forked from Minki/linux
93ffbe8e9d
In the upcoming patch we will change the way how to recognize when GuC is in use. Using helper macros will minimize scope of that changes. While here, update dev_info message. Signed-off-by: Michal Wajdeczko <michal.wajdeczko@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Sagar Arun Kamble <sagar.a.kamble@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20171206135316.32556-3-michal.wajdeczko@intel.com
669 lines
19 KiB
C
669 lines
19 KiB
C
/*
|
|
* Copyright © 2014-2017 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/debugfs.h>
|
|
#include <linux/relay.h>
|
|
|
|
#include "intel_guc_log.h"
|
|
#include "i915_drv.h"
|
|
|
|
static void guc_log_capture_logs(struct intel_guc *guc);
|
|
|
|
/**
|
|
* DOC: GuC firmware log
|
|
*
|
|
* Firmware log is enabled by setting i915.guc_log_level to non-negative level.
|
|
* Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
|
|
* i915_guc_load_status will print out firmware loading status and scratch
|
|
* registers value.
|
|
*
|
|
*/
|
|
|
|
static int guc_log_flush_complete(struct intel_guc *guc)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static int guc_log_flush(struct intel_guc *guc)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
|
|
0
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static int guc_log_control(struct intel_guc *guc, u32 control_val)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
|
|
control_val
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
/*
|
|
* Sub buffer switch callback. Called whenever relay has to switch to a new
|
|
* sub buffer, relay stays on the same sub buffer if 0 is returned.
|
|
*/
|
|
static int subbuf_start_callback(struct rchan_buf *buf,
|
|
void *subbuf,
|
|
void *prev_subbuf,
|
|
size_t prev_padding)
|
|
{
|
|
/* Use no-overwrite mode by default, where relay will stop accepting
|
|
* new data if there are no empty sub buffers left.
|
|
* There is no strict synchronization enforced by relay between Consumer
|
|
* and Producer. In overwrite mode, there is a possibility of getting
|
|
* inconsistent/garbled data, the producer could be writing on to the
|
|
* same sub buffer from which Consumer is reading. This can't be avoided
|
|
* unless Consumer is fast enough and can always run in tandem with
|
|
* Producer.
|
|
*/
|
|
if (relay_buf_full(buf))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* file_create() callback. Creates relay file in debugfs.
|
|
*/
|
|
static struct dentry *create_buf_file_callback(const char *filename,
|
|
struct dentry *parent,
|
|
umode_t mode,
|
|
struct rchan_buf *buf,
|
|
int *is_global)
|
|
{
|
|
struct dentry *buf_file;
|
|
|
|
/* This to enable the use of a single buffer for the relay channel and
|
|
* correspondingly have a single file exposed to User, through which
|
|
* it can collect the logs in order without any post-processing.
|
|
* Need to set 'is_global' even if parent is NULL for early logging.
|
|
*/
|
|
*is_global = 1;
|
|
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
/* Not using the channel filename passed as an argument, since for each
|
|
* channel relay appends the corresponding CPU number to the filename
|
|
* passed in relay_open(). This should be fine as relay just needs a
|
|
* dentry of the file associated with the channel buffer and that file's
|
|
* name need not be same as the filename passed as an argument.
|
|
*/
|
|
buf_file = debugfs_create_file("guc_log", mode,
|
|
parent, buf, &relay_file_operations);
|
|
return buf_file;
|
|
}
|
|
|
|
/*
|
|
* file_remove() default callback. Removes relay file in debugfs.
|
|
*/
|
|
static int remove_buf_file_callback(struct dentry *dentry)
|
|
{
|
|
debugfs_remove(dentry);
|
|
return 0;
|
|
}
|
|
|
|
/* relay channel callbacks */
|
|
static struct rchan_callbacks relay_callbacks = {
|
|
.subbuf_start = subbuf_start_callback,
|
|
.create_buf_file = create_buf_file_callback,
|
|
.remove_buf_file = remove_buf_file_callback,
|
|
};
|
|
|
|
static int guc_log_relay_file_create(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
struct dentry *log_dir;
|
|
int ret;
|
|
|
|
if (i915_modparams.guc_log_level < 0)
|
|
return 0;
|
|
|
|
/* For now create the log file in /sys/kernel/debug/dri/0 dir */
|
|
log_dir = dev_priv->drm.primary->debugfs_root;
|
|
|
|
/* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is
|
|
* not mounted and so can't create the relay file.
|
|
* The relay API seems to fit well with debugfs only, for availing relay
|
|
* there are 3 requirements which can be met for debugfs file only in a
|
|
* straightforward/clean manner :-
|
|
* i) Need the associated dentry pointer of the file, while opening the
|
|
* relay channel.
|
|
* ii) Should be able to use 'relay_file_operations' fops for the file.
|
|
* iii) Set the 'i_private' field of file's inode to the pointer of
|
|
* relay channel buffer.
|
|
*/
|
|
if (!log_dir) {
|
|
DRM_ERROR("Debugfs dir not available yet for GuC log file\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = relay_late_setup_files(guc->log.runtime.relay_chan, "guc_log", log_dir);
|
|
if (ret < 0 && ret != -EEXIST) {
|
|
DRM_ERROR("Couldn't associate relay chan with file %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_move_to_next_buf(struct intel_guc *guc)
|
|
{
|
|
/* Make sure the updates made in the sub buffer are visible when
|
|
* Consumer sees the following update to offset inside the sub buffer.
|
|
*/
|
|
smp_wmb();
|
|
|
|
/* All data has been written, so now move the offset of sub buffer. */
|
|
relay_reserve(guc->log.runtime.relay_chan, guc->log.vma->obj->base.size);
|
|
|
|
/* Switch to the next sub buffer */
|
|
relay_flush(guc->log.runtime.relay_chan);
|
|
}
|
|
|
|
static void *guc_get_write_buffer(struct intel_guc *guc)
|
|
{
|
|
if (!guc->log.runtime.relay_chan)
|
|
return NULL;
|
|
|
|
/* Just get the base address of a new sub buffer and copy data into it
|
|
* ourselves. NULL will be returned in no-overwrite mode, if all sub
|
|
* buffers are full. Could have used the relay_write() to indirectly
|
|
* copy the data, but that would have been bit convoluted, as we need to
|
|
* write to only certain locations inside a sub buffer which cannot be
|
|
* done without using relay_reserve() along with relay_write(). So its
|
|
* better to use relay_reserve() alone.
|
|
*/
|
|
return relay_reserve(guc->log.runtime.relay_chan, 0);
|
|
}
|
|
|
|
static bool guc_check_log_buf_overflow(struct intel_guc *guc,
|
|
enum guc_log_buffer_type type,
|
|
unsigned int full_cnt)
|
|
{
|
|
unsigned int prev_full_cnt = guc->log.prev_overflow_count[type];
|
|
bool overflow = false;
|
|
|
|
if (full_cnt != prev_full_cnt) {
|
|
overflow = true;
|
|
|
|
guc->log.prev_overflow_count[type] = full_cnt;
|
|
guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt;
|
|
|
|
if (full_cnt < prev_full_cnt) {
|
|
/* buffer_full_cnt is a 4 bit counter */
|
|
guc->log.total_overflow_count[type] += 16;
|
|
}
|
|
DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
|
|
}
|
|
|
|
return overflow;
|
|
}
|
|
|
|
static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
|
|
{
|
|
switch (type) {
|
|
case GUC_ISR_LOG_BUFFER:
|
|
return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
|
|
case GUC_DPC_LOG_BUFFER:
|
|
return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
|
|
case GUC_CRASH_DUMP_LOG_BUFFER:
|
|
return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
|
|
default:
|
|
MISSING_CASE(type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_read_update_log_buffer(struct intel_guc *guc)
|
|
{
|
|
unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
|
|
struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
|
|
struct guc_log_buffer_state log_buf_state_local;
|
|
enum guc_log_buffer_type type;
|
|
void *src_data, *dst_data;
|
|
bool new_overflow;
|
|
|
|
if (WARN_ON(!guc->log.runtime.buf_addr))
|
|
return;
|
|
|
|
/* Get the pointer to shared GuC log buffer */
|
|
log_buf_state = src_data = guc->log.runtime.buf_addr;
|
|
|
|
/* Get the pointer to local buffer to store the logs */
|
|
log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc);
|
|
|
|
/* Actual logs are present from the 2nd page */
|
|
src_data += PAGE_SIZE;
|
|
dst_data += PAGE_SIZE;
|
|
|
|
for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
|
|
/* Make a copy of the state structure, inside GuC log buffer
|
|
* (which is uncached mapped), on the stack to avoid reading
|
|
* from it multiple times.
|
|
*/
|
|
memcpy(&log_buf_state_local, log_buf_state,
|
|
sizeof(struct guc_log_buffer_state));
|
|
buffer_size = guc_get_log_buffer_size(type);
|
|
read_offset = log_buf_state_local.read_ptr;
|
|
write_offset = log_buf_state_local.sampled_write_ptr;
|
|
full_cnt = log_buf_state_local.buffer_full_cnt;
|
|
|
|
/* Bookkeeping stuff */
|
|
guc->log.flush_count[type] += log_buf_state_local.flush_to_file;
|
|
new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt);
|
|
|
|
/* Update the state of shared log buffer */
|
|
log_buf_state->read_ptr = write_offset;
|
|
log_buf_state->flush_to_file = 0;
|
|
log_buf_state++;
|
|
|
|
if (unlikely(!log_buf_snapshot_state))
|
|
continue;
|
|
|
|
/* First copy the state structure in snapshot buffer */
|
|
memcpy(log_buf_snapshot_state, &log_buf_state_local,
|
|
sizeof(struct guc_log_buffer_state));
|
|
|
|
/* The write pointer could have been updated by GuC firmware,
|
|
* after sending the flush interrupt to Host, for consistency
|
|
* set write pointer value to same value of sampled_write_ptr
|
|
* in the snapshot buffer.
|
|
*/
|
|
log_buf_snapshot_state->write_ptr = write_offset;
|
|
log_buf_snapshot_state++;
|
|
|
|
/* Now copy the actual logs. */
|
|
if (unlikely(new_overflow)) {
|
|
/* copy the whole buffer in case of overflow */
|
|
read_offset = 0;
|
|
write_offset = buffer_size;
|
|
} else if (unlikely((read_offset > buffer_size) ||
|
|
(write_offset > buffer_size))) {
|
|
DRM_ERROR("invalid log buffer state\n");
|
|
/* copy whole buffer as offsets are unreliable */
|
|
read_offset = 0;
|
|
write_offset = buffer_size;
|
|
}
|
|
|
|
/* Just copy the newly written data */
|
|
if (read_offset > write_offset) {
|
|
i915_memcpy_from_wc(dst_data, src_data, write_offset);
|
|
bytes_to_copy = buffer_size - read_offset;
|
|
} else {
|
|
bytes_to_copy = write_offset - read_offset;
|
|
}
|
|
i915_memcpy_from_wc(dst_data + read_offset,
|
|
src_data + read_offset, bytes_to_copy);
|
|
|
|
src_data += buffer_size;
|
|
dst_data += buffer_size;
|
|
}
|
|
|
|
if (log_buf_snapshot_state)
|
|
guc_move_to_next_buf(guc);
|
|
else {
|
|
/* Used rate limited to avoid deluge of messages, logs might be
|
|
* getting consumed by User at a slow rate.
|
|
*/
|
|
DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
|
|
guc->log.capture_miss_count++;
|
|
}
|
|
}
|
|
|
|
static void capture_logs_work(struct work_struct *work)
|
|
{
|
|
struct intel_guc *guc =
|
|
container_of(work, struct intel_guc, log.runtime.flush_work);
|
|
|
|
guc_log_capture_logs(guc);
|
|
}
|
|
|
|
static bool guc_log_has_runtime(struct intel_guc *guc)
|
|
{
|
|
return guc->log.runtime.buf_addr != NULL;
|
|
}
|
|
|
|
static int guc_log_runtime_create(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
void *vaddr;
|
|
struct rchan *guc_log_relay_chan;
|
|
size_t n_subbufs, subbuf_size;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&dev_priv->drm.struct_mutex);
|
|
|
|
GEM_BUG_ON(guc_log_has_runtime(guc));
|
|
|
|
ret = i915_gem_object_set_to_wc_domain(guc->log.vma->obj, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Create a WC (Uncached for read) vmalloc mapping of log
|
|
* buffer pages, so that we can directly get the data
|
|
* (up-to-date) from memory.
|
|
*/
|
|
vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC);
|
|
if (IS_ERR(vaddr)) {
|
|
DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
|
|
return PTR_ERR(vaddr);
|
|
}
|
|
|
|
guc->log.runtime.buf_addr = vaddr;
|
|
|
|
/* Keep the size of sub buffers same as shared log buffer */
|
|
subbuf_size = guc->log.vma->obj->base.size;
|
|
|
|
/* Store up to 8 snapshots, which is large enough to buffer sufficient
|
|
* boot time logs and provides enough leeway to User, in terms of
|
|
* latency, for consuming the logs from relay. Also doesn't take
|
|
* up too much memory.
|
|
*/
|
|
n_subbufs = 8;
|
|
|
|
/* Create a relay channel, so that we have buffers for storing
|
|
* the GuC firmware logs, the channel will be linked with a file
|
|
* later on when debugfs is registered.
|
|
*/
|
|
guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size,
|
|
n_subbufs, &relay_callbacks, dev_priv);
|
|
if (!guc_log_relay_chan) {
|
|
DRM_ERROR("Couldn't create relay chan for GuC logging\n");
|
|
|
|
ret = -ENOMEM;
|
|
goto err_vaddr;
|
|
}
|
|
|
|
GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
|
|
guc->log.runtime.relay_chan = guc_log_relay_chan;
|
|
|
|
INIT_WORK(&guc->log.runtime.flush_work, capture_logs_work);
|
|
|
|
/*
|
|
* GuC log buffer flush work item has to do register access to
|
|
* send the ack to GuC and this work item, if not synced before
|
|
* suspend, can potentially get executed after the GFX device is
|
|
* suspended.
|
|
* By marking the WQ as freezable, we don't have to bother about
|
|
* flushing of this work item from the suspend hooks, the pending
|
|
* work item if any will be either executed before the suspend
|
|
* or scheduled later on resume. This way the handling of work
|
|
* item can be kept same between system suspend & rpm suspend.
|
|
*/
|
|
guc->log.runtime.flush_wq = alloc_ordered_workqueue("i915-guc_log",
|
|
WQ_HIGHPRI | WQ_FREEZABLE);
|
|
if (!guc->log.runtime.flush_wq) {
|
|
DRM_ERROR("Couldn't allocate the wq for GuC logging\n");
|
|
ret = -ENOMEM;
|
|
goto err_relaychan;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_relaychan:
|
|
relay_close(guc->log.runtime.relay_chan);
|
|
err_vaddr:
|
|
i915_gem_object_unpin_map(guc->log.vma->obj);
|
|
guc->log.runtime.buf_addr = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static void guc_log_runtime_destroy(struct intel_guc *guc)
|
|
{
|
|
/*
|
|
* It's possible that the runtime stuff was never allocated because
|
|
* guc_log_level was < 0 at the time
|
|
**/
|
|
if (!guc_log_has_runtime(guc))
|
|
return;
|
|
|
|
destroy_workqueue(guc->log.runtime.flush_wq);
|
|
relay_close(guc->log.runtime.relay_chan);
|
|
i915_gem_object_unpin_map(guc->log.vma->obj);
|
|
guc->log.runtime.buf_addr = NULL;
|
|
}
|
|
|
|
static int guc_log_late_setup(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
int ret;
|
|
|
|
lockdep_assert_held(&dev_priv->drm.struct_mutex);
|
|
|
|
if (!guc_log_has_runtime(guc)) {
|
|
/* If log_level was set as -1 at boot time, then setup needed to
|
|
* handle log buffer flush interrupts would not have been done yet,
|
|
* so do that now.
|
|
*/
|
|
ret = guc_log_runtime_create(guc);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
ret = guc_log_relay_file_create(guc);
|
|
if (ret)
|
|
goto err_runtime;
|
|
|
|
return 0;
|
|
|
|
err_runtime:
|
|
guc_log_runtime_destroy(guc);
|
|
err:
|
|
/* logging will remain off */
|
|
i915_modparams.guc_log_level = -1;
|
|
return ret;
|
|
}
|
|
|
|
static void guc_log_capture_logs(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
|
|
guc_read_update_log_buffer(guc);
|
|
|
|
/* Generally device is expected to be active only at this
|
|
* time, so get/put should be really quick.
|
|
*/
|
|
intel_runtime_pm_get(dev_priv);
|
|
guc_log_flush_complete(guc);
|
|
intel_runtime_pm_put(dev_priv);
|
|
}
|
|
|
|
static void guc_flush_logs(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
|
|
if (!USES_GUC_SUBMISSION(dev_priv) ||
|
|
(i915_modparams.guc_log_level < 0))
|
|
return;
|
|
|
|
/* First disable the interrupts, will be renabled afterwards */
|
|
gen9_disable_guc_interrupts(dev_priv);
|
|
|
|
/* Before initiating the forceful flush, wait for any pending/ongoing
|
|
* flush to complete otherwise forceful flush may not actually happen.
|
|
*/
|
|
flush_work(&guc->log.runtime.flush_work);
|
|
|
|
/* Ask GuC to update the log buffer state */
|
|
guc_log_flush(guc);
|
|
|
|
/* GuC would have updated log buffer by now, so capture it */
|
|
guc_log_capture_logs(guc);
|
|
}
|
|
|
|
int intel_guc_log_create(struct intel_guc *guc)
|
|
{
|
|
struct i915_vma *vma;
|
|
unsigned long offset;
|
|
u32 flags;
|
|
u32 size;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(guc->log.vma);
|
|
|
|
if (i915_modparams.guc_log_level > GUC_LOG_VERBOSITY_MAX)
|
|
i915_modparams.guc_log_level = GUC_LOG_VERBOSITY_MAX;
|
|
|
|
/* The first page is to save log buffer state. Allocate one
|
|
* extra page for others in case for overlap */
|
|
size = (1 + GUC_LOG_DPC_PAGES + 1 +
|
|
GUC_LOG_ISR_PAGES + 1 +
|
|
GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;
|
|
|
|
/* We require SSE 4.1 for fast reads from the GuC log buffer and
|
|
* it should be present on the chipsets supporting GuC based
|
|
* submisssions.
|
|
*/
|
|
if (WARN_ON(!i915_has_memcpy_from_wc())) {
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
vma = intel_guc_allocate_vma(guc, size);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto err;
|
|
}
|
|
|
|
guc->log.vma = vma;
|
|
|
|
if (i915_modparams.guc_log_level >= 0) {
|
|
ret = guc_log_runtime_create(guc);
|
|
if (ret < 0)
|
|
goto err_vma;
|
|
}
|
|
|
|
/* each allocated unit is a page */
|
|
flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
|
|
(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
|
|
(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
|
|
(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);
|
|
|
|
offset = guc_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
|
|
guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
|
|
|
|
return 0;
|
|
|
|
err_vma:
|
|
i915_vma_unpin_and_release(&guc->log.vma);
|
|
err:
|
|
/* logging will be off */
|
|
i915_modparams.guc_log_level = -1;
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_log_destroy(struct intel_guc *guc)
|
|
{
|
|
guc_log_runtime_destroy(guc);
|
|
i915_vma_unpin_and_release(&guc->log.vma);
|
|
}
|
|
|
|
int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val)
|
|
{
|
|
struct intel_guc *guc = &dev_priv->guc;
|
|
|
|
union guc_log_control log_param;
|
|
int ret;
|
|
|
|
log_param.value = control_val;
|
|
|
|
if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN ||
|
|
log_param.verbosity > GUC_LOG_VERBOSITY_MAX)
|
|
return -EINVAL;
|
|
|
|
/* This combination doesn't make sense & won't have any effect */
|
|
if (!log_param.logging_enabled && (i915_modparams.guc_log_level < 0))
|
|
return 0;
|
|
|
|
ret = guc_log_control(guc, log_param.value);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_DRIVER("guc_logging_control action failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (log_param.logging_enabled) {
|
|
i915_modparams.guc_log_level = log_param.verbosity;
|
|
|
|
/* If log_level was set as -1 at boot time, then the relay channel file
|
|
* wouldn't have been created by now and interrupts also would not have
|
|
* been enabled. Try again now, just in case.
|
|
*/
|
|
ret = guc_log_late_setup(guc);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_DRIVER("GuC log late setup failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* GuC logging is currently the only user of Guc2Host interrupts */
|
|
gen9_enable_guc_interrupts(dev_priv);
|
|
} else {
|
|
/* Once logging is disabled, GuC won't generate logs & send an
|
|
* interrupt. But there could be some data in the log buffer
|
|
* which is yet to be captured. So request GuC to update the log
|
|
* buffer state and then collect the left over logs.
|
|
*/
|
|
guc_flush_logs(guc);
|
|
|
|
/* As logging is disabled, update log level to reflect that */
|
|
i915_modparams.guc_log_level = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void i915_guc_log_register(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (!USES_GUC_SUBMISSION(dev_priv) ||
|
|
(i915_modparams.guc_log_level < 0))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
guc_log_late_setup(&dev_priv->guc);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
}
|
|
|
|
void i915_guc_log_unregister(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (!USES_GUC_SUBMISSION(dev_priv))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
/* GuC logging is currently the only user of Guc2Host interrupts */
|
|
gen9_disable_guc_interrupts(dev_priv);
|
|
guc_log_runtime_destroy(&dev_priv->guc);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
}
|