forked from Minki/linux
770911a3cf
New headers for Fiji. Reviewed-by: Jammy Zhou <Jammy.Zhou@amd.com> Signed-off-by: Eric Huang <JinHuiEric.Huang@amd.com>
618 lines
19 KiB
C
618 lines
19 KiB
C
/*
|
|
* Copyright 2015 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
#include <asm/div64.h>
|
|
|
|
#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
|
|
|
|
#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */
|
|
|
|
#define SHIFTED_2 (2 << SHIFT_AMOUNT)
|
|
#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */
|
|
|
|
/* -------------------------------------------------------------------------------
|
|
* NEW TYPE - fINT
|
|
* -------------------------------------------------------------------------------
|
|
* A variable of type fInt can be accessed in 3 ways using the dot (.) operator
|
|
* fInt A;
|
|
* A.full => The full number as it is. Generally not easy to read
|
|
* A.partial.real => Only the integer portion
|
|
* A.partial.decimal => Only the fractional portion
|
|
*/
|
|
typedef union _fInt {
|
|
int full;
|
|
struct _partial {
|
|
unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
|
|
int real: 32 - SHIFT_AMOUNT;
|
|
} partial;
|
|
} fInt;
|
|
|
|
/* -------------------------------------------------------------------------------
|
|
* Function Declarations
|
|
* -------------------------------------------------------------------------------
|
|
*/
|
|
fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */
|
|
fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */
|
|
fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */
|
|
int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
|
|
|
|
fInt fNegate(fInt); /* Returns -1 * input fInt value */
|
|
fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */
|
|
fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */
|
|
fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */
|
|
fInt fDivide (fInt A, fInt B); /* Returns A/B */
|
|
fInt fGetSquare(fInt); /* Returns the square of a fInt number */
|
|
fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
|
|
|
|
int uAbs(int); /* Returns the Absolute value of the Int */
|
|
fInt fAbs(fInt); /* Returns the Absolute value of the fInt */
|
|
int uPow(int base, int exponent); /* Returns base^exponent an INT */
|
|
|
|
void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
|
|
bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */
|
|
bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
|
|
|
|
fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */
|
|
fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */
|
|
|
|
/* Fuse decoding functions
|
|
* -------------------------------------------------------------------------------------
|
|
*/
|
|
fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
|
|
fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
|
|
fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
|
|
|
|
/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
|
|
* -------------------------------------------------------------------------------------
|
|
* Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
|
|
*/
|
|
fInt Add (int, int); /* Add two INTs and return Sum as FINT */
|
|
fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */
|
|
fInt Divide (int, int); /* You get the idea... */
|
|
fInt fNegate(fInt);
|
|
|
|
int uGetScaledDecimal (fInt); /* Internal function */
|
|
int GetReal (fInt A); /* Internal function */
|
|
|
|
/* Future Additions and Incomplete Functions
|
|
* -------------------------------------------------------------------------------------
|
|
*/
|
|
int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */
|
|
/* Let us say we have 2.126 but can only handle 2 decimal points. We could */
|
|
/* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */
|
|
|
|
/* -------------------------------------------------------------------------------------
|
|
* TROUBLESHOOTING INFORMATION
|
|
* -------------------------------------------------------------------------------------
|
|
* 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
|
|
* 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
|
|
* 3) fMultiply - OutputOutOfRangeException:
|
|
* 4) fGetSquare - OutputOutOfRangeException:
|
|
* 5) fDivide - DivideByZeroException
|
|
* 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
|
|
*/
|
|
|
|
/* -------------------------------------------------------------------------------------
|
|
* START OF CODE
|
|
* -------------------------------------------------------------------------------------
|
|
*/
|
|
fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
|
|
{
|
|
uint32_t i;
|
|
bool bNegated = false;
|
|
|
|
fInt fPositiveOne = ConvertToFraction(1);
|
|
fInt fZERO = ConvertToFraction(0);
|
|
|
|
fInt lower_bound = Divide(78, 10000);
|
|
fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
|
|
fInt error_term;
|
|
|
|
uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
|
|
uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
|
|
|
|
if (GreaterThan(fZERO, exponent)) {
|
|
exponent = fNegate(exponent);
|
|
bNegated = true;
|
|
}
|
|
|
|
while (GreaterThan(exponent, lower_bound)) {
|
|
for (i = 0; i < 11; i++) {
|
|
if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
|
|
exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
|
|
solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
|
|
}
|
|
}
|
|
}
|
|
|
|
error_term = fAdd(fPositiveOne, exponent);
|
|
|
|
solution = fMultiply(solution, error_term);
|
|
|
|
if (bNegated)
|
|
solution = fDivide(fPositiveOne, solution);
|
|
|
|
return solution;
|
|
}
|
|
|
|
fInt fNaturalLog(fInt value)
|
|
{
|
|
uint32_t i;
|
|
fInt upper_bound = Divide(8, 1000);
|
|
fInt fNegativeOne = ConvertToFraction(-1);
|
|
fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
|
|
fInt error_term;
|
|
|
|
uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
|
|
uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
|
|
|
|
while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
|
|
for (i = 0; i < 10; i++) {
|
|
if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
|
|
value = fDivide(value, GetScaledFraction(k_array[i], 10000));
|
|
solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
|
|
}
|
|
}
|
|
}
|
|
|
|
error_term = fAdd(fNegativeOne, value);
|
|
|
|
return (fAdd(solution, error_term));
|
|
}
|
|
|
|
fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
|
|
{
|
|
fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
|
|
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
|
|
|
fInt f_decoded_value;
|
|
|
|
f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
|
|
f_decoded_value = fMultiply(f_decoded_value, f_range);
|
|
f_decoded_value = fAdd(f_decoded_value, f_min);
|
|
|
|
return f_decoded_value;
|
|
}
|
|
|
|
|
|
fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
|
|
{
|
|
fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
|
|
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
|
|
|
fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
|
|
fInt f_CONSTANT1 = ConvertToFraction(1);
|
|
|
|
fInt f_decoded_value;
|
|
|
|
f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
|
|
f_decoded_value = fNaturalLog(f_decoded_value);
|
|
f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
|
|
f_decoded_value = fAdd(f_decoded_value, f_average);
|
|
|
|
return f_decoded_value;
|
|
}
|
|
|
|
fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
|
|
{
|
|
fInt fLeakage;
|
|
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
|
|
|
fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
|
|
fLeakage = fDivide(fLeakage, f_bit_max_value);
|
|
fLeakage = fExponential(fLeakage);
|
|
fLeakage = fMultiply(fLeakage, f_min);
|
|
|
|
return fLeakage;
|
|
}
|
|
|
|
fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
|
|
{
|
|
fInt temp;
|
|
|
|
if (X <= MAX)
|
|
temp.full = (X << SHIFT_AMOUNT);
|
|
else
|
|
temp.full = 0;
|
|
|
|
return temp;
|
|
}
|
|
|
|
fInt fNegate(fInt X)
|
|
{
|
|
fInt CONSTANT_NEGONE = ConvertToFraction(-1);
|
|
return (fMultiply(X, CONSTANT_NEGONE));
|
|
}
|
|
|
|
fInt Convert_ULONG_ToFraction(uint32_t X)
|
|
{
|
|
fInt temp;
|
|
|
|
if (X <= MAX)
|
|
temp.full = (X << SHIFT_AMOUNT);
|
|
else
|
|
temp.full = 0;
|
|
|
|
return temp;
|
|
}
|
|
|
|
fInt GetScaledFraction(int X, int factor)
|
|
{
|
|
int times_shifted, factor_shifted;
|
|
bool bNEGATED;
|
|
fInt fValue;
|
|
|
|
times_shifted = 0;
|
|
factor_shifted = 0;
|
|
bNEGATED = false;
|
|
|
|
if (X < 0) {
|
|
X = -1*X;
|
|
bNEGATED = true;
|
|
}
|
|
|
|
if (factor < 0) {
|
|
factor = -1*factor;
|
|
|
|
bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
|
|
}
|
|
|
|
if ((X > MAX) || factor > MAX) {
|
|
if ((X/factor) <= MAX) {
|
|
while (X > MAX) {
|
|
X = X >> 1;
|
|
times_shifted++;
|
|
}
|
|
|
|
while (factor > MAX) {
|
|
factor = factor >> 1;
|
|
factor_shifted++;
|
|
}
|
|
} else {
|
|
fValue.full = 0;
|
|
return fValue;
|
|
}
|
|
}
|
|
|
|
if (factor == 1)
|
|
return (ConvertToFraction(X));
|
|
|
|
fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
|
|
|
|
fValue.full = fValue.full << times_shifted;
|
|
fValue.full = fValue.full >> factor_shifted;
|
|
|
|
return fValue;
|
|
}
|
|
|
|
/* Addition using two fInts */
|
|
fInt fAdd (fInt X, fInt Y)
|
|
{
|
|
fInt Sum;
|
|
|
|
Sum.full = X.full + Y.full;
|
|
|
|
return Sum;
|
|
}
|
|
|
|
/* Addition using two fInts */
|
|
fInt fSubtract (fInt X, fInt Y)
|
|
{
|
|
fInt Difference;
|
|
|
|
Difference.full = X.full - Y.full;
|
|
|
|
return Difference;
|
|
}
|
|
|
|
bool Equal(fInt A, fInt B)
|
|
{
|
|
if (A.full == B.full)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
bool GreaterThan(fInt A, fInt B)
|
|
{
|
|
if (A.full > B.full)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
|
|
{
|
|
fInt Product;
|
|
int64_t tempProduct;
|
|
bool X_LessThanOne, Y_LessThanOne;
|
|
|
|
X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
|
|
Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
|
|
|
|
/*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
|
|
/* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
|
|
|
|
if (X_LessThanOne && Y_LessThanOne) {
|
|
Product.full = X.full * Y.full;
|
|
return Product
|
|
}*/
|
|
|
|
tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
|
|
tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
|
|
Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
|
|
|
|
return Product;
|
|
}
|
|
|
|
fInt fDivide (fInt X, fInt Y)
|
|
{
|
|
fInt fZERO, fQuotient;
|
|
int64_t longlongX, longlongY;
|
|
|
|
fZERO = ConvertToFraction(0);
|
|
|
|
if (Equal(Y, fZERO))
|
|
return fZERO;
|
|
|
|
longlongX = (int64_t)X.full;
|
|
longlongY = (int64_t)Y.full;
|
|
|
|
longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
|
|
|
|
do_div(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
|
|
|
|
fQuotient.full = (int)longlongX;
|
|
return fQuotient;
|
|
}
|
|
|
|
int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
|
|
{
|
|
fInt fullNumber, scaledDecimal, scaledReal;
|
|
|
|
scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
|
|
|
|
scaledDecimal.full = uGetScaledDecimal(A);
|
|
|
|
fullNumber = fAdd(scaledDecimal,scaledReal);
|
|
|
|
return fullNumber.full;
|
|
}
|
|
|
|
fInt fGetSquare(fInt A)
|
|
{
|
|
return fMultiply(A,A);
|
|
}
|
|
|
|
/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
|
|
fInt fSqrt(fInt num)
|
|
{
|
|
fInt F_divide_Fprime, Fprime;
|
|
fInt test;
|
|
fInt twoShifted;
|
|
int seed, counter, error;
|
|
fInt x_new, x_old, C, y;
|
|
|
|
fInt fZERO = ConvertToFraction(0);
|
|
/* (0 > num) is the same as (num < 0), i.e., num is negative */
|
|
if (GreaterThan(fZERO, num) || Equal(fZERO, num))
|
|
return fZERO;
|
|
|
|
C = num;
|
|
|
|
if (num.partial.real > 3000)
|
|
seed = 60;
|
|
else if (num.partial.real > 1000)
|
|
seed = 30;
|
|
else if (num.partial.real > 100)
|
|
seed = 10;
|
|
else
|
|
seed = 2;
|
|
|
|
counter = 0;
|
|
|
|
if (Equal(num, fZERO)) /*Square Root of Zero is zero */
|
|
return fZERO;
|
|
|
|
twoShifted = ConvertToFraction(2);
|
|
x_new = ConvertToFraction(seed);
|
|
|
|
do {
|
|
counter++;
|
|
|
|
x_old.full = x_new.full;
|
|
|
|
test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
|
|
y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
|
|
|
|
Fprime = fMultiply(twoShifted, x_old);
|
|
F_divide_Fprime = fDivide(y, Fprime);
|
|
|
|
x_new = fSubtract(x_old, F_divide_Fprime);
|
|
|
|
error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
|
|
|
|
if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
|
|
return x_new;
|
|
|
|
} while (uAbs(error) > 0);
|
|
|
|
return (x_new);
|
|
}
|
|
|
|
void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
|
|
{
|
|
fInt* pRoots = &Roots[0];
|
|
fInt temp, root_first, root_second;
|
|
fInt f_CONSTANT10, f_CONSTANT100;
|
|
|
|
f_CONSTANT100 = ConvertToFraction(100);
|
|
f_CONSTANT10 = ConvertToFraction(10);
|
|
|
|
while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
|
|
A = fDivide(A, f_CONSTANT10);
|
|
B = fDivide(B, f_CONSTANT10);
|
|
C = fDivide(C, f_CONSTANT10);
|
|
}
|
|
|
|
temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
|
|
temp = fMultiply(temp, C); /* root = 4*A*C */
|
|
temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
|
|
temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
|
|
|
|
root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
|
|
root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
|
|
|
|
root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
|
|
root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
|
|
|
|
root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
|
|
root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
|
|
|
|
*(pRoots + 0) = root_first;
|
|
*(pRoots + 1) = root_second;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* SUPPORT FUNCTIONS
|
|
* -----------------------------------------------------------------------------
|
|
*/
|
|
|
|
/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
|
|
fInt Add (int X, int Y)
|
|
{
|
|
fInt A, B, Sum;
|
|
|
|
A.full = (X << SHIFT_AMOUNT);
|
|
B.full = (Y << SHIFT_AMOUNT);
|
|
|
|
Sum.full = A.full + B.full;
|
|
|
|
return Sum;
|
|
}
|
|
|
|
/* Conversion Functions */
|
|
int GetReal (fInt A)
|
|
{
|
|
return (A.full >> SHIFT_AMOUNT);
|
|
}
|
|
|
|
/* Temporarily Disabled */
|
|
int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
|
|
{
|
|
/* ROUNDING TEMPORARLY DISABLED
|
|
int temp = A.full;
|
|
|
|
int decimal_cutoff, decimal_mask = 0x000001FF;
|
|
|
|
decimal_cutoff = temp & decimal_mask;
|
|
|
|
|
|
if (decimal_cutoff > 0x147) {
|
|
temp += 673;
|
|
}*/
|
|
|
|
return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
|
|
}
|
|
|
|
fInt Multiply (int X, int Y)
|
|
{
|
|
fInt A, B, Product;
|
|
|
|
A.full = X << SHIFT_AMOUNT;
|
|
B.full = Y << SHIFT_AMOUNT;
|
|
|
|
Product = fMultiply(A, B);
|
|
|
|
return Product;
|
|
}
|
|
fInt Divide (int X, int Y)
|
|
{
|
|
fInt A, B, Quotient;
|
|
|
|
A.full = X << SHIFT_AMOUNT;
|
|
B.full = Y << SHIFT_AMOUNT;
|
|
|
|
Quotient = fDivide(A, B);
|
|
|
|
return Quotient;
|
|
}
|
|
|
|
int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
|
|
{
|
|
int dec[PRECISION];
|
|
int i, scaledDecimal = 0, tmp = A.partial.decimal;
|
|
|
|
for (i = 0; i < PRECISION; i++) {
|
|
dec[i] = tmp / (1 << SHIFT_AMOUNT);
|
|
|
|
tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
|
|
|
|
tmp *= 10;
|
|
|
|
scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
|
|
}
|
|
|
|
return scaledDecimal;
|
|
}
|
|
|
|
int uPow(int base, int power)
|
|
{
|
|
if (power == 0)
|
|
return 1;
|
|
else
|
|
return (base)*uPow(base, power - 1);
|
|
}
|
|
|
|
fInt fAbs(fInt A)
|
|
{
|
|
if (A.partial.real < 0)
|
|
return (fMultiply(A, ConvertToFraction(-1)));
|
|
else
|
|
return A;
|
|
}
|
|
|
|
int uAbs(int X)
|
|
{
|
|
if (X < 0)
|
|
return (X * -1);
|
|
else
|
|
return X;
|
|
}
|
|
|
|
fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
|
|
{
|
|
fInt solution;
|
|
|
|
solution = fDivide(A, fStepSize);
|
|
solution.partial.decimal = 0; /*All fractional digits changes to 0 */
|
|
|
|
if (error_term)
|
|
solution.partial.real += 1; /*Error term of 1 added */
|
|
|
|
solution = fMultiply(solution, fStepSize);
|
|
solution = fAdd(solution, fStepSize);
|
|
|
|
return solution;
|
|
}
|
|
|