linux/drivers/hwmon/adm1026.c
Jean Delvare 90d6619a91 hwmon: VRM is not read from registers
The VRM value is not read from chip registers, so there's no need
to update the device data cache before exporting the VRM value to
user-space.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Acked-by: Hans de Goede <j.w.r.degoede@hhs.nl>
Signed-off-by: Mark M. Hoffman <mhoffman@lightlink.com>
2007-10-09 22:56:32 -04:00

1725 lines
56 KiB
C

/*
adm1026.c - Part of lm_sensors, Linux kernel modules for hardware
monitoring
Copyright (C) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
Copyright (C) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
Chip details at:
<http://www.analog.com/UploadedFiles/Data_Sheets/779263102ADM1026_a.pdf>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_1(adm1026);
static int gpio_input[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_output[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_inverted[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_normal[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_fan[8] = { -1, -1, -1, -1, -1, -1, -1, -1 };
module_param_array(gpio_input,int,NULL,0);
MODULE_PARM_DESC(gpio_input,"List of GPIO pins (0-16) to program as inputs");
module_param_array(gpio_output,int,NULL,0);
MODULE_PARM_DESC(gpio_output,"List of GPIO pins (0-16) to program as "
"outputs");
module_param_array(gpio_inverted,int,NULL,0);
MODULE_PARM_DESC(gpio_inverted,"List of GPIO pins (0-16) to program as "
"inverted");
module_param_array(gpio_normal,int,NULL,0);
MODULE_PARM_DESC(gpio_normal,"List of GPIO pins (0-16) to program as "
"normal/non-inverted");
module_param_array(gpio_fan,int,NULL,0);
MODULE_PARM_DESC(gpio_fan,"List of GPIO pins (0-7) to program as fan tachs");
/* Many ADM1026 constants specified below */
/* The ADM1026 registers */
#define ADM1026_REG_CONFIG1 0x00
#define CFG1_MONITOR 0x01
#define CFG1_INT_ENABLE 0x02
#define CFG1_INT_CLEAR 0x04
#define CFG1_AIN8_9 0x08
#define CFG1_THERM_HOT 0x10
#define CFG1_DAC_AFC 0x20
#define CFG1_PWM_AFC 0x40
#define CFG1_RESET 0x80
#define ADM1026_REG_CONFIG2 0x01
/* CONFIG2 controls FAN0/GPIO0 through FAN7/GPIO7 */
#define ADM1026_REG_CONFIG3 0x07
#define CFG3_GPIO16_ENABLE 0x01
#define CFG3_CI_CLEAR 0x02
#define CFG3_VREF_250 0x04
#define CFG3_GPIO16_DIR 0x40
#define CFG3_GPIO16_POL 0x80
#define ADM1026_REG_E2CONFIG 0x13
#define E2CFG_READ 0x01
#define E2CFG_WRITE 0x02
#define E2CFG_ERASE 0x04
#define E2CFG_ROM 0x08
#define E2CFG_CLK_EXT 0x80
/* There are 10 general analog inputs and 7 dedicated inputs
* They are:
* 0 - 9 = AIN0 - AIN9
* 10 = Vbat
* 11 = 3.3V Standby
* 12 = 3.3V Main
* 13 = +5V
* 14 = Vccp (CPU core voltage)
* 15 = +12V
* 16 = -12V
*/
static u16 ADM1026_REG_IN[] = {
0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
0x36, 0x37, 0x27, 0x29, 0x26, 0x2a,
0x2b, 0x2c, 0x2d, 0x2e, 0x2f
};
static u16 ADM1026_REG_IN_MIN[] = {
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d,
0x5e, 0x5f, 0x6d, 0x49, 0x6b, 0x4a,
0x4b, 0x4c, 0x4d, 0x4e, 0x4f
};
static u16 ADM1026_REG_IN_MAX[] = {
0x50, 0x51, 0x52, 0x53, 0x54, 0x55,
0x56, 0x57, 0x6c, 0x41, 0x6a, 0x42,
0x43, 0x44, 0x45, 0x46, 0x47
};
/* Temperatures are:
* 0 - Internal
* 1 - External 1
* 2 - External 2
*/
static u16 ADM1026_REG_TEMP[] = { 0x1f, 0x28, 0x29 };
static u16 ADM1026_REG_TEMP_MIN[] = { 0x69, 0x48, 0x49 };
static u16 ADM1026_REG_TEMP_MAX[] = { 0x68, 0x40, 0x41 };
static u16 ADM1026_REG_TEMP_TMIN[] = { 0x10, 0x11, 0x12 };
static u16 ADM1026_REG_TEMP_THERM[] = { 0x0d, 0x0e, 0x0f };
static u16 ADM1026_REG_TEMP_OFFSET[] = { 0x1e, 0x6e, 0x6f };
#define ADM1026_REG_FAN(nr) (0x38 + (nr))
#define ADM1026_REG_FAN_MIN(nr) (0x60 + (nr))
#define ADM1026_REG_FAN_DIV_0_3 0x02
#define ADM1026_REG_FAN_DIV_4_7 0x03
#define ADM1026_REG_DAC 0x04
#define ADM1026_REG_PWM 0x05
#define ADM1026_REG_GPIO_CFG_0_3 0x08
#define ADM1026_REG_GPIO_CFG_4_7 0x09
#define ADM1026_REG_GPIO_CFG_8_11 0x0a
#define ADM1026_REG_GPIO_CFG_12_15 0x0b
/* CFG_16 in REG_CFG3 */
#define ADM1026_REG_GPIO_STATUS_0_7 0x24
#define ADM1026_REG_GPIO_STATUS_8_15 0x25
/* STATUS_16 in REG_STATUS4 */
#define ADM1026_REG_GPIO_MASK_0_7 0x1c
#define ADM1026_REG_GPIO_MASK_8_15 0x1d
/* MASK_16 in REG_MASK4 */
#define ADM1026_REG_COMPANY 0x16
#define ADM1026_REG_VERSTEP 0x17
/* These are the recognized values for the above regs */
#define ADM1026_COMPANY_ANALOG_DEV 0x41
#define ADM1026_VERSTEP_GENERIC 0x40
#define ADM1026_VERSTEP_ADM1026 0x44
#define ADM1026_REG_MASK1 0x18
#define ADM1026_REG_MASK2 0x19
#define ADM1026_REG_MASK3 0x1a
#define ADM1026_REG_MASK4 0x1b
#define ADM1026_REG_STATUS1 0x20
#define ADM1026_REG_STATUS2 0x21
#define ADM1026_REG_STATUS3 0x22
#define ADM1026_REG_STATUS4 0x23
#define ADM1026_FAN_ACTIVATION_TEMP_HYST -6
#define ADM1026_FAN_CONTROL_TEMP_RANGE 20
#define ADM1026_PWM_MAX 255
/* Conversions. Rounding and limit checking is only done on the TO_REG
* variants. Note that you should be a bit careful with which arguments
* these macros are called: arguments may be evaluated more than once.
*/
/* IN are scaled acording to built-in resistors. These are the
* voltages corresponding to 3/4 of full scale (192 or 0xc0)
* NOTE: The -12V input needs an additional factor to account
* for the Vref pullup resistor.
* NEG12_OFFSET = SCALE * Vref / V-192 - Vref
* = 13875 * 2.50 / 1.875 - 2500
* = 16000
*
* The values in this table are based on Table II, page 15 of the
* datasheet.
*/
static int adm1026_scaling[] = { /* .001 Volts */
2250, 2250, 2250, 2250, 2250, 2250,
1875, 1875, 1875, 1875, 3000, 3330,
3330, 4995, 2250, 12000, 13875
};
#define NEG12_OFFSET 16000
#define SCALE(val,from,to) (((val)*(to) + ((from)/2))/(from))
#define INS_TO_REG(n,val) (SENSORS_LIMIT(SCALE(val,adm1026_scaling[n],192),\
0,255))
#define INS_FROM_REG(n,val) (SCALE(val,192,adm1026_scaling[n]))
/* FAN speed is measured using 22.5kHz clock and counts for 2 pulses
* and we assume a 2 pulse-per-rev fan tach signal
* 22500 kHz * 60 (sec/min) * 2 (pulse) / 2 (pulse/rev) == 1350000
*/
#define FAN_TO_REG(val,div) ((val)<=0 ? 0xff : SENSORS_LIMIT(1350000/((val)*\
(div)),1,254))
#define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==0xff ? 0 : 1350000/((val)*\
(div)))
#define DIV_FROM_REG(val) (1<<(val))
#define DIV_TO_REG(val) ((val)>=8 ? 3 : (val)>=4 ? 2 : (val)>=2 ? 1 : 0)
/* Temperature is reported in 1 degC increments */
#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)+((val)<0 ? -500 : 500))/1000,\
-127,127))
#define TEMP_FROM_REG(val) ((val) * 1000)
#define OFFSET_TO_REG(val) (SENSORS_LIMIT(((val)+((val)<0 ? -500 : 500))/1000,\
-127,127))
#define OFFSET_FROM_REG(val) ((val) * 1000)
#define PWM_TO_REG(val) (SENSORS_LIMIT(val,0,255))
#define PWM_FROM_REG(val) (val)
#define PWM_MIN_TO_REG(val) ((val) & 0xf0)
#define PWM_MIN_FROM_REG(val) (((val) & 0xf0) + ((val) >> 4))
/* Analog output is a voltage, and scaled to millivolts. The datasheet
* indicates that the DAC could be used to drive the fans, but in our
* example board (Arima HDAMA) it isn't connected to the fans at all.
*/
#define DAC_TO_REG(val) (SENSORS_LIMIT(((((val)*255)+500)/2500),0,255))
#define DAC_FROM_REG(val) (((val)*2500)/255)
/* Typically used with systems using a v9.1 VRM spec ? */
#define ADM1026_INIT_VRM 91
/* Chip sampling rates
*
* Some sensors are not updated more frequently than once per second
* so it doesn't make sense to read them more often than that.
* We cache the results and return the saved data if the driver
* is called again before a second has elapsed.
*
* Also, there is significant configuration data for this chip
* So, we keep the config data up to date in the cache
* when it is written and only sample it once every 5 *minutes*
*/
#define ADM1026_DATA_INTERVAL (1 * HZ)
#define ADM1026_CONFIG_INTERVAL (5 * 60 * HZ)
/* We allow for multiple chips in a single system.
*
* For each registered ADM1026, we need to keep state information
* at client->data. The adm1026_data structure is dynamically
* allocated, when a new client structure is allocated. */
struct pwm_data {
u8 pwm;
u8 enable;
u8 auto_pwm_min;
};
struct adm1026_data {
struct i2c_client client;
struct device *hwmon_dev;
enum chips type;
struct mutex update_lock;
int valid; /* !=0 if following fields are valid */
unsigned long last_reading; /* In jiffies */
unsigned long last_config; /* In jiffies */
u8 in[17]; /* Register value */
u8 in_max[17]; /* Register value */
u8 in_min[17]; /* Register value */
s8 temp[3]; /* Register value */
s8 temp_min[3]; /* Register value */
s8 temp_max[3]; /* Register value */
s8 temp_tmin[3]; /* Register value */
s8 temp_crit[3]; /* Register value */
s8 temp_offset[3]; /* Register value */
u8 fan[8]; /* Register value */
u8 fan_min[8]; /* Register value */
u8 fan_div[8]; /* Decoded value */
struct pwm_data pwm1; /* Pwm control values */
int vid; /* Decoded value */
u8 vrm; /* VRM version */
u8 analog_out; /* Register value (DAC) */
long alarms; /* Register encoding, combined */
long alarm_mask; /* Register encoding, combined */
long gpio; /* Register encoding, combined */
long gpio_mask; /* Register encoding, combined */
u8 gpio_config[17]; /* Decoded value */
u8 config1; /* Register value */
u8 config2; /* Register value */
u8 config3; /* Register value */
};
static int adm1026_attach_adapter(struct i2c_adapter *adapter);
static int adm1026_detect(struct i2c_adapter *adapter, int address,
int kind);
static int adm1026_detach_client(struct i2c_client *client);
static int adm1026_read_value(struct i2c_client *client, u8 reg);
static int adm1026_write_value(struct i2c_client *client, u8 reg, int value);
static void adm1026_print_gpio(struct i2c_client *client);
static void adm1026_fixup_gpio(struct i2c_client *client);
static struct adm1026_data *adm1026_update_device(struct device *dev);
static void adm1026_init_client(struct i2c_client *client);
static struct i2c_driver adm1026_driver = {
.driver = {
.name = "adm1026",
},
.attach_adapter = adm1026_attach_adapter,
.detach_client = adm1026_detach_client,
};
static int adm1026_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON)) {
return 0;
}
return i2c_probe(adapter, &addr_data, adm1026_detect);
}
static int adm1026_read_value(struct i2c_client *client, u8 reg)
{
int res;
if (reg < 0x80) {
/* "RAM" locations */
res = i2c_smbus_read_byte_data(client, reg) & 0xff;
} else {
/* EEPROM, do nothing */
res = 0;
}
return res;
}
static int adm1026_write_value(struct i2c_client *client, u8 reg, int value)
{
int res;
if (reg < 0x80) {
/* "RAM" locations */
res = i2c_smbus_write_byte_data(client, reg, value);
} else {
/* EEPROM, do nothing */
res = 0;
}
return res;
}
static void adm1026_init_client(struct i2c_client *client)
{
int value, i;
struct adm1026_data *data = i2c_get_clientdata(client);
dev_dbg(&client->dev, "Initializing device\n");
/* Read chip config */
data->config1 = adm1026_read_value(client, ADM1026_REG_CONFIG1);
data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2);
data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3);
/* Inform user of chip config */
dev_dbg(&client->dev, "ADM1026_REG_CONFIG1 is: 0x%02x\n",
data->config1);
if ((data->config1 & CFG1_MONITOR) == 0) {
dev_dbg(&client->dev, "Monitoring not currently "
"enabled.\n");
}
if (data->config1 & CFG1_INT_ENABLE) {
dev_dbg(&client->dev, "SMBALERT interrupts are "
"enabled.\n");
}
if (data->config1 & CFG1_AIN8_9) {
dev_dbg(&client->dev, "in8 and in9 enabled. "
"temp3 disabled.\n");
} else {
dev_dbg(&client->dev, "temp3 enabled. in8 and "
"in9 disabled.\n");
}
if (data->config1 & CFG1_THERM_HOT) {
dev_dbg(&client->dev, "Automatic THERM, PWM, "
"and temp limits enabled.\n");
}
value = data->config3;
if (data->config3 & CFG3_GPIO16_ENABLE) {
dev_dbg(&client->dev, "GPIO16 enabled. THERM "
"pin disabled.\n");
} else {
dev_dbg(&client->dev, "THERM pin enabled. "
"GPIO16 disabled.\n");
}
if (data->config3 & CFG3_VREF_250) {
dev_dbg(&client->dev, "Vref is 2.50 Volts.\n");
} else {
dev_dbg(&client->dev, "Vref is 1.82 Volts.\n");
}
/* Read and pick apart the existing GPIO configuration */
value = 0;
for (i = 0;i <= 15;++i) {
if ((i & 0x03) == 0) {
value = adm1026_read_value(client,
ADM1026_REG_GPIO_CFG_0_3 + i/4);
}
data->gpio_config[i] = value & 0x03;
value >>= 2;
}
data->gpio_config[16] = (data->config3 >> 6) & 0x03;
/* ... and then print it */
adm1026_print_gpio(client);
/* If the user asks us to reprogram the GPIO config, then
* do it now.
*/
if (gpio_input[0] != -1 || gpio_output[0] != -1
|| gpio_inverted[0] != -1 || gpio_normal[0] != -1
|| gpio_fan[0] != -1) {
adm1026_fixup_gpio(client);
}
/* WE INTENTIONALLY make no changes to the limits,
* offsets, pwms, fans and zones. If they were
* configured, we don't want to mess with them.
* If they weren't, the default is 100% PWM, no
* control and will suffice until 'sensors -s'
* can be run by the user. We DO set the default
* value for pwm1.auto_pwm_min to its maximum
* so that enabling automatic pwm fan control
* without first setting a value for pwm1.auto_pwm_min
* will not result in potentially dangerous fan speed decrease.
*/
data->pwm1.auto_pwm_min=255;
/* Start monitoring */
value = adm1026_read_value(client, ADM1026_REG_CONFIG1);
/* Set MONITOR, clear interrupt acknowledge and s/w reset */
value = (value | CFG1_MONITOR) & (~CFG1_INT_CLEAR & ~CFG1_RESET);
dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value);
data->config1 = value;
adm1026_write_value(client, ADM1026_REG_CONFIG1, value);
/* initialize fan_div[] to hardware defaults */
value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3) |
(adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7) << 8);
for (i = 0;i <= 7;++i) {
data->fan_div[i] = DIV_FROM_REG(value & 0x03);
value >>= 2;
}
}
static void adm1026_print_gpio(struct i2c_client *client)
{
struct adm1026_data *data = i2c_get_clientdata(client);
int i;
dev_dbg(&client->dev, "GPIO config is:");
for (i = 0;i <= 7;++i) {
if (data->config2 & (1 << i)) {
dev_dbg(&client->dev, "\t%sGP%s%d\n",
data->gpio_config[i] & 0x02 ? "" : "!",
data->gpio_config[i] & 0x01 ? "OUT" : "IN",
i);
} else {
dev_dbg(&client->dev, "\tFAN%d\n", i);
}
}
for (i = 8;i <= 15;++i) {
dev_dbg(&client->dev, "\t%sGP%s%d\n",
data->gpio_config[i] & 0x02 ? "" : "!",
data->gpio_config[i] & 0x01 ? "OUT" : "IN",
i);
}
if (data->config3 & CFG3_GPIO16_ENABLE) {
dev_dbg(&client->dev, "\t%sGP%s16\n",
data->gpio_config[16] & 0x02 ? "" : "!",
data->gpio_config[16] & 0x01 ? "OUT" : "IN");
} else {
/* GPIO16 is THERM */
dev_dbg(&client->dev, "\tTHERM\n");
}
}
static void adm1026_fixup_gpio(struct i2c_client *client)
{
struct adm1026_data *data = i2c_get_clientdata(client);
int i;
int value;
/* Make the changes requested. */
/* We may need to unlock/stop monitoring or soft-reset the
* chip before we can make changes. This hasn't been
* tested much. FIXME
*/
/* Make outputs */
for (i = 0;i <= 16;++i) {
if (gpio_output[i] >= 0 && gpio_output[i] <= 16) {
data->gpio_config[gpio_output[i]] |= 0x01;
}
/* if GPIO0-7 is output, it isn't a FAN tach */
if (gpio_output[i] >= 0 && gpio_output[i] <= 7) {
data->config2 |= 1 << gpio_output[i];
}
}
/* Input overrides output */
for (i = 0;i <= 16;++i) {
if (gpio_input[i] >= 0 && gpio_input[i] <= 16) {
data->gpio_config[gpio_input[i]] &= ~ 0x01;
}
/* if GPIO0-7 is input, it isn't a FAN tach */
if (gpio_input[i] >= 0 && gpio_input[i] <= 7) {
data->config2 |= 1 << gpio_input[i];
}
}
/* Inverted */
for (i = 0;i <= 16;++i) {
if (gpio_inverted[i] >= 0 && gpio_inverted[i] <= 16) {
data->gpio_config[gpio_inverted[i]] &= ~ 0x02;
}
}
/* Normal overrides inverted */
for (i = 0;i <= 16;++i) {
if (gpio_normal[i] >= 0 && gpio_normal[i] <= 16) {
data->gpio_config[gpio_normal[i]] |= 0x02;
}
}
/* Fan overrides input and output */
for (i = 0;i <= 7;++i) {
if (gpio_fan[i] >= 0 && gpio_fan[i] <= 7) {
data->config2 &= ~(1 << gpio_fan[i]);
}
}
/* Write new configs to registers */
adm1026_write_value(client, ADM1026_REG_CONFIG2, data->config2);
data->config3 = (data->config3 & 0x3f)
| ((data->gpio_config[16] & 0x03) << 6);
adm1026_write_value(client, ADM1026_REG_CONFIG3, data->config3);
for (i = 15, value = 0;i >= 0;--i) {
value <<= 2;
value |= data->gpio_config[i] & 0x03;
if ((i & 0x03) == 0) {
adm1026_write_value(client,
ADM1026_REG_GPIO_CFG_0_3 + i/4,
value);
value = 0;
}
}
/* Print the new config */
adm1026_print_gpio(client);
}
static struct adm1026_data *adm1026_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int i;
long value, alarms, gpio;
mutex_lock(&data->update_lock);
if (!data->valid
|| time_after(jiffies, data->last_reading + ADM1026_DATA_INTERVAL)) {
/* Things that change quickly */
dev_dbg(&client->dev,"Reading sensor values\n");
for (i = 0;i <= 16;++i) {
data->in[i] =
adm1026_read_value(client, ADM1026_REG_IN[i]);
}
for (i = 0;i <= 7;++i) {
data->fan[i] =
adm1026_read_value(client, ADM1026_REG_FAN(i));
}
for (i = 0;i <= 2;++i) {
/* NOTE: temp[] is s8 and we assume 2's complement
* "conversion" in the assignment */
data->temp[i] =
adm1026_read_value(client, ADM1026_REG_TEMP[i]);
}
data->pwm1.pwm = adm1026_read_value(client,
ADM1026_REG_PWM);
data->analog_out = adm1026_read_value(client,
ADM1026_REG_DAC);
/* GPIO16 is MSbit of alarms, move it to gpio */
alarms = adm1026_read_value(client, ADM1026_REG_STATUS4);
gpio = alarms & 0x80 ? 0x0100 : 0; /* GPIO16 */
alarms &= 0x7f;
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_STATUS3);
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_STATUS2);
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_STATUS1);
data->alarms = alarms;
/* Read the GPIO values */
gpio |= adm1026_read_value(client,
ADM1026_REG_GPIO_STATUS_8_15);
gpio <<= 8;
gpio |= adm1026_read_value(client,
ADM1026_REG_GPIO_STATUS_0_7);
data->gpio = gpio;
data->last_reading = jiffies;
}; /* last_reading */
if (!data->valid ||
time_after(jiffies, data->last_config + ADM1026_CONFIG_INTERVAL)) {
/* Things that don't change often */
dev_dbg(&client->dev, "Reading config values\n");
for (i = 0;i <= 16;++i) {
data->in_min[i] = adm1026_read_value(client,
ADM1026_REG_IN_MIN[i]);
data->in_max[i] = adm1026_read_value(client,
ADM1026_REG_IN_MAX[i]);
}
value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3)
| (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7)
<< 8);
for (i = 0;i <= 7;++i) {
data->fan_min[i] = adm1026_read_value(client,
ADM1026_REG_FAN_MIN(i));
data->fan_div[i] = DIV_FROM_REG(value & 0x03);
value >>= 2;
}
for (i = 0; i <= 2; ++i) {
/* NOTE: temp_xxx[] are s8 and we assume 2's
* complement "conversion" in the assignment
*/
data->temp_min[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_MIN[i]);
data->temp_max[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_MAX[i]);
data->temp_tmin[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_TMIN[i]);
data->temp_crit[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_THERM[i]);
data->temp_offset[i] = adm1026_read_value(client,
ADM1026_REG_TEMP_OFFSET[i]);
}
/* Read the STATUS/alarm masks */
alarms = adm1026_read_value(client, ADM1026_REG_MASK4);
gpio = alarms & 0x80 ? 0x0100 : 0; /* GPIO16 */
alarms = (alarms & 0x7f) << 8;
alarms |= adm1026_read_value(client, ADM1026_REG_MASK3);
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_MASK2);
alarms <<= 8;
alarms |= adm1026_read_value(client, ADM1026_REG_MASK1);
data->alarm_mask = alarms;
/* Read the GPIO values */
gpio |= adm1026_read_value(client,
ADM1026_REG_GPIO_MASK_8_15);
gpio <<= 8;
gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_0_7);
data->gpio_mask = gpio;
/* Read various values from CONFIG1 */
data->config1 = adm1026_read_value(client,
ADM1026_REG_CONFIG1);
if (data->config1 & CFG1_PWM_AFC) {
data->pwm1.enable = 2;
data->pwm1.auto_pwm_min =
PWM_MIN_FROM_REG(data->pwm1.pwm);
}
/* Read the GPIO config */
data->config2 = adm1026_read_value(client,
ADM1026_REG_CONFIG2);
data->config3 = adm1026_read_value(client,
ADM1026_REG_CONFIG3);
data->gpio_config[16] = (data->config3 >> 6) & 0x03;
value = 0;
for (i = 0;i <= 15;++i) {
if ((i & 0x03) == 0) {
value = adm1026_read_value(client,
ADM1026_REG_GPIO_CFG_0_3 + i/4);
}
data->gpio_config[i] = value & 0x03;
value >>= 2;
}
data->last_config = jiffies;
}; /* last_config */
dev_dbg(&client->dev, "Setting VID from GPIO11-15.\n");
data->vid = (data->gpio >> 11) & 0x1f;
data->valid = 1;
mutex_unlock(&data->update_lock);
return data;
}
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in[nr]));
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_min[nr]));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[nr] = INS_TO_REG(nr, val);
adm1026_write_value(client, ADM1026_REG_IN_MIN[nr], data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_max[nr]));
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[nr] = INS_TO_REG(nr, val);
adm1026_write_value(client, ADM1026_REG_IN_MAX[nr], data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define in_reg(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in, \
NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, offset);
in_reg(0);
in_reg(1);
in_reg(2);
in_reg(3);
in_reg(4);
in_reg(5);
in_reg(6);
in_reg(7);
in_reg(8);
in_reg(9);
in_reg(10);
in_reg(11);
in_reg(12);
in_reg(13);
in_reg(14);
in_reg(15);
static ssize_t show_in16(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in[16]) -
NEG12_OFFSET);
}
static ssize_t show_in16_min(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in_min[16])
- NEG12_OFFSET);
}
static ssize_t set_in16_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[16] = INS_TO_REG(16, val + NEG12_OFFSET);
adm1026_write_value(client, ADM1026_REG_IN_MIN[16], data->in_min[16]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_in16_max(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in_max[16])
- NEG12_OFFSET);
}
static ssize_t set_in16_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[16] = INS_TO_REG(16, val+NEG12_OFFSET);
adm1026_write_value(client, ADM1026_REG_IN_MAX[16], data->in_max[16]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(in16_input, S_IRUGO, show_in16, NULL, 16);
static SENSOR_DEVICE_ATTR(in16_min, S_IRUGO | S_IWUSR, show_in16_min, set_in16_min, 16);
static SENSOR_DEVICE_ATTR(in16_max, S_IRUGO | S_IWUSR, show_in16_max, set_in16_max, 16);
/* Now add fan read/write functions */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan[nr],
data->fan_div[nr]));
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan_min[nr],
data->fan_div[nr]));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, data->fan_div[nr]);
adm1026_write_value(client, ADM1026_REG_FAN_MIN(nr),
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define fan_offset(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan, NULL, \
offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1);
fan_offset(1);
fan_offset(2);
fan_offset(3);
fan_offset(4);
fan_offset(5);
fan_offset(6);
fan_offset(7);
fan_offset(8);
/* Adjust fan_min to account for new fan divisor */
static void fixup_fan_min(struct device *dev, int fan, int old_div)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int new_min;
int new_div = data->fan_div[fan];
/* 0 and 0xff are special. Don't adjust them */
if (data->fan_min[fan] == 0 || data->fan_min[fan] == 0xff) {
return;
}
new_min = data->fan_min[fan] * old_div / new_div;
new_min = SENSORS_LIMIT(new_min, 1, 254);
data->fan_min[fan] = new_min;
adm1026_write_value(client, ADM1026_REG_FAN_MIN(fan), new_min);
}
/* Now add fan_div read/write functions */
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", data->fan_div[nr]);
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val,orig_div,new_div,shift;
val = simple_strtol(buf, NULL, 10);
new_div = DIV_TO_REG(val);
if (new_div == 0) {
return -EINVAL;
}
mutex_lock(&data->update_lock);
orig_div = data->fan_div[nr];
data->fan_div[nr] = DIV_FROM_REG(new_div);
if (nr < 4) { /* 0 <= nr < 4 */
shift = 2 * nr;
adm1026_write_value(client, ADM1026_REG_FAN_DIV_0_3,
((DIV_TO_REG(orig_div) & (~(0x03 << shift))) |
(new_div << shift)));
} else { /* 3 < nr < 8 */
shift = 2 * (nr - 4);
adm1026_write_value(client, ADM1026_REG_FAN_DIV_4_7,
((DIV_TO_REG(orig_div) & (~(0x03 << (2 * shift)))) |
(new_div << shift)));
}
if (data->fan_div[nr] != orig_div) {
fixup_fan_min(dev,nr,orig_div);
}
mutex_unlock(&data->update_lock);
return count;
}
#define fan_offset_div(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
show_fan_div, set_fan_div, offset - 1);
fan_offset_div(1);
fan_offset_div(2);
fan_offset_div(3);
fan_offset_div(4);
fan_offset_div(5);
fan_offset_div(6);
fan_offset_div(7);
fan_offset_div(8);
/* Temps */
static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp[nr]));
}
static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_MIN[nr],
data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_MAX[nr],
data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp, \
NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_max, set_temp_max, offset - 1);
temp_reg(1);
temp_reg(2);
temp_reg(3);
static ssize_t show_temp_offset(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_offset[nr]));
}
static ssize_t set_temp_offset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_offset[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_OFFSET[nr],
data->temp_offset[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_offset_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \
show_temp_offset, set_temp_offset, offset - 1);
temp_offset_reg(1);
temp_offset_reg(2);
temp_offset_reg(3);
static ssize_t show_temp_auto_point1_temp_hyst(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(
ADM1026_FAN_ACTIVATION_TEMP_HYST + data->temp_tmin[nr]));
}
static ssize_t show_temp_auto_point2_temp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_tmin[nr] +
ADM1026_FAN_CONTROL_TEMP_RANGE));
}
static ssize_t show_temp_auto_point1_temp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_tmin[nr]));
}
static ssize_t set_temp_auto_point1_temp(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_tmin[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_TMIN[nr],
data->temp_tmin[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_auto_point(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point1_temp, S_IRUGO | S_IWUSR, \
show_temp_auto_point1_temp, set_temp_auto_point1_temp, \
offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point1_temp_hyst, S_IRUGO, \
show_temp_auto_point1_temp_hyst, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point2_temp, S_IRUGO, \
show_temp_auto_point2_temp, NULL, offset - 1);
temp_auto_point(1);
temp_auto_point(2);
temp_auto_point(3);
static ssize_t show_temp_crit_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", (data->config1 & CFG1_THERM_HOT) >> 4);
}
static ssize_t set_temp_crit_enable(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
if ((val == 1) || (val==0)) {
mutex_lock(&data->update_lock);
data->config1 = (data->config1 & ~CFG1_THERM_HOT) | (val << 4);
adm1026_write_value(client, ADM1026_REG_CONFIG1,
data->config1);
mutex_unlock(&data->update_lock);
}
return count;
}
#define temp_crit_enable(offset) \
static DEVICE_ATTR(temp##offset##_crit_enable, S_IRUGO | S_IWUSR, \
show_temp_crit_enable, set_temp_crit_enable);
temp_crit_enable(1);
temp_crit_enable(2);
temp_crit_enable(3);
static ssize_t show_temp_crit(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_crit[nr] = TEMP_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_TEMP_THERM[nr],
data->temp_crit[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_crit_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
show_temp_crit, set_temp_crit, offset - 1);
temp_crit_reg(1);
temp_crit_reg(2);
temp_crit_reg(3);
static ssize_t show_analog_out_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", DAC_FROM_REG(data->analog_out));
}
static ssize_t set_analog_out_reg(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->analog_out = DAC_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_DAC, data->analog_out);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(analog_out, S_IRUGO | S_IWUSR, show_analog_out_reg,
set_analog_out_reg);
static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", vid_from_reg(data->vid & 0x3f, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = dev_get_drvdata(dev);
return sprintf(buf,"%d\n", data->vrm);
}
static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
data->vrm = simple_strtol(buf, NULL, 10);
return count;
}
static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf, "%ld\n", (long) (data->alarms));
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
static ssize_t show_alarm_mask(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%ld\n", data->alarm_mask);
}
static ssize_t set_alarm_mask(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
unsigned long mask;
mutex_lock(&data->update_lock);
data->alarm_mask = val & 0x7fffffff;
mask = data->alarm_mask
| (data->gpio_mask & 0x10000 ? 0x80000000 : 0);
adm1026_write_value(client, ADM1026_REG_MASK1,
mask & 0xff);
mask >>= 8;
adm1026_write_value(client, ADM1026_REG_MASK2,
mask & 0xff);
mask >>= 8;
adm1026_write_value(client, ADM1026_REG_MASK3,
mask & 0xff);
mask >>= 8;
adm1026_write_value(client, ADM1026_REG_MASK4,
mask & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(alarm_mask, S_IRUGO | S_IWUSR, show_alarm_mask,
set_alarm_mask);
static ssize_t show_gpio(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%ld\n", data->gpio);
}
static ssize_t set_gpio(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
long gpio;
mutex_lock(&data->update_lock);
data->gpio = val & 0x1ffff;
gpio = data->gpio;
adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_0_7,gpio & 0xff);
gpio >>= 8;
adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_8_15,gpio & 0xff);
gpio = ((gpio >> 1) & 0x80) | (data->alarms >> 24 & 0x7f);
adm1026_write_value(client, ADM1026_REG_STATUS4,gpio & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(gpio, S_IRUGO | S_IWUSR, show_gpio, set_gpio);
static ssize_t show_gpio_mask(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%ld\n", data->gpio_mask);
}
static ssize_t set_gpio_mask(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
long mask;
mutex_lock(&data->update_lock);
data->gpio_mask = val & 0x1ffff;
mask = data->gpio_mask;
adm1026_write_value(client, ADM1026_REG_GPIO_MASK_0_7,mask & 0xff);
mask >>= 8;
adm1026_write_value(client, ADM1026_REG_GPIO_MASK_8_15,mask & 0xff);
mask = ((mask >> 1) & 0x80) | (data->alarm_mask >> 24 & 0x7f);
adm1026_write_value(client, ADM1026_REG_MASK1,mask & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(gpio_mask, S_IRUGO | S_IWUSR, show_gpio_mask, set_gpio_mask);
static ssize_t show_pwm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", PWM_FROM_REG(data->pwm1.pwm));
}
static ssize_t set_pwm_reg(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
if (data->pwm1.enable == 1) {
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->pwm1.pwm = PWM_TO_REG(val);
adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm);
mutex_unlock(&data->update_lock);
}
return count;
}
static ssize_t show_auto_pwm_min(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", data->pwm1.auto_pwm_min);
}
static ssize_t set_auto_pwm_min(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->pwm1.auto_pwm_min = SENSORS_LIMIT(val,0,255);
if (data->pwm1.enable == 2) { /* apply immediately */
data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) |
PWM_MIN_TO_REG(data->pwm1.auto_pwm_min));
adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm);
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_auto_pwm_max(struct device *dev, struct device_attribute *attr, char *buf)
{
return sprintf(buf,"%d\n", ADM1026_PWM_MAX);
}
static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1026_data *data = adm1026_update_device(dev);
return sprintf(buf,"%d\n", data->pwm1.enable);
}
static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1026_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
int old_enable;
if ((val >= 0) && (val < 3)) {
mutex_lock(&data->update_lock);
old_enable = data->pwm1.enable;
data->pwm1.enable = val;
data->config1 = (data->config1 & ~CFG1_PWM_AFC)
| ((val == 2) ? CFG1_PWM_AFC : 0);
adm1026_write_value(client, ADM1026_REG_CONFIG1,
data->config1);
if (val == 2) { /* apply pwm1_auto_pwm_min to pwm1 */
data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) |
PWM_MIN_TO_REG(data->pwm1.auto_pwm_min));
adm1026_write_value(client, ADM1026_REG_PWM,
data->pwm1.pwm);
} else if (!((old_enable == 1) && (val == 1))) {
/* set pwm to safe value */
data->pwm1.pwm = 255;
adm1026_write_value(client, ADM1026_REG_PWM,
data->pwm1.pwm);
}
mutex_unlock(&data->update_lock);
}
return count;
}
/* enable PWM fan control */
static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg);
static DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg);
static DEVICE_ATTR(pwm3, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg);
static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
set_pwm_enable);
static DEVICE_ATTR(pwm2_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
set_pwm_enable);
static DEVICE_ATTR(pwm3_enable, S_IRUGO | S_IWUSR, show_pwm_enable,
set_pwm_enable);
static DEVICE_ATTR(temp1_auto_point1_pwm, S_IRUGO | S_IWUSR,
show_auto_pwm_min, set_auto_pwm_min);
static DEVICE_ATTR(temp2_auto_point1_pwm, S_IRUGO | S_IWUSR,
show_auto_pwm_min, set_auto_pwm_min);
static DEVICE_ATTR(temp3_auto_point1_pwm, S_IRUGO | S_IWUSR,
show_auto_pwm_min, set_auto_pwm_min);
static DEVICE_ATTR(temp1_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);
static DEVICE_ATTR(temp2_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);
static DEVICE_ATTR(temp3_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);
static struct attribute *adm1026_attributes[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in8_input.dev_attr.attr,
&sensor_dev_attr_in8_max.dev_attr.attr,
&sensor_dev_attr_in8_min.dev_attr.attr,
&sensor_dev_attr_in9_input.dev_attr.attr,
&sensor_dev_attr_in9_max.dev_attr.attr,
&sensor_dev_attr_in9_min.dev_attr.attr,
&sensor_dev_attr_in10_input.dev_attr.attr,
&sensor_dev_attr_in10_max.dev_attr.attr,
&sensor_dev_attr_in10_min.dev_attr.attr,
&sensor_dev_attr_in11_input.dev_attr.attr,
&sensor_dev_attr_in11_max.dev_attr.attr,
&sensor_dev_attr_in11_min.dev_attr.attr,
&sensor_dev_attr_in12_input.dev_attr.attr,
&sensor_dev_attr_in12_max.dev_attr.attr,
&sensor_dev_attr_in12_min.dev_attr.attr,
&sensor_dev_attr_in13_input.dev_attr.attr,
&sensor_dev_attr_in13_max.dev_attr.attr,
&sensor_dev_attr_in13_min.dev_attr.attr,
&sensor_dev_attr_in14_input.dev_attr.attr,
&sensor_dev_attr_in14_max.dev_attr.attr,
&sensor_dev_attr_in14_min.dev_attr.attr,
&sensor_dev_attr_in15_input.dev_attr.attr,
&sensor_dev_attr_in15_max.dev_attr.attr,
&sensor_dev_attr_in15_min.dev_attr.attr,
&sensor_dev_attr_in16_input.dev_attr.attr,
&sensor_dev_attr_in16_max.dev_attr.attr,
&sensor_dev_attr_in16_min.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan3_div.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan4_div.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan5_input.dev_attr.attr,
&sensor_dev_attr_fan5_div.dev_attr.attr,
&sensor_dev_attr_fan5_min.dev_attr.attr,
&sensor_dev_attr_fan6_input.dev_attr.attr,
&sensor_dev_attr_fan6_div.dev_attr.attr,
&sensor_dev_attr_fan6_min.dev_attr.attr,
&sensor_dev_attr_fan7_input.dev_attr.attr,
&sensor_dev_attr_fan7_div.dev_attr.attr,
&sensor_dev_attr_fan7_min.dev_attr.attr,
&sensor_dev_attr_fan8_input.dev_attr.attr,
&sensor_dev_attr_fan8_div.dev_attr.attr,
&sensor_dev_attr_fan8_min.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp1_offset.dev_attr.attr,
&sensor_dev_attr_temp2_offset.dev_attr.attr,
&sensor_dev_attr_temp3_offset.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&dev_attr_temp1_crit_enable.attr,
&dev_attr_temp2_crit_enable.attr,
&dev_attr_temp3_crit_enable.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
&dev_attr_alarms.attr,
&dev_attr_alarm_mask.attr,
&dev_attr_gpio.attr,
&dev_attr_gpio_mask.attr,
&dev_attr_pwm1.attr,
&dev_attr_pwm2.attr,
&dev_attr_pwm3.attr,
&dev_attr_pwm1_enable.attr,
&dev_attr_pwm2_enable.attr,
&dev_attr_pwm3_enable.attr,
&dev_attr_temp1_auto_point1_pwm.attr,
&dev_attr_temp2_auto_point1_pwm.attr,
&dev_attr_temp3_auto_point1_pwm.attr,
&dev_attr_temp1_auto_point2_pwm.attr,
&dev_attr_temp2_auto_point2_pwm.attr,
&dev_attr_temp3_auto_point2_pwm.attr,
&dev_attr_analog_out.attr,
NULL
};
static const struct attribute_group adm1026_group = {
.attrs = adm1026_attributes,
};
static int adm1026_detect(struct i2c_adapter *adapter, int address,
int kind)
{
int company, verstep;
struct i2c_client *new_client;
struct adm1026_data *data;
int err = 0;
const char *type_name = "";
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
/* We need to be able to do byte I/O */
goto exit;
};
/* OK. For now, we presume we have a valid client. We now create the
client structure, even though we cannot fill it completely yet.
But it allows us to access adm1026_{read,write}_value. */
if (!(data = kzalloc(sizeof(struct adm1026_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit;
}
new_client = &data->client;
i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &adm1026_driver;
new_client->flags = 0;
/* Now, we do the remaining detection. */
company = adm1026_read_value(new_client, ADM1026_REG_COMPANY);
verstep = adm1026_read_value(new_client, ADM1026_REG_VERSTEP);
dev_dbg(&new_client->dev, "Detecting device at %d,0x%02x with"
" COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
i2c_adapter_id(new_client->adapter), new_client->addr,
company, verstep);
/* If auto-detecting, Determine the chip type. */
if (kind <= 0) {
dev_dbg(&new_client->dev, "Autodetecting device at %d,0x%02x "
"...\n", i2c_adapter_id(adapter), address);
if (company == ADM1026_COMPANY_ANALOG_DEV
&& verstep == ADM1026_VERSTEP_ADM1026) {
kind = adm1026;
} else if (company == ADM1026_COMPANY_ANALOG_DEV
&& (verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) {
dev_err(&adapter->dev, ": Unrecognized stepping "
"0x%02x. Defaulting to ADM1026.\n", verstep);
kind = adm1026;
} else if ((verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) {
dev_err(&adapter->dev, ": Found version/stepping "
"0x%02x. Assuming generic ADM1026.\n",
verstep);
kind = any_chip;
} else {
dev_dbg(&new_client->dev, ": Autodetection "
"failed\n");
/* Not an ADM1026 ... */
if (kind == 0) { /* User used force=x,y */
dev_err(&adapter->dev, "Generic ADM1026 not "
"found at %d,0x%02x. Try "
"force_adm1026.\n",
i2c_adapter_id(adapter), address);
}
err = 0;
goto exitfree;
}
}
/* Fill in the chip specific driver values */
switch (kind) {
case any_chip :
type_name = "adm1026";
break;
case adm1026 :
type_name = "adm1026";
break;
default :
dev_err(&adapter->dev, ": Internal error, invalid "
"kind (%d)!", kind);
err = -EFAULT;
goto exitfree;
}
strlcpy(new_client->name, type_name, I2C_NAME_SIZE);
/* Fill in the remaining client fields */
data->type = kind;
data->valid = 0;
mutex_init(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto exitfree;
/* Set the VRM version */
data->vrm = vid_which_vrm();
/* Initialize the ADM1026 chip */
adm1026_init_client(new_client);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&new_client->dev.kobj, &adm1026_group)))
goto exitdetach;
data->hwmon_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exitremove;
}
return 0;
/* Error out and cleanup code */
exitremove:
sysfs_remove_group(&new_client->dev.kobj, &adm1026_group);
exitdetach:
i2c_detach_client(new_client);
exitfree:
kfree(data);
exit:
return err;
}
static int adm1026_detach_client(struct i2c_client *client)
{
struct adm1026_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &adm1026_group);
i2c_detach_client(client);
kfree(data);
return 0;
}
static int __init sm_adm1026_init(void)
{
return i2c_add_driver(&adm1026_driver);
}
static void __exit sm_adm1026_exit(void)
{
i2c_del_driver(&adm1026_driver);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
"Justin Thiessen <jthiessen@penguincomputing.com>");
MODULE_DESCRIPTION("ADM1026 driver");
module_init(sm_adm1026_init);
module_exit(sm_adm1026_exit);