linux/include/asm-sparc64/pgtable.h
David S. Miller 09f94287f7 [SPARC64]: TSB refinements.
Move {init_new,destroy}_context() out of line.

Do not put huge pages into the TSB, only base page size translations.
There are some clever things we could do here, but for now let's be
correct instead of fancy.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20 01:11:16 -08:00

444 lines
16 KiB
C

/* $Id: pgtable.h,v 1.156 2002/02/09 19:49:31 davem Exp $
* pgtable.h: SpitFire page table operations.
*
* Copyright 1996,1997 David S. Miller (davem@caip.rutgers.edu)
* Copyright 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#ifndef _SPARC64_PGTABLE_H
#define _SPARC64_PGTABLE_H
/* This file contains the functions and defines necessary to modify and use
* the SpitFire page tables.
*/
#include <asm-generic/pgtable-nopud.h>
#include <linux/config.h>
#include <linux/compiler.h>
#include <asm/types.h>
#include <asm/spitfire.h>
#include <asm/asi.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/const.h>
/* The kernel image occupies 0x4000000 to 0x1000000 (4MB --> 32MB).
* The page copy blockops can use 0x2000000 to 0x4000000.
* The TSB is mapped in the 0x4000000 to 0x6000000 range.
* The PROM resides in an area spanning 0xf0000000 to 0x100000000.
* The vmalloc area spans 0x100000000 to 0x200000000.
* Since modules need to be in the lowest 32-bits of the address space,
* we place them right before the OBP area from 0x10000000 to 0xf0000000.
* There is a single static kernel PMD which maps from 0x0 to address
* 0x400000000.
*/
#define TLBTEMP_BASE _AC(0x0000000002000000,UL)
#define TSBMAP_BASE _AC(0x0000000004000000,UL)
#define MODULES_VADDR _AC(0x0000000010000000,UL)
#define MODULES_LEN _AC(0x00000000e0000000,UL)
#define MODULES_END _AC(0x00000000f0000000,UL)
#define LOW_OBP_ADDRESS _AC(0x00000000f0000000,UL)
#define HI_OBP_ADDRESS _AC(0x0000000100000000,UL)
#define VMALLOC_START _AC(0x0000000100000000,UL)
#define VMALLOC_END _AC(0x0000000200000000,UL)
/* XXX All of this needs to be rethought so we can take advantage
* XXX cheetah's full 64-bit virtual address space, ie. no more hole
* XXX in the middle like on spitfire. -DaveM
*/
/*
* Given a virtual address, the lowest PAGE_SHIFT bits determine offset
* into the page; the next higher PAGE_SHIFT-3 bits determine the pte#
* in the proper pagetable (the -3 is from the 8 byte ptes, and each page
* table is a single page long). The next higher PMD_BITS determine pmd#
* in the proper pmdtable (where we must have PMD_BITS <= (PAGE_SHIFT-2)
* since the pmd entries are 4 bytes, and each pmd page is a single page
* long). Finally, the higher few bits determine pgde#.
*/
/* PMD_SHIFT determines the size of the area a second-level page
* table can map
*/
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
#define PMD_SIZE (_AC(1,UL) << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PMD_BITS (PAGE_SHIFT - 2)
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3) + PMD_BITS)
#define PGDIR_SIZE (_AC(1,UL) << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PGDIR_BITS (PAGE_SHIFT - 2)
#ifndef __ASSEMBLY__
#include <linux/sched.h>
/* Entries per page directory level. */
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3))
#define PTRS_PER_PMD (1UL << PMD_BITS)
#define PTRS_PER_PGD (1UL << PGDIR_BITS)
/* Kernel has a separate 44bit address space. */
#define FIRST_USER_ADDRESS 0
#define pte_ERROR(e) __builtin_trap()
#define pmd_ERROR(e) __builtin_trap()
#define pgd_ERROR(e) __builtin_trap()
#endif /* !(__ASSEMBLY__) */
/* Spitfire/Cheetah TTE bits. */
#define _PAGE_VALID _AC(0x8000000000000000,UL) /* Valid TTE */
#define _PAGE_R _AC(0x8000000000000000,UL) /* Keep ref bit up to date*/
#define _PAGE_SZ4MB _AC(0x6000000000000000,UL) /* 4MB Page */
#define _PAGE_SZ512K _AC(0x4000000000000000,UL) /* 512K Page */
#define _PAGE_SZ64K _AC(0x2000000000000000,UL) /* 64K Page */
#define _PAGE_SZ8K _AC(0x0000000000000000,UL) /* 8K Page */
#define _PAGE_NFO _AC(0x1000000000000000,UL) /* No Fault Only */
#define _PAGE_IE _AC(0x0800000000000000,UL) /* Invert Endianness */
#define _PAGE_SOFT2 _AC(0x07FC000000000000,UL) /* Software bits, set 2 */
#define _PAGE_RES1 _AC(0x0002000000000000,UL) /* Reserved */
#define _PAGE_SZ32MB _AC(0x0001000000000000,UL) /* (Panther) 32MB page */
#define _PAGE_SZ256MB _AC(0x2001000000000000,UL) /* (Panther) 256MB page */
#define _PAGE_SN _AC(0x0000800000000000,UL) /* (Cheetah) Snoop */
#define _PAGE_RES2 _AC(0x0000780000000000,UL) /* Reserved */
#define _PAGE_PADDR_SF _AC(0x000001FFFFFFE000,UL) /* (Spitfire) paddr[40:13]*/
#define _PAGE_PADDR _AC(0x000007FFFFFFE000,UL) /* (Cheetah) paddr[42:13] */
#define _PAGE_SOFT _AC(0x0000000000001F80,UL) /* Software bits */
#define _PAGE_L _AC(0x0000000000000040,UL) /* Locked TTE */
#define _PAGE_CP _AC(0x0000000000000020,UL) /* Cacheable in P-Cache */
#define _PAGE_CV _AC(0x0000000000000010,UL) /* Cacheable in V-Cache */
#define _PAGE_E _AC(0x0000000000000008,UL) /* side-Effect */
#define _PAGE_P _AC(0x0000000000000004,UL) /* Privileged Page */
#define _PAGE_W _AC(0x0000000000000002,UL) /* Writable */
#define _PAGE_G _AC(0x0000000000000001,UL) /* Global */
#define _PAGE_ALL_SZ_BITS \
(_PAGE_SZ4MB | _PAGE_SZ512K | _PAGE_SZ64K | \
_PAGE_SZ8K | _PAGE_SZ32MB | _PAGE_SZ256MB)
/* Here are the SpitFire software bits we use in the TTE's.
*
* WARNING: If you are going to try and start using some
* of the soft2 bits, you will need to make
* modifications to the swap entry implementation.
* For example, one thing that could happen is that
* swp_entry_to_pte() would BUG_ON() if you tried
* to use one of the soft2 bits for _PAGE_FILE.
*
* Like other architectures, I have aliased _PAGE_FILE with
* _PAGE_MODIFIED. This works because _PAGE_FILE is never
* interpreted that way unless _PAGE_PRESENT is clear.
*/
#define _PAGE_EXEC _AC(0x0000000000001000,UL) /* Executable SW bit */
#define _PAGE_MODIFIED _AC(0x0000000000000800,UL) /* Modified (dirty) */
#define _PAGE_FILE _AC(0x0000000000000800,UL) /* Pagecache page */
#define _PAGE_ACCESSED _AC(0x0000000000000400,UL) /* Accessed (ref'd) */
#define _PAGE_READ _AC(0x0000000000000200,UL) /* Readable SW Bit */
#define _PAGE_WRITE _AC(0x0000000000000100,UL) /* Writable SW Bit */
#define _PAGE_PRESENT _AC(0x0000000000000080,UL) /* Present */
#if PAGE_SHIFT == 13
#define _PAGE_SZBITS _PAGE_SZ8K
#elif PAGE_SHIFT == 16
#define _PAGE_SZBITS _PAGE_SZ64K
#elif PAGE_SHIFT == 19
#define _PAGE_SZBITS _PAGE_SZ512K
#elif PAGE_SHIFT == 22
#define _PAGE_SZBITS _PAGE_SZ4MB
#else
#error Wrong PAGE_SHIFT specified
#endif
#if defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
#define _PAGE_SZHUGE _PAGE_SZ4MB
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
#define _PAGE_SZHUGE _PAGE_SZ512K
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define _PAGE_SZHUGE _PAGE_SZ64K
#endif
#define _PAGE_CACHE (_PAGE_CP | _PAGE_CV)
#define __DIRTY_BITS (_PAGE_MODIFIED | _PAGE_WRITE | _PAGE_W)
#define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_READ | _PAGE_R)
#define __PRIV_BITS _PAGE_P
#define PAGE_NONE __pgprot (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_CACHE)
/* Don't set the TTE _PAGE_W bit here, else the dirty bit never gets set. */
#define PAGE_SHARED __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \
__ACCESS_BITS | _PAGE_WRITE | _PAGE_EXEC)
#define PAGE_COPY __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \
__ACCESS_BITS | _PAGE_EXEC)
#define PAGE_READONLY __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \
__ACCESS_BITS | _PAGE_EXEC)
#define PAGE_KERNEL __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \
__PRIV_BITS | \
__ACCESS_BITS | __DIRTY_BITS | _PAGE_EXEC)
#define PAGE_SHARED_NOEXEC __pgprot (_PAGE_PRESENT | _PAGE_VALID | \
_PAGE_CACHE | \
__ACCESS_BITS | _PAGE_WRITE)
#define PAGE_COPY_NOEXEC __pgprot (_PAGE_PRESENT | _PAGE_VALID | \
_PAGE_CACHE | __ACCESS_BITS)
#define PAGE_READONLY_NOEXEC __pgprot (_PAGE_PRESENT | _PAGE_VALID | \
_PAGE_CACHE | __ACCESS_BITS)
#define _PFN_MASK _PAGE_PADDR
#define pg_iobits (_PAGE_VALID | _PAGE_PRESENT | __DIRTY_BITS | \
__ACCESS_BITS | _PAGE_E)
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY_NOEXEC
#define __P010 PAGE_COPY_NOEXEC
#define __P011 PAGE_COPY_NOEXEC
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY_NOEXEC
#define __S010 PAGE_SHARED_NOEXEC
#define __S011 PAGE_SHARED_NOEXEC
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
#ifndef __ASSEMBLY__
extern unsigned long phys_base;
extern unsigned long pfn_base;
extern struct page *mem_map_zero;
#define ZERO_PAGE(vaddr) (mem_map_zero)
/* PFNs are real physical page numbers. However, mem_map only begins to record
* per-page information starting at pfn_base. This is to handle systems where
* the first physical page in the machine is at some huge physical address,
* such as 4GB. This is common on a partitioned E10000, for example.
*/
#define pfn_pte(pfn, prot) \
__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot) | _PAGE_SZBITS)
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
#define pte_pfn(x) ((pte_val(x) & _PAGE_PADDR)>>PAGE_SHIFT)
#define pte_page(x) pfn_to_page(pte_pfn(x))
static inline pte_t pte_modify(pte_t orig_pte, pgprot_t new_prot)
{
pte_t __pte;
const unsigned long preserve_mask = (_PFN_MASK |
_PAGE_MODIFIED | _PAGE_ACCESSED |
_PAGE_CACHE | _PAGE_E |
_PAGE_PRESENT | _PAGE_SZBITS);
pte_val(__pte) = (pte_val(orig_pte) & preserve_mask) |
(pgprot_val(new_prot) & ~preserve_mask);
return __pte;
}
#define pmd_set(pmdp, ptep) \
(pmd_val(*(pmdp)) = (__pa((unsigned long) (ptep)) >> 11UL))
#define pud_set(pudp, pmdp) \
(pud_val(*(pudp)) = (__pa((unsigned long) (pmdp)) >> 11UL))
#define __pmd_page(pmd) \
((unsigned long) __va((((unsigned long)pmd_val(pmd))<<11UL)))
#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
#define pud_page(pud) \
((unsigned long) __va((((unsigned long)pud_val(pud))<<11UL)))
#define pte_none(pte) (!pte_val(pte))
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (0)
#define pmd_present(pmd) (pmd_val(pmd) != 0U)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0U)
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (0)
#define pud_present(pud) (pud_val(pud) != 0U)
#define pud_clear(pudp) (pud_val(*(pudp)) = 0U)
/* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
#define pte_read(pte) (pte_val(pte) & _PAGE_READ)
#define pte_exec(pte) (pte_val(pte) & _PAGE_EXEC)
#define pte_write(pte) (pte_val(pte) & _PAGE_WRITE)
#define pte_dirty(pte) (pte_val(pte) & _PAGE_MODIFIED)
#define pte_young(pte) (pte_val(pte) & _PAGE_ACCESSED)
#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~(_PAGE_WRITE|_PAGE_W)))
#define pte_rdprotect(pte) \
(__pte(((pte_val(pte)<<1UL)>>1UL) & ~_PAGE_READ))
#define pte_mkclean(pte) \
(__pte(pte_val(pte) & ~(_PAGE_MODIFIED|_PAGE_W)))
#define pte_mkold(pte) \
(__pte(((pte_val(pte)<<1UL)>>1UL) & ~_PAGE_ACCESSED))
/* Permanent address of a page. */
#define __page_address(page) page_address(page)
/* Be very careful when you change these three, they are delicate. */
#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_ACCESSED | _PAGE_R))
#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_WRITE))
#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_MODIFIED | _PAGE_W))
#define pte_mkhuge(pte) (__pte(pte_val(pte) | _PAGE_SZHUGE))
/* to find an entry in a page-table-directory. */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* Find an entry in the second-level page table.. */
#define pmd_offset(pudp, address) \
((pmd_t *) pud_page(*(pudp)) + \
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)))
/* Find an entry in the third-level page table.. */
#define pte_index(dir, address) \
((pte_t *) __pmd_page(*(dir)) + \
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
#define pte_offset_kernel pte_index
#define pte_offset_map pte_index
#define pte_offset_map_nested pte_index
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
/* Actual page table PTE updates. */
extern void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr, pte_t *ptep, pte_t orig);
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
{
pte_t orig = *ptep;
*ptep = pte;
/* It is more efficient to let flush_tlb_kernel_range()
* handle init_mm tlb flushes.
*/
if (likely(mm != &init_mm) && (pte_val(orig) & _PAGE_VALID))
tlb_batch_add(mm, addr, ptep, orig);
}
#define pte_clear(mm,addr,ptep) \
set_pte_at((mm), (addr), (ptep), __pte(0UL))
extern pgd_t swapper_pg_dir[2048];
extern pmd_t swapper_low_pmd_dir[2048];
extern void paging_init(void);
extern unsigned long find_ecache_flush_span(unsigned long size);
/* These do nothing with the way I have things setup. */
#define mmu_lockarea(vaddr, len) (vaddr)
#define mmu_unlockarea(vaddr, len) do { } while(0)
struct vm_area_struct;
extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
/* Encode and de-code a swap entry */
#define __swp_type(entry) (((entry).val >> PAGE_SHIFT) & 0xffUL)
#define __swp_offset(entry) ((entry).val >> (PAGE_SHIFT + 8UL))
#define __swp_entry(type, offset) \
( (swp_entry_t) \
{ \
(((long)(type) << PAGE_SHIFT) | \
((long)(offset) << (PAGE_SHIFT + 8UL))) \
} )
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
/* File offset in PTE support. */
#define pte_file(pte) (pte_val(pte) & _PAGE_FILE)
#define pte_to_pgoff(pte) (pte_val(pte) >> PAGE_SHIFT)
#define pgoff_to_pte(off) (__pte(((off) << PAGE_SHIFT) | _PAGE_FILE))
#define PTE_FILE_MAX_BITS (64UL - PAGE_SHIFT - 1UL)
extern unsigned long prom_virt_to_phys(unsigned long, int *);
static __inline__ unsigned long
sun4u_get_pte (unsigned long addr)
{
pgd_t *pgdp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
if (addr >= PAGE_OFFSET)
return addr & _PAGE_PADDR;
if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
return prom_virt_to_phys(addr, NULL);
pgdp = pgd_offset_k(addr);
pudp = pud_offset(pgdp, addr);
pmdp = pmd_offset(pudp, addr);
ptep = pte_offset_kernel(pmdp, addr);
return pte_val(*ptep) & _PAGE_PADDR;
}
static __inline__ unsigned long
__get_phys (unsigned long addr)
{
return sun4u_get_pte (addr);
}
static __inline__ int
__get_iospace (unsigned long addr)
{
return ((sun4u_get_pte (addr) & 0xf0000000) >> 28);
}
extern unsigned long *sparc64_valid_addr_bitmap;
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define kern_addr_valid(addr) \
(test_bit(__pa((unsigned long)(addr))>>22, sparc64_valid_addr_bitmap))
extern int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
unsigned long pfn,
unsigned long size, pgprot_t prot);
/* Clear virtual and physical cachability, set side-effect bit. */
#define pgprot_noncached(prot) \
(__pgprot((pgprot_val(prot) & ~(_PAGE_CP | _PAGE_CV)) | \
_PAGE_E))
/*
* For sparc32&64, the pfn in io_remap_pfn_range() carries <iospace> in
* its high 4 bits. These macros/functions put it there or get it from there.
*/
#define MK_IOSPACE_PFN(space, pfn) (pfn | (space << (BITS_PER_LONG - 4)))
#define GET_IOSPACE(pfn) (pfn >> (BITS_PER_LONG - 4))
#define GET_PFN(pfn) (pfn & 0x0fffffffffffffffUL)
#include <asm-generic/pgtable.h>
/* We provide our own get_unmapped_area to cope with VA holes for userland */
#define HAVE_ARCH_UNMAPPED_AREA
/* We provide a special get_unmapped_area for framebuffer mmaps to try and use
* the largest alignment possible such that larget PTEs can be used.
*/
extern unsigned long get_fb_unmapped_area(struct file *filp, unsigned long,
unsigned long, unsigned long,
unsigned long);
#define HAVE_ARCH_FB_UNMAPPED_AREA
extern void pgtable_cache_init(void);
#endif /* !(__ASSEMBLY__) */
#endif /* !(_SPARC64_PGTABLE_H) */