90ae409f9e
The new dma_alloc_contiguous hides if we allocate CMA or regular
pages, and thus fails to retry a ZONE_NORMAL allocation if the CMA
allocation succeeds but isn't addressable. That means we either fail
outright or dip into a small zone that might not succeed either.
Thanks to Hillf Danton for debugging this issue.
Fixes: b1d2dc009d
("dma-contiguous: add dma_{alloc,free}_contiguous() helpers")
Reported-by: Tobias Klausmann <tobias.johannes.klausmann@mni.thm.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Tobias Klausmann <tobias.johannes.klausmann@mni.thm.de>
420 lines
12 KiB
C
420 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2018 Christoph Hellwig.
|
|
*
|
|
* DMA operations that map physical memory directly without using an IOMMU.
|
|
*/
|
|
#include <linux/memblock.h> /* for max_pfn */
|
|
#include <linux/export.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/dma-noncoherent.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/swiotlb.h>
|
|
|
|
/*
|
|
* Most architectures use ZONE_DMA for the first 16 Megabytes, but
|
|
* some use it for entirely different regions:
|
|
*/
|
|
#ifndef ARCH_ZONE_DMA_BITS
|
|
#define ARCH_ZONE_DMA_BITS 24
|
|
#endif
|
|
|
|
static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
|
|
{
|
|
if (!dev->dma_mask) {
|
|
dev_err_once(dev, "DMA map on device without dma_mask\n");
|
|
} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
|
|
dev_err_once(dev,
|
|
"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
|
|
&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
|
|
}
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
|
|
phys_addr_t phys)
|
|
{
|
|
if (force_dma_unencrypted(dev))
|
|
return __phys_to_dma(dev, phys);
|
|
return phys_to_dma(dev, phys);
|
|
}
|
|
|
|
u64 dma_direct_get_required_mask(struct device *dev)
|
|
{
|
|
u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
|
|
|
|
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
|
|
}
|
|
|
|
static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
|
|
u64 *phys_mask)
|
|
{
|
|
if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
|
|
dma_mask = dev->bus_dma_mask;
|
|
|
|
if (force_dma_unencrypted(dev))
|
|
*phys_mask = __dma_to_phys(dev, dma_mask);
|
|
else
|
|
*phys_mask = dma_to_phys(dev, dma_mask);
|
|
|
|
/*
|
|
* Optimistically try the zone that the physical address mask falls
|
|
* into first. If that returns memory that isn't actually addressable
|
|
* we will fallback to the next lower zone and try again.
|
|
*
|
|
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
|
|
* zones.
|
|
*/
|
|
if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
|
|
return GFP_DMA;
|
|
if (*phys_mask <= DMA_BIT_MASK(32))
|
|
return GFP_DMA32;
|
|
return 0;
|
|
}
|
|
|
|
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
|
|
{
|
|
return phys_to_dma_direct(dev, phys) + size - 1 <=
|
|
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
|
|
}
|
|
|
|
struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
size_t alloc_size = PAGE_ALIGN(size);
|
|
int node = dev_to_node(dev);
|
|
struct page *page = NULL;
|
|
u64 phys_mask;
|
|
|
|
if (attrs & DMA_ATTR_NO_WARN)
|
|
gfp |= __GFP_NOWARN;
|
|
|
|
/* we always manually zero the memory once we are done: */
|
|
gfp &= ~__GFP_ZERO;
|
|
gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
|
|
&phys_mask);
|
|
page = dma_alloc_contiguous(dev, alloc_size, gfp);
|
|
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
|
|
dma_free_contiguous(dev, page, alloc_size);
|
|
page = NULL;
|
|
}
|
|
again:
|
|
if (!page)
|
|
page = alloc_pages_node(node, gfp, get_order(alloc_size));
|
|
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
|
|
dma_free_contiguous(dev, page, size);
|
|
page = NULL;
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
|
|
phys_mask < DMA_BIT_MASK(64) &&
|
|
!(gfp & (GFP_DMA32 | GFP_DMA))) {
|
|
gfp |= GFP_DMA32;
|
|
goto again;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
|
|
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
void *dma_direct_alloc_pages(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
struct page *page;
|
|
void *ret;
|
|
|
|
page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
|
|
!force_dma_unencrypted(dev)) {
|
|
/* remove any dirty cache lines on the kernel alias */
|
|
if (!PageHighMem(page))
|
|
arch_dma_prep_coherent(page, size);
|
|
*dma_handle = phys_to_dma(dev, page_to_phys(page));
|
|
/* return the page pointer as the opaque cookie */
|
|
return page;
|
|
}
|
|
|
|
if (PageHighMem(page)) {
|
|
/*
|
|
* Depending on the cma= arguments and per-arch setup
|
|
* dma_alloc_contiguous could return highmem pages.
|
|
* Without remapping there is no way to return them here,
|
|
* so log an error and fail.
|
|
*/
|
|
dev_info(dev, "Rejecting highmem page from CMA.\n");
|
|
__dma_direct_free_pages(dev, size, page);
|
|
return NULL;
|
|
}
|
|
|
|
ret = page_address(page);
|
|
if (force_dma_unencrypted(dev)) {
|
|
set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
|
|
*dma_handle = __phys_to_dma(dev, page_to_phys(page));
|
|
} else {
|
|
*dma_handle = phys_to_dma(dev, page_to_phys(page));
|
|
}
|
|
memset(ret, 0, size);
|
|
|
|
if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
|
|
dma_alloc_need_uncached(dev, attrs)) {
|
|
arch_dma_prep_coherent(page, size);
|
|
ret = uncached_kernel_address(ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
|
|
{
|
|
dma_free_contiguous(dev, page, size);
|
|
}
|
|
|
|
void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t dma_addr, unsigned long attrs)
|
|
{
|
|
unsigned int page_order = get_order(size);
|
|
|
|
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
|
|
!force_dma_unencrypted(dev)) {
|
|
/* cpu_addr is a struct page cookie, not a kernel address */
|
|
__dma_direct_free_pages(dev, size, cpu_addr);
|
|
return;
|
|
}
|
|
|
|
if (force_dma_unencrypted(dev))
|
|
set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
|
|
|
|
if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
|
|
dma_alloc_need_uncached(dev, attrs))
|
|
cpu_addr = cached_kernel_address(cpu_addr);
|
|
__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
|
|
}
|
|
|
|
void *dma_direct_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
|
|
dma_alloc_need_uncached(dev, attrs))
|
|
return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
|
|
return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
|
|
}
|
|
|
|
void dma_direct_free(struct device *dev, size_t size,
|
|
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
|
|
dma_alloc_need_uncached(dev, attrs))
|
|
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
|
|
else
|
|
dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
|
|
}
|
|
|
|
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
|
|
defined(CONFIG_SWIOTLB)
|
|
void dma_direct_sync_single_for_device(struct device *dev,
|
|
dma_addr_t addr, size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr = dma_to_phys(dev, addr);
|
|
|
|
if (unlikely(is_swiotlb_buffer(paddr)))
|
|
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
|
|
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_device(dev, paddr, size, dir);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_sync_single_for_device);
|
|
|
|
void dma_direct_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nents, i) {
|
|
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
|
|
|
|
if (unlikely(is_swiotlb_buffer(paddr)))
|
|
swiotlb_tbl_sync_single(dev, paddr, sg->length,
|
|
dir, SYNC_FOR_DEVICE);
|
|
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_device(dev, paddr, sg->length,
|
|
dir);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
|
|
#endif
|
|
|
|
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
|
|
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
|
|
defined(CONFIG_SWIOTLB)
|
|
void dma_direct_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t addr, size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr = dma_to_phys(dev, addr);
|
|
|
|
if (!dev_is_dma_coherent(dev)) {
|
|
arch_sync_dma_for_cpu(dev, paddr, size, dir);
|
|
arch_sync_dma_for_cpu_all(dev);
|
|
}
|
|
|
|
if (unlikely(is_swiotlb_buffer(paddr)))
|
|
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
|
|
|
|
void dma_direct_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nents, i) {
|
|
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
|
|
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
|
|
|
|
if (unlikely(is_swiotlb_buffer(paddr)))
|
|
swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
|
|
SYNC_FOR_CPU);
|
|
}
|
|
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_cpu_all(dev);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
|
|
|
|
void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
phys_addr_t phys = dma_to_phys(dev, addr);
|
|
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
|
|
|
|
if (unlikely(is_swiotlb_buffer(phys)))
|
|
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_unmap_page);
|
|
|
|
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
|
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nents, i)
|
|
dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
|
|
attrs);
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_unmap_sg);
|
|
#endif
|
|
|
|
static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
|
|
size_t size)
|
|
{
|
|
return swiotlb_force != SWIOTLB_FORCE &&
|
|
dma_capable(dev, dma_addr, size);
|
|
}
|
|
|
|
dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
phys_addr_t phys = page_to_phys(page) + offset;
|
|
dma_addr_t dma_addr = phys_to_dma(dev, phys);
|
|
|
|
if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
|
|
!swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
|
|
report_addr(dev, dma_addr, size);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
arch_sync_dma_for_device(dev, phys, size, dir);
|
|
return dma_addr;
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_map_page);
|
|
|
|
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sgl, sg, nents, i) {
|
|
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
|
|
sg->offset, sg->length, dir, attrs);
|
|
if (sg->dma_address == DMA_MAPPING_ERROR)
|
|
goto out_unmap;
|
|
sg_dma_len(sg) = sg->length;
|
|
}
|
|
|
|
return nents;
|
|
|
|
out_unmap:
|
|
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_map_sg);
|
|
|
|
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
dma_addr_t dma_addr = paddr;
|
|
|
|
if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
|
|
report_addr(dev, dma_addr, size);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
return dma_addr;
|
|
}
|
|
EXPORT_SYMBOL(dma_direct_map_resource);
|
|
|
|
/*
|
|
* Because 32-bit DMA masks are so common we expect every architecture to be
|
|
* able to satisfy them - either by not supporting more physical memory, or by
|
|
* providing a ZONE_DMA32. If neither is the case, the architecture needs to
|
|
* use an IOMMU instead of the direct mapping.
|
|
*/
|
|
int dma_direct_supported(struct device *dev, u64 mask)
|
|
{
|
|
u64 min_mask;
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA))
|
|
min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
|
|
else
|
|
min_mask = DMA_BIT_MASK(32);
|
|
|
|
min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
|
|
|
|
/*
|
|
* This check needs to be against the actual bit mask value, so
|
|
* use __phys_to_dma() here so that the SME encryption mask isn't
|
|
* part of the check.
|
|
*/
|
|
return mask >= __phys_to_dma(dev, min_mask);
|
|
}
|
|
|
|
size_t dma_direct_max_mapping_size(struct device *dev)
|
|
{
|
|
/* If SWIOTLB is active, use its maximum mapping size */
|
|
if (is_swiotlb_active() &&
|
|
(dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
|
|
return swiotlb_max_mapping_size(dev);
|
|
return SIZE_MAX;
|
|
}
|