linux/Documentation/sysctl
Daniel Borkmann 4f3446bb80 bpf: add generic constant blinding for use in jits
This work adds a generic facility for use from eBPF JIT compilers
that allows for further hardening of JIT generated images through
blinding constants. In response to the original work on BPF JIT
spraying published by Keegan McAllister [1], most BPF JITs were
changed to make images read-only and start at a randomized offset
in the page, where the rest was filled with trap instructions. We
have this nowadays in x86, arm, arm64 and s390 JIT compilers.
Additionally, later work also made eBPF interpreter images read
only for kernels supporting DEBUG_SET_MODULE_RONX, that is, x86,
arm, arm64 and s390 archs as well currently. This is done by
default for mentioned JITs when JITing is enabled. Furthermore,
we had a generic and configurable constant blinding facility on our
todo for quite some time now to further make spraying harder, and
first implementation since around netconf 2016.

We found that for systems where untrusted users can load cBPF/eBPF
code where JIT is enabled, start offset randomization helps a bit
to make jumps into crafted payload harder, but in case where larger
programs that cross page boundary are injected, we again have some
part of the program opcodes at a page start offset. With improved
guessing and more reliable payload injection, chances can increase
to jump into such payload. Elena Reshetova recently wrote a test
case for it [2, 3]. Moreover, eBPF comes with 64 bit constants, which
can leave some more room for payloads. Note that for all this,
additional bugs in the kernel are still required to make the jump
(and of course to guess right, to not jump into a trap) and naturally
the JIT must be enabled, which is disabled by default.

For helping mitigation, the general idea is to provide an option
bpf_jit_harden that admins can tweak along with bpf_jit_enable, so
that for cases where JIT should be enabled for performance reasons,
the generated image can be further hardened with blinding constants
for unpriviledged users (bpf_jit_harden == 1), with trading off
performance for these, but not for privileged ones. We also added
the option of blinding for all users (bpf_jit_harden == 2), which
is quite helpful for testing f.e. with test_bpf.ko. There are no
further e.g. hardening levels of bpf_jit_harden switch intended,
rationale is to have it dead simple to use as on/off. Since this
functionality would need to be duplicated over and over for JIT
compilers to use, which are already complex enough, we provide a
generic eBPF byte-code level based blinding implementation, which is
then just transparently JITed. JIT compilers need to make only a few
changes to integrate this facility and can be migrated one by one.

This option is for eBPF JITs and will be used in x86, arm64, s390
without too much effort, and soon ppc64 JITs, thus that native eBPF
can be blinded as well as cBPF to eBPF migrations, so that both can
be covered with a single implementation. The rule for JITs is that
bpf_jit_blind_constants() must be called from bpf_int_jit_compile(),
and in case blinding is disabled, we follow normally with JITing the
passed program. In case blinding is enabled and we fail during the
process of blinding itself, we must return with the interpreter.
Similarly, in case the JITing process after the blinding failed, we
return normally to the interpreter with the non-blinded code. Meaning,
interpreter doesn't change in any way and operates on eBPF code as
usual. For doing this pre-JIT blinding step, we need to make use of
a helper/auxiliary register, here BPF_REG_AX. This is strictly internal
to the JIT and not in any way part of the eBPF architecture. Just like
in the same way as JITs internally make use of some helper registers
when emitting code, only that here the helper register is one
abstraction level higher in eBPF bytecode, but nevertheless in JIT
phase. That helper register is needed since f.e. manually written
program can issue loads to all registers of eBPF architecture.

The core concept with the additional register is: blind out all 32
and 64 bit constants by converting BPF_K based instructions into a
small sequence from K_VAL into ((RND ^ K_VAL) ^ RND). Therefore, this
is transformed into: BPF_REG_AX := (RND ^ K_VAL), BPF_REG_AX ^= RND,
and REG <OP> BPF_REG_AX, so actual operation on the target register
is translated from BPF_K into BPF_X one that is operating on
BPF_REG_AX's content. During rewriting phase when blinding, RND is
newly generated via prandom_u32() for each processed instruction.
64 bit loads are split into two 32 bit loads to make translation and
patching not too complex. Only basic thing required by JITs is to
call the helper bpf_jit_blind_constants()/bpf_jit_prog_release_other()
pair, and to map BPF_REG_AX into an unused register.

Small bpf_jit_disasm extract from [2] when applied to x86 JIT:

echo 0 > /proc/sys/net/core/bpf_jit_harden

  ffffffffa034f5e9 + <x>:
  [...]
  39:   mov    $0xa8909090,%eax
  3e:   mov    $0xa8909090,%eax
  43:   mov    $0xa8ff3148,%eax
  48:   mov    $0xa89081b4,%eax
  4d:   mov    $0xa8900bb0,%eax
  52:   mov    $0xa810e0c1,%eax
  57:   mov    $0xa8908eb4,%eax
  5c:   mov    $0xa89020b0,%eax
  [...]

echo 1 > /proc/sys/net/core/bpf_jit_harden

  ffffffffa034f1e5 + <x>:
  [...]
  39:   mov    $0xe1192563,%r10d
  3f:   xor    $0x4989b5f3,%r10d
  46:   mov    %r10d,%eax
  49:   mov    $0xb8296d93,%r10d
  4f:   xor    $0x10b9fd03,%r10d
  56:   mov    %r10d,%eax
  59:   mov    $0x8c381146,%r10d
  5f:   xor    $0x24c7200e,%r10d
  66:   mov    %r10d,%eax
  69:   mov    $0xeb2a830e,%r10d
  6f:   xor    $0x43ba02ba,%r10d
  76:   mov    %r10d,%eax
  79:   mov    $0xd9730af,%r10d
  7f:   xor    $0xa5073b1f,%r10d
  86:   mov    %r10d,%eax
  89:   mov    $0x9a45662b,%r10d
  8f:   xor    $0x325586ea,%r10d
  96:   mov    %r10d,%eax
  [...]

As can be seen, original constants that carry payload are hidden
when enabled, actual operations are transformed from constant-based
to register-based ones, making jumps into constants ineffective.
Above extract/example uses single BPF load instruction over and
over, but of course all instructions with constants are blinded.

Performance wise, JIT with blinding performs a bit slower than just
JIT and faster than interpreter case. This is expected, since we
still get all the performance benefits from JITing and in normal
use-cases not every single instruction needs to be blinded. Summing
up all 296 test cases averaged over multiple runs from test_bpf.ko
suite, interpreter was 55% slower than JIT only and JIT with blinding
was 8% slower than JIT only. Since there are also some extremes in
the test suite, I expect for ordinary workloads that the performance
for the JIT with blinding case is even closer to JIT only case,
f.e. nmap test case from suite has averaged timings in ns 29 (JIT),
35 (+ blinding), and 151 (interpreter).

BPF test suite, seccomp test suite, eBPF sample code and various
bigger networking eBPF programs have been tested with this and were
running fine. For testing purposes, I also adapted interpreter and
redirected blinded eBPF image to interpreter and also here all tests
pass.

  [1] http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
  [2] https://github.com/01org/jit-spray-poc-for-ksp/
  [3] http://www.openwall.com/lists/kernel-hardening/2016/05/03/5

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Elena Reshetova <elena.reshetova@intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-16 13:49:32 -04:00
..
00-INDEX
abi.txt
fs.txt pipe: limit the per-user amount of pages allocated in pipes 2016-01-19 19:25:21 -05:00
kernel.txt perf/core: Change the default paranoia level to 2 2016-05-09 17:57:12 -07:00
net.txt bpf: add generic constant blinding for use in jits 2016-05-16 13:49:32 -04:00
README
sunrpc.txt
vm.txt Documentation/sysctl/vm.txt: update numa_zonelist_order description 2016-04-28 19:34:04 -07:00

Documentation for /proc/sys/		kernel version 2.2.10
	(c) 1998, 1999,  Rik van Riel <riel@nl.linux.org>

'Why', I hear you ask, 'would anyone even _want_ documentation
for them sysctl files? If anybody really needs it, it's all in
the source...'

Well, this documentation is written because some people either
don't know they need to tweak something, or because they don't
have the time or knowledge to read the source code.

Furthermore, the programmers who built sysctl have built it to
be actually used, not just for the fun of programming it :-)

==============================================================

Legal blurb:

As usual, there are two main things to consider:
1. you get what you pay for
2. it's free

The consequences are that I won't guarantee the correctness of
this document, and if you come to me complaining about how you
screwed up your system because of wrong documentation, I won't
feel sorry for you. I might even laugh at you...

But of course, if you _do_ manage to screw up your system using
only the sysctl options used in this file, I'd like to hear of
it. Not only to have a great laugh, but also to make sure that
you're the last RTFMing person to screw up.

In short, e-mail your suggestions, corrections and / or horror
stories to: <riel@nl.linux.org>

Rik van Riel.

==============================================================

Introduction:

Sysctl is a means of configuring certain aspects of the kernel
at run-time, and the /proc/sys/ directory is there so that you
don't even need special tools to do it!
In fact, there are only four things needed to use these config
facilities:
- a running Linux system
- root access
- common sense (this is especially hard to come by these days)
- knowledge of what all those values mean

As a quick 'ls /proc/sys' will show, the directory consists of
several (arch-dependent?) subdirs. Each subdir is mainly about
one part of the kernel, so you can do configuration on a piece
by piece basis, or just some 'thematic frobbing'.

The subdirs are about:
abi/		execution domains & personalities
debug/		<empty>
dev/		device specific information (eg dev/cdrom/info)
fs/		specific filesystems
		filehandle, inode, dentry and quota tuning
		binfmt_misc <Documentation/binfmt_misc.txt>
kernel/		global kernel info / tuning
		miscellaneous stuff
net/		networking stuff, for documentation look in:
		<Documentation/networking/>
proc/		<empty>
sunrpc/		SUN Remote Procedure Call (NFS)
vm/		memory management tuning
		buffer and cache management

These are the subdirs I have on my system. There might be more
or other subdirs in another setup. If you see another dir, I'd
really like to hear about it :-)