forked from Minki/linux
0f59b2d013
Passing uninitialized flags into device_prep_interleaved_dma is clearly
a bad idea, and we get a compiler warning for it:
drivers/media/platform/omap/omap_vout_vrfb.c: In function 'omap_vout_prepare_vrfb':
drivers/media/platform/omap/omap_vout_vrfb.c:273:5: error: 'flags' may be used uninitialized in this function [-Werror=maybe-uninitialized]
It seems that the OMAP dmaengine ignores the flags, but we should
pick the right ones anyway. This sets the flags I guessed based
on what other drivers used, and Peter confirmed that they are the
right ones.
Fixes: 6a1560ecaa
("media: v4l: omap_vout: vrfb: Convert to dmaengine")
Acked-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
424 lines
11 KiB
C
424 lines
11 KiB
C
/*
|
|
* omap_vout_vrfb.c
|
|
*
|
|
* Copyright (C) 2010 Texas Instruments.
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
* kind, whether express or implied.
|
|
*
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <media/videobuf-dma-contig.h>
|
|
#include <media/v4l2-device.h>
|
|
|
|
#include <video/omapvrfb.h>
|
|
|
|
#include "omap_voutdef.h"
|
|
#include "omap_voutlib.h"
|
|
#include "omap_vout_vrfb.h"
|
|
|
|
#define OMAP_DMA_NO_DEVICE 0
|
|
|
|
/*
|
|
* Function for allocating video buffers
|
|
*/
|
|
static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
|
|
unsigned int *count, int startindex)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < *count; i++) {
|
|
if (!vout->smsshado_virt_addr[i]) {
|
|
vout->smsshado_virt_addr[i] =
|
|
omap_vout_alloc_buffer(vout->smsshado_size,
|
|
&vout->smsshado_phy_addr[i]);
|
|
}
|
|
if (!vout->smsshado_virt_addr[i] && startindex != -1) {
|
|
if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
|
|
break;
|
|
}
|
|
if (!vout->smsshado_virt_addr[i]) {
|
|
for (j = 0; j < i; j++) {
|
|
omap_vout_free_buffer(
|
|
vout->smsshado_virt_addr[j],
|
|
vout->smsshado_size);
|
|
vout->smsshado_virt_addr[j] = 0;
|
|
vout->smsshado_phy_addr[j] = 0;
|
|
}
|
|
*count = 0;
|
|
return -ENOMEM;
|
|
}
|
|
memset((void *) vout->smsshado_virt_addr[i], 0,
|
|
vout->smsshado_size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wakes up the application once the DMA transfer to VRFB space is completed.
|
|
*/
|
|
static void omap_vout_vrfb_dma_tx_callback(void *data)
|
|
{
|
|
struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
|
|
|
|
t->tx_status = 1;
|
|
wake_up_interruptible(&t->wait);
|
|
}
|
|
|
|
/*
|
|
* Free VRFB buffers
|
|
*/
|
|
void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < VRFB_NUM_BUFS; j++) {
|
|
if (vout->smsshado_virt_addr[j]) {
|
|
omap_vout_free_buffer(vout->smsshado_virt_addr[j],
|
|
vout->smsshado_size);
|
|
vout->smsshado_virt_addr[j] = 0;
|
|
vout->smsshado_phy_addr[j] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
|
|
bool static_vrfb_allocation)
|
|
{
|
|
int ret = 0, i, j;
|
|
struct omap_vout_device *vout;
|
|
struct video_device *vfd;
|
|
dma_cap_mask_t mask;
|
|
int image_width, image_height;
|
|
int vrfb_num_bufs = VRFB_NUM_BUFS;
|
|
struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
|
|
struct omap2video_device *vid_dev =
|
|
container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
|
|
|
|
vout = vid_dev->vouts[vid_num];
|
|
vfd = vout->vfd;
|
|
|
|
for (i = 0; i < VRFB_NUM_BUFS; i++) {
|
|
if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
|
|
dev_info(&pdev->dev, ": VRFB allocation failed\n");
|
|
for (j = 0; j < i; j++)
|
|
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
|
|
ret = -ENOMEM;
|
|
goto free_buffers;
|
|
}
|
|
}
|
|
|
|
/* Calculate VRFB memory size */
|
|
/* allocate for worst case size */
|
|
image_width = VID_MAX_WIDTH / TILE_SIZE;
|
|
if (VID_MAX_WIDTH % TILE_SIZE)
|
|
image_width++;
|
|
|
|
image_width = image_width * TILE_SIZE;
|
|
image_height = VID_MAX_HEIGHT / TILE_SIZE;
|
|
|
|
if (VID_MAX_HEIGHT % TILE_SIZE)
|
|
image_height++;
|
|
|
|
image_height = image_height * TILE_SIZE;
|
|
vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
|
|
|
|
/*
|
|
* Request and Initialize DMA, for DMA based VRFB transfer
|
|
*/
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_INTERLEAVE, mask);
|
|
vout->vrfb_dma_tx.chan = dma_request_chan_by_mask(&mask);
|
|
if (IS_ERR(vout->vrfb_dma_tx.chan)) {
|
|
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
|
|
} else {
|
|
size_t xt_size = sizeof(struct dma_interleaved_template) +
|
|
sizeof(struct data_chunk);
|
|
|
|
vout->vrfb_dma_tx.xt = kzalloc(xt_size, GFP_KERNEL);
|
|
if (!vout->vrfb_dma_tx.xt) {
|
|
dma_release_channel(vout->vrfb_dma_tx.chan);
|
|
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
|
|
}
|
|
}
|
|
|
|
if (vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED)
|
|
dev_info(&pdev->dev,
|
|
": failed to allocate DMA Channel for video%d\n",
|
|
vfd->minor);
|
|
|
|
init_waitqueue_head(&vout->vrfb_dma_tx.wait);
|
|
|
|
/* statically allocated the VRFB buffer is done through
|
|
commands line aruments */
|
|
if (static_vrfb_allocation) {
|
|
if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
|
|
ret = -ENOMEM;
|
|
goto release_vrfb_ctx;
|
|
}
|
|
vout->vrfb_static_allocation = true;
|
|
}
|
|
return 0;
|
|
|
|
release_vrfb_ctx:
|
|
for (j = 0; j < VRFB_NUM_BUFS; j++)
|
|
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
|
|
free_buffers:
|
|
omap_vout_free_buffers(vout);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Release the VRFB context once the module exits
|
|
*/
|
|
void omap_vout_release_vrfb(struct omap_vout_device *vout)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < VRFB_NUM_BUFS; i++)
|
|
omap_vrfb_release_ctx(&vout->vrfb_context[i]);
|
|
|
|
if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
|
|
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
|
|
kfree(vout->vrfb_dma_tx.xt);
|
|
dmaengine_terminate_sync(vout->vrfb_dma_tx.chan);
|
|
dma_release_channel(vout->vrfb_dma_tx.chan);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate the buffers for the VRFB space. Data is copied from V4L2
|
|
* buffers to the VRFB buffers using the DMA engine.
|
|
*/
|
|
int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
|
|
unsigned int *count, unsigned int startindex)
|
|
{
|
|
int i;
|
|
bool yuv_mode;
|
|
|
|
if (!is_rotation_enabled(vout))
|
|
return 0;
|
|
|
|
/* If rotation is enabled, allocate memory for VRFB space also */
|
|
*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
|
|
|
|
/* Allocate the VRFB buffers only if the buffers are not
|
|
* allocated during init time.
|
|
*/
|
|
if (!vout->vrfb_static_allocation)
|
|
if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
|
|
return -ENOMEM;
|
|
|
|
if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
|
|
vout->dss_mode == OMAP_DSS_COLOR_UYVY)
|
|
yuv_mode = true;
|
|
else
|
|
yuv_mode = false;
|
|
|
|
for (i = 0; i < *count; i++)
|
|
omap_vrfb_setup(&vout->vrfb_context[i],
|
|
vout->smsshado_phy_addr[i], vout->pix.width,
|
|
vout->pix.height, vout->bpp, yuv_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
|
|
struct videobuf_buffer *vb)
|
|
{
|
|
struct dma_async_tx_descriptor *tx;
|
|
enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
|
|
struct dma_chan *chan = vout->vrfb_dma_tx.chan;
|
|
struct dma_device *dmadev = chan->device;
|
|
struct dma_interleaved_template *xt = vout->vrfb_dma_tx.xt;
|
|
dma_cookie_t cookie;
|
|
enum dma_status status;
|
|
enum dss_rotation rotation;
|
|
size_t dst_icg;
|
|
u32 pixsize;
|
|
|
|
if (!is_rotation_enabled(vout))
|
|
return 0;
|
|
|
|
/* If rotation is enabled, copy input buffer into VRFB
|
|
* memory space using DMA. We are copying input buffer
|
|
* into VRFB memory space of desired angle and DSS will
|
|
* read image VRFB memory for 0 degree angle
|
|
*/
|
|
|
|
pixsize = vout->bpp * vout->vrfb_bpp;
|
|
dst_icg = ((MAX_PIXELS_PER_LINE * pixsize) -
|
|
(vout->pix.width * vout->bpp)) + 1;
|
|
|
|
xt->src_start = vout->buf_phy_addr[vb->i];
|
|
xt->dst_start = vout->vrfb_context[vb->i].paddr[0];
|
|
|
|
xt->numf = vout->pix.height;
|
|
xt->frame_size = 1;
|
|
xt->sgl[0].size = vout->pix.width * vout->bpp;
|
|
xt->sgl[0].icg = dst_icg;
|
|
|
|
xt->dir = DMA_MEM_TO_MEM;
|
|
xt->src_sgl = false;
|
|
xt->src_inc = true;
|
|
xt->dst_sgl = true;
|
|
xt->dst_inc = true;
|
|
|
|
tx = dmadev->device_prep_interleaved_dma(chan, xt, flags);
|
|
if (tx == NULL) {
|
|
pr_err("%s: DMA interleaved prep error\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
tx->callback = omap_vout_vrfb_dma_tx_callback;
|
|
tx->callback_param = &vout->vrfb_dma_tx;
|
|
|
|
cookie = dmaengine_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
pr_err("%s: dmaengine_submit failed (%d)\n", __func__, cookie);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vout->vrfb_dma_tx.tx_status = 0;
|
|
dma_async_issue_pending(chan);
|
|
|
|
wait_event_interruptible_timeout(vout->vrfb_dma_tx.wait,
|
|
vout->vrfb_dma_tx.tx_status == 1,
|
|
VRFB_TX_TIMEOUT);
|
|
|
|
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
|
|
|
|
if (vout->vrfb_dma_tx.tx_status == 0) {
|
|
pr_err("%s: Timeout while waiting for DMA\n", __func__);
|
|
dmaengine_terminate_sync(chan);
|
|
return -EINVAL;
|
|
} else if (status != DMA_COMPLETE) {
|
|
pr_err("%s: DMA completion %s status\n", __func__,
|
|
status == DMA_ERROR ? "error" : "busy");
|
|
dmaengine_terminate_sync(chan);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Store buffers physical address into an array. Addresses
|
|
* from this array will be used to configure DSS */
|
|
rotation = calc_rotation(vout);
|
|
vout->queued_buf_addr[vb->i] = (u8 *)
|
|
vout->vrfb_context[vb->i].paddr[rotation];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate the buffer offsets from which the streaming should
|
|
* start. This offset calculation is mainly required because of
|
|
* the VRFB 32 pixels alignment with rotation.
|
|
*/
|
|
void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
|
|
{
|
|
enum dss_rotation rotation;
|
|
bool mirroring = vout->mirror;
|
|
struct v4l2_rect *crop = &vout->crop;
|
|
struct v4l2_pix_format *pix = &vout->pix;
|
|
int *cropped_offset = &vout->cropped_offset;
|
|
int vr_ps = 1, ps = 2, temp_ps = 2;
|
|
int offset = 0, ctop = 0, cleft = 0, line_length = 0;
|
|
|
|
rotation = calc_rotation(vout);
|
|
|
|
if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
|
|
V4L2_PIX_FMT_UYVY == pix->pixelformat) {
|
|
if (is_rotation_enabled(vout)) {
|
|
/*
|
|
* ps - Actual pixel size for YUYV/UYVY for
|
|
* VRFB/Mirroring is 4 bytes
|
|
* vr_ps - Virtually pixel size for YUYV/UYVY is
|
|
* 2 bytes
|
|
*/
|
|
ps = 4;
|
|
vr_ps = 2;
|
|
} else {
|
|
ps = 2; /* otherwise the pixel size is 2 byte */
|
|
}
|
|
} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
|
|
ps = 4;
|
|
} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
|
|
ps = 3;
|
|
}
|
|
vout->ps = ps;
|
|
vout->vr_ps = vr_ps;
|
|
|
|
if (is_rotation_enabled(vout)) {
|
|
line_length = MAX_PIXELS_PER_LINE;
|
|
ctop = (pix->height - crop->height) - crop->top;
|
|
cleft = (pix->width - crop->width) - crop->left;
|
|
} else {
|
|
line_length = pix->width;
|
|
}
|
|
vout->line_length = line_length;
|
|
switch (rotation) {
|
|
case dss_rotation_90_degree:
|
|
offset = vout->vrfb_context[0].yoffset *
|
|
vout->vrfb_context[0].bytespp;
|
|
temp_ps = ps / vr_ps;
|
|
if (!mirroring) {
|
|
*cropped_offset = offset + line_length *
|
|
temp_ps * cleft + crop->top * temp_ps;
|
|
} else {
|
|
*cropped_offset = offset + line_length * temp_ps *
|
|
cleft + crop->top * temp_ps + (line_length *
|
|
((crop->width / (vr_ps)) - 1) * ps);
|
|
}
|
|
break;
|
|
case dss_rotation_180_degree:
|
|
offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
|
|
vout->vrfb_context[0].bytespp) +
|
|
(vout->vrfb_context[0].xoffset *
|
|
vout->vrfb_context[0].bytespp));
|
|
if (!mirroring) {
|
|
*cropped_offset = offset + (line_length * ps * ctop) +
|
|
(cleft / vr_ps) * ps;
|
|
|
|
} else {
|
|
*cropped_offset = offset + (line_length * ps * ctop) +
|
|
(cleft / vr_ps) * ps + (line_length *
|
|
(crop->height - 1) * ps);
|
|
}
|
|
break;
|
|
case dss_rotation_270_degree:
|
|
offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
|
|
vout->vrfb_context[0].bytespp;
|
|
temp_ps = ps / vr_ps;
|
|
if (!mirroring) {
|
|
*cropped_offset = offset + line_length *
|
|
temp_ps * crop->left + ctop * ps;
|
|
} else {
|
|
*cropped_offset = offset + line_length *
|
|
temp_ps * crop->left + ctop * ps +
|
|
(line_length * ((crop->width / vr_ps) - 1) *
|
|
ps);
|
|
}
|
|
break;
|
|
case dss_rotation_0_degree:
|
|
if (!mirroring) {
|
|
*cropped_offset = (line_length * ps) *
|
|
crop->top + (crop->left / vr_ps) * ps;
|
|
} else {
|
|
*cropped_offset = (line_length * ps) *
|
|
crop->top + (crop->left / vr_ps) * ps +
|
|
(line_length * (crop->height - 1) * ps);
|
|
}
|
|
break;
|
|
default:
|
|
*cropped_offset = (line_length * ps * crop->top) /
|
|
vr_ps + (crop->left * ps) / vr_ps +
|
|
((crop->width / vr_ps) - 1) * ps;
|
|
break;
|
|
}
|
|
}
|