
data += 3;
break;
default:
DRM_ERROR("Unknown element\n");
return NULL;
}
/* end of sequence ? */
if (*data == 0)
break;
}
/* goto next sequence or end of block byte */
if (--tmp < 0)
return NULL;
data++;
/* update amount of data left for the sequence block to be parsed */
*size = tmp;
return data;
}
static void
parse_mipi(struct drm_i915_private *dev_priv, struct bdb_header *bdb)
{
struct bdb_mipi_config *start;
struct bdb_mipi_sequence *sequence;
struct mipi_config *config;
struct mipi_pps_data *pps;
u8 *data, *seq_data;
int i, panel_id, seq_size;
u16 block_size;
/* parse MIPI blocks only if LFP type is MIPI */
if (!dev_priv->vbt.has_mipi)
return;
/* Initialize this to undefined indicating no generic MIPI support */
dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
/* Block #40 is already parsed and panel_fixed_mode is
* stored in dev_priv->lfp_lvds_vbt_mode
* resuse this when needed
*/
/* Parse #52 for panel index used from panel_type already
* parsed
*/
start = find_section(bdb, BDB_MIPI_CONFIG);
if (!start) {
DRM_DEBUG_KMS("No MIPI config BDB found");
return;
}
DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
panel_type);
/*
* get hold of the correct configuration block and pps data as per
* the panel_type as index
*/
config = &start->config[panel_type];
pps = &start->pps[panel_type];
/* store as of now full data. Trim when we realise all is not needed */
dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
if (!dev_priv->vbt.dsi.config)
return;
dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
if (!dev_priv->vbt.dsi.pps) {
kfree(dev_priv->vbt.dsi.config);
return;
}
/* We have mandatory mipi config blocks. Initialize as generic panel */
dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
/* Check if we have sequence block as well */
sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
if (!sequence) {
DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
return;
}
DRM_DEBUG_DRIVER("Found MIPI sequence block\n");
block_size = get_blocksize(sequence);
/*
* parse the sequence block for individual sequences
*/
dev_priv->vbt.dsi.seq_version = sequence->version;
seq_data = &sequence->data[0];
/*
* sequence block is variable length and hence we need to parse and
* get the sequence data for specific panel id
*/
for (i = 0; i < MAX_MIPI_CONFIGURATIONS; i++) {
panel_id = *seq_data;
seq_size = *((u16 *) (seq_data + 1));
if (panel_id == panel_type)
break;
/* skip the sequence including seq header of 3 bytes */
seq_data = seq_data + 3 + seq_size;
if ((seq_data - &sequence->data[0]) > block_size) {
DRM_ERROR("Sequence start is beyond sequence block size, corrupted sequence block\n");
return;
}
}
if (i == MAX_MIPI_CONFIGURATIONS) {
DRM_ERROR("Sequence block detected but no valid configuration\n");
return;
}
/* check if found sequence is completely within the sequence block
* just being paranoid */
if (seq_size > block_size) {
DRM_ERROR("Corrupted sequence/size, bailing out\n");
return;
}
/* skip the panel id(1 byte) and seq size(2 bytes) */
dev_priv->vbt.dsi.data = kmemdup(seq_data + 3, seq_size, GFP_KERNEL);
if (!dev_priv->vbt.dsi.data)
return;
/*
* loop into the sequence data and split into multiple sequneces
* There are only 5 types of sequences as of now
*/
data = dev_priv->vbt.dsi.data;
dev_priv->vbt.dsi.size = seq_size;
/* two consecutive 0x00 indicate end of all sequences */
while (1) {
int seq_id = *data;
if (MIPI_SEQ_MAX > seq_id && seq_id > MIPI_SEQ_UNDEFINED) {
dev_priv->vbt.dsi.sequence[seq_id] = data;
DRM_DEBUG_DRIVER("Found mipi sequence - %d\n", seq_id);
} else {
DRM_ERROR("undefined sequence\n");
goto err;
}
/* partial parsing to skip elements */
data = goto_next_sequence(data, &seq_size);
if (data == NULL) {
DRM_ERROR("Sequence elements going beyond block itself. Sequence block parsing failed\n");
goto err;
}
if (*data == 0)
break; /* end of sequence reached */
}
DRM_DEBUG_DRIVER("MIPI related vbt parsing complete\n");
return;
err:
kfree(dev_priv->vbt.dsi.data);
dev_priv->vbt.dsi.data = NULL;
/* error during parsing so set all pointers to null
* because of partial parsing */
memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
}
static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port,
struct bdb_header *bdb)
{
union child_device_config *it, *child = NULL;
struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
uint8_t hdmi_level_shift;
int i, j;
bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
uint8_t aux_channel;
/* Each DDI port can have more than one value on the "DVO Port" field,
* so look for all the possible values for each port and abort if more
* than one is found. */
int dvo_ports[][2] = {
{DVO_PORT_HDMIA, DVO_PORT_DPA},
{DVO_PORT_HDMIB, DVO_PORT_DPB},
{DVO_PORT_HDMIC, DVO_PORT_DPC},
{DVO_PORT_HDMID, DVO_PORT_DPD},
{DVO_PORT_CRT, -1 /* Port E can only be DVO_PORT_CRT */ },
};
/* Find the child device to use, abort if more than one found. */
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
it = dev_priv->vbt.child_dev + i;
for (j = 0; j < 2; j++) {
if (dvo_ports[port][j] == -1)
break;
if (it->common.dvo_port == dvo_ports[port][j]) {
if (child) {
DRM_DEBUG_KMS("More than one child device for port %c in VBT.\n",
port_name(port));
return;
}
child = it;
}
}
}
if (!child)
return;
aux_channel = child->raw[25];
is_dvi = child->common.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
is_dp = child->common.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
is_crt = child->common.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
is_hdmi = is_dvi && (child->common.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
is_edp = is_dp && (child->common.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
info->supports_dvi = is_dvi;
info->supports_hdmi = is_hdmi;
info->supports_dp = is_dp;
DRM_DEBUG_KMS("Port %c VBT info: DP:%d HDMI:%d DVI:%d EDP:%d CRT:%d\n",
port_name(port), is_dp, is_hdmi, is_dvi, is_edp, is_crt);
if (is_edp && is_dvi)
DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
port_name(port));
if (is_crt && port != PORT_E)
DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
if (is_crt && (is_dvi || is_dp))
DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
port_name(port));
if (is_dvi && (port == PORT_A || port == PORT_E))
DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
if (!is_dvi && !is_dp && !is_crt)
DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
port_name(port));
if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
if (is_dvi) {
if (child->common.ddc_pin == 0x05 && port != PORT_B)
DRM_DEBUG_KMS("Unexpected DDC pin for port B\n");
if (child->common.ddc_pin == 0x04 && port != PORT_C)
DRM_DEBUG_KMS("Unexpected DDC pin for port C\n");
if (child->common.ddc_pin == 0x06 && port != PORT_D)
DRM_DEBUG_KMS("Unexpected DDC pin for port D\n");
}
if (is_dp) {
if (aux_channel == 0x40 && port != PORT_A)
DRM_DEBUG_KMS("Unexpected AUX channel for port A\n");
if (aux_channel == 0x10 && port != PORT_B)
DRM_DEBUG_KMS("Unexpected AUX channel for port B\n");
if (aux_channel == 0x20 && port != PORT_C)
DRM_DEBUG_KMS("Unexpected AUX channel for port C\n");
if (aux_channel == 0x30 && port != PORT_D)
DRM_DEBUG_KMS("Unexpected AUX channel for port D\n");
}
if (bdb->version >= 158) {
/* The VBT HDMI level shift values match the table we have. */
hdmi_level_shift = child->raw[7] & 0xF;
DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
port_name(port),
hdmi_level_shift);
info->hdmi_level_shift = hdmi_level_shift;
}
}
static void parse_ddi_ports(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct drm_device *dev = dev_priv->dev;
enum port port;
if (!HAS_DDI(dev))
return;
if (!dev_priv->vbt.child_dev_num)
return;
if (bdb->version < 155)
return;
for (port = PORT_A; port < I915_MAX_PORTS; port++)
parse_ddi_port(dev_priv, port, bdb);
}
static void
parse_device_mapping(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct bdb_general_definitions *p_defs;
union child_device_config *p_child, *child_dev_ptr;
int i, child_device_num, count;
u16 block_size;
p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!p_defs) {
DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
return;
}
/* judge whether the size of child device meets the requirements.
* If the child device size obtained from general definition block
* is different with sizeof(struct child_device_config), skip the
* parsing of sdvo device info
*/
if (p_defs->child_dev_size != sizeof(*p_child)) {
/* different child dev size . Ignore it */
DRM_DEBUG_KMS("different child size is found. Invalid.\n");
return;
}
/* get the block size of general definitions */
block_size = get_blocksize(p_defs);
/* get the number of child device */
child_device_num = (block_size - sizeof(*p_defs)) /
sizeof(*p_child);
count = 0;
/* get the number of child device that is present */
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->common.device_type) {
/* skip the device block if device type is invalid */
continue;
}
count++;
}
if (!count) {
DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
return;
}
dev_priv->vbt.child_dev = kcalloc(count, sizeof(*p_child), GFP_KERNEL);
if (!dev_priv->vbt.child_dev) {
DRM_DEBUG_KMS("No memory space for child device\n");
return;
}
dev_priv->vbt.child_dev_num = count;
count = 0;
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->common.device_type) {
/* skip the device block if device type is invalid */
continue;
}
if (p_child->common.dvo_port >= DVO_PORT_MIPIA
&& p_child->common.dvo_port <= DVO_PORT_MIPID
&&p_child->common.device_type & DEVICE_TYPE_MIPI_OUTPUT) {
DRM_DEBUG_KMS("Found MIPI as LFP\n");
dev_priv->vbt.has_mipi = 1;
dev_priv->vbt.dsi.port = p_child->common.dvo_port;
}
child_dev_ptr = dev_priv->vbt.child_dev + count;
count++;
memcpy((void *)child_dev_ptr, (void *)p_child,
sizeof(*p_child));
}
return;
}
static void
init_vbt_defaults(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
enum port port;
dev_priv->vbt.crt_ddc_pin = GMBUS_PORT_VGADDC;
/* Default to having backlight */
dev_priv->vbt.backlight.present = true;
/* LFP panel data */
dev_priv->vbt.lvds_dither = 1;
dev_priv->vbt.lvds_vbt = 0;
/* SDVO panel data */
dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
/* general features */
dev_priv->vbt.int_tv_support = 1;
dev_priv->vbt.int_crt_support = 1;
/* Default to using SSC */
dev_priv->vbt.lvds_use_ssc = 1;
/*
* Core/SandyBridge/IvyBridge use alternative (120MHz) reference
* clock for LVDS.
*/
dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev,
!HAS_PCH_SPLIT(dev));
DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
for (port = PORT_A; port < I915_MAX_PORTS; port++) {
struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
info->supports_dvi = (port != PORT_A && port != PORT_E);
info->supports_hdmi = info->supports_dvi;
info->supports_dp = (port != PORT_E);
}
}
static int intel_no_opregion_vbt_callback(const struct dmi_system_id *id)
{
DRM_DEBUG_KMS("Falling back to manually reading VBT from "
"VBIOS ROM for %s\n",
id->ident);
return 1;
}
static const struct dmi_system_id intel_no_opregion_vbt[] = {
{
.callback = intel_no_opregion_vbt_callback,
.ident = "ThinkCentre A57",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "97027RG"),
},
},
{ }
};
static struct bdb_header *validate_vbt(char *base, size_t size,
struct vbt_header *vbt,
const char *source)
{
size_t offset;
struct bdb_header *bdb;
if (vbt == NULL) {
DRM_DEBUG_DRIVER("VBT signature missing\n");
return NULL;
}
offset = (char *)vbt - base;
if (offset + sizeof(struct vbt_header) > size) {
DRM_DEBUG_DRIVER("VBT header incomplete\n");
return NULL;
}
if (memcmp(vbt->signature, "$VBT", 4)) {
DRM_DEBUG_DRIVER("VBT invalid signature\n");
return NULL;
}
offset += vbt->bdb_offset;
if (offset + sizeof(struct bdb_header) > size) {
DRM_DEBUG_DRIVER("BDB header incomplete\n");
return NULL;
}
bdb = (struct bdb_header *)(base + offset);
if (offset + bdb->bdb_size > size) {
DRM_DEBUG_DRIVER("BDB incomplete\n");
return NULL;
}
DRM_DEBUG_KMS("Using VBT from %s: %20s\n",
source, vbt->signature);
return bdb;
}
/**
* intel_parse_bios - find VBT and initialize settings from the BIOS
* @dev: DRM device
*
* Loads the Video BIOS and checks that the VBT exists. Sets scratch registers
* to appropriate values.
*
* Returns 0 on success, nonzero on failure.
*/
int
intel_parse_bios(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct pci_dev *pdev = dev->pdev;
struct bdb_header *bdb = NULL;
u8 __iomem *bios = NULL;
if (HAS_PCH_NOP(dev))
return -ENODEV;
init_vbt_defaults(dev_priv);
/* XXX Should this validation be moved to intel_opregion.c? */
if (!dmi_check_system(intel_no_opregion_vbt) && dev_priv->opregion.vbt)
bdb = validate_vbt((char *)dev_priv->opregion.header, OPREGION_SIZE,
(struct vbt_header *)dev_priv->opregion.vbt,
"OpRegion");
if (bdb == NULL) {
size_t i, size;
bios = pci_map_rom(pdev, &size);
if (!bios)
return -1;
/* Scour memory looking for the VBT signature */
for (i = 0; i + 4 < size; i++) {
if (memcmp(bios + i, "$VBT", 4) == 0) {
bdb = validate_vbt(bios, size,
(struct vbt_header *)(bios + i),
"PCI ROM");
break;
}
}
if (!bdb) {
pci_unmap_rom(pdev, bios);
return -1;
}
}
/* Grab useful general definitions */
parse_general_features(dev_priv, bdb);
parse_general_definitions(dev_priv, bdb);
parse_lfp_panel_data(dev_priv, bdb);
parse_lfp_backlight(dev_priv, bdb);
parse_sdvo_panel_data(dev_priv, bdb);
parse_sdvo_device_mapping(dev_priv, bdb);
parse_device_mapping(dev_priv, bdb);
parse_driver_features(dev_priv, bdb);
parse_edp(dev_priv, bdb);
parse_psr(dev_priv, bdb);
parse_mipi(dev_priv, bdb);
parse_ddi_ports(dev_priv, bdb);
if (bios)
pci_unmap_rom(pdev, bios);
return 0;
}
/* Ensure that vital registers have been initialised, even if the BIOS
* is absent or just failing to do its job.
*/
void intel_setup_bios(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Set the Panel Power On/Off timings if uninitialized. */
if (!HAS_PCH_SPLIT(dev) &&
I915_READ(PP_ON_DELAYS) == 0 && I915_READ(PP_OFF_DELAYS) == 0) {
/* Set T2 to 40ms and T5 to 200ms */
I915_WRITE(PP_ON_DELAYS, 0x019007d0);
/* Set T3 to 35ms and Tx to 200ms */
I915_WRITE(PP_OFF_DELAYS, 0x015e07d0);
}
}