linux/drivers/net/phy/phy.c
David S. Miller 909b27f706 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
The nf_conntrack_core.c fix in 'net' is not relevant in 'net-next'
because we no longer have a per-netns conntrack hash.

The ip_gre.c conflict as well as the iwlwifi ones were cases of
overlapping changes.

Conflicts:
	drivers/net/wireless/intel/iwlwifi/mvm/tx.c
	net/ipv4/ip_gre.c
	net/netfilter/nf_conntrack_core.c

Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-15 13:32:48 -04:00

1376 lines
34 KiB
C

/* Framework for configuring and reading PHY devices
* Based on code in sungem_phy.c and gianfar_phy.c
*
* Author: Andy Fleming
*
* Copyright (c) 2004 Freescale Semiconductor, Inc.
* Copyright (c) 2006, 2007 Maciej W. Rozycki
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/mdio.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/atomic.h>
#include <asm/irq.h>
static const char *phy_speed_to_str(int speed)
{
switch (speed) {
case SPEED_10:
return "10Mbps";
case SPEED_100:
return "100Mbps";
case SPEED_1000:
return "1Gbps";
case SPEED_2500:
return "2.5Gbps";
case SPEED_10000:
return "10Gbps";
case SPEED_UNKNOWN:
return "Unknown";
default:
return "Unsupported (update phy.c)";
}
}
#define PHY_STATE_STR(_state) \
case PHY_##_state: \
return __stringify(_state); \
static const char *phy_state_to_str(enum phy_state st)
{
switch (st) {
PHY_STATE_STR(DOWN)
PHY_STATE_STR(STARTING)
PHY_STATE_STR(READY)
PHY_STATE_STR(PENDING)
PHY_STATE_STR(UP)
PHY_STATE_STR(AN)
PHY_STATE_STR(RUNNING)
PHY_STATE_STR(NOLINK)
PHY_STATE_STR(FORCING)
PHY_STATE_STR(CHANGELINK)
PHY_STATE_STR(HALTED)
PHY_STATE_STR(RESUMING)
}
return NULL;
}
/**
* phy_print_status - Convenience function to print out the current phy status
* @phydev: the phy_device struct
*/
void phy_print_status(struct phy_device *phydev)
{
if (phydev->link) {
netdev_info(phydev->attached_dev,
"Link is Up - %s/%s - flow control %s\n",
phy_speed_to_str(phydev->speed),
DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
phydev->pause ? "rx/tx" : "off");
} else {
netdev_info(phydev->attached_dev, "Link is Down\n");
}
}
EXPORT_SYMBOL(phy_print_status);
/**
* phy_clear_interrupt - Ack the phy device's interrupt
* @phydev: the phy_device struct
*
* If the @phydev driver has an ack_interrupt function, call it to
* ack and clear the phy device's interrupt.
*
* Returns 0 on success or < 0 on error.
*/
static int phy_clear_interrupt(struct phy_device *phydev)
{
if (phydev->drv->ack_interrupt)
return phydev->drv->ack_interrupt(phydev);
return 0;
}
/**
* phy_config_interrupt - configure the PHY device for the requested interrupts
* @phydev: the phy_device struct
* @interrupts: interrupt flags to configure for this @phydev
*
* Returns 0 on success or < 0 on error.
*/
static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
{
phydev->interrupts = interrupts;
if (phydev->drv->config_intr)
return phydev->drv->config_intr(phydev);
return 0;
}
/**
* phy_aneg_done - return auto-negotiation status
* @phydev: target phy_device struct
*
* Description: Return the auto-negotiation status from this @phydev
* Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
* is still pending.
*/
static inline int phy_aneg_done(struct phy_device *phydev)
{
if (phydev->drv->aneg_done)
return phydev->drv->aneg_done(phydev);
return genphy_aneg_done(phydev);
}
/* A structure for mapping a particular speed and duplex
* combination to a particular SUPPORTED and ADVERTISED value
*/
struct phy_setting {
int speed;
int duplex;
u32 setting;
};
/* A mapping of all SUPPORTED settings to speed/duplex */
static const struct phy_setting settings[] = {
{
.speed = SPEED_10000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10000baseKR_Full,
},
{
.speed = SPEED_10000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10000baseKX4_Full,
},
{
.speed = SPEED_10000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10000baseT_Full,
},
{
.speed = SPEED_2500,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_2500baseX_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_1000baseKX_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_1000baseT_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_1000baseT_Half,
},
{
.speed = SPEED_100,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_100baseT_Full,
},
{
.speed = SPEED_100,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_100baseT_Half,
},
{
.speed = SPEED_10,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10baseT_Full,
},
{
.speed = SPEED_10,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_10baseT_Half,
},
};
#define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
/**
* phy_find_setting - find a PHY settings array entry that matches speed & duplex
* @speed: speed to match
* @duplex: duplex to match
*
* Description: Searches the settings array for the setting which
* matches the desired speed and duplex, and returns the index
* of that setting. Returns the index of the last setting if
* none of the others match.
*/
static inline unsigned int phy_find_setting(int speed, int duplex)
{
unsigned int idx = 0;
while (idx < ARRAY_SIZE(settings) &&
(settings[idx].speed != speed || settings[idx].duplex != duplex))
idx++;
return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
}
/**
* phy_find_valid - find a PHY setting that matches the requested features mask
* @idx: The first index in settings[] to search
* @features: A mask of the valid settings
*
* Description: Returns the index of the first valid setting less
* than or equal to the one pointed to by idx, as determined by
* the mask in features. Returns the index of the last setting
* if nothing else matches.
*/
static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
{
while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
idx++;
return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
}
/**
* phy_check_valid - check if there is a valid PHY setting which matches
* speed, duplex, and feature mask
* @speed: speed to match
* @duplex: duplex to match
* @features: A mask of the valid settings
*
* Description: Returns true if there is a valid setting, false otherwise.
*/
static inline bool phy_check_valid(int speed, int duplex, u32 features)
{
unsigned int idx;
idx = phy_find_valid(phy_find_setting(speed, duplex), features);
return settings[idx].speed == speed && settings[idx].duplex == duplex &&
(settings[idx].setting & features);
}
/**
* phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
* @phydev: the target phy_device struct
*
* Description: Make sure the PHY is set to supported speeds and
* duplexes. Drop down by one in this order: 1000/FULL,
* 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
*/
static void phy_sanitize_settings(struct phy_device *phydev)
{
u32 features = phydev->supported;
unsigned int idx;
/* Sanitize settings based on PHY capabilities */
if ((features & SUPPORTED_Autoneg) == 0)
phydev->autoneg = AUTONEG_DISABLE;
idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
features);
phydev->speed = settings[idx].speed;
phydev->duplex = settings[idx].duplex;
}
/**
* phy_ethtool_sset - generic ethtool sset function, handles all the details
* @phydev: target phy_device struct
* @cmd: ethtool_cmd
*
* A few notes about parameter checking:
* - We don't set port or transceiver, so we don't care what they
* were set to.
* - phy_start_aneg() will make sure forced settings are sane, and
* choose the next best ones from the ones selected, so we don't
* care if ethtool tries to give us bad values.
*/
int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
{
u32 speed = ethtool_cmd_speed(cmd);
if (cmd->phy_address != phydev->mdio.addr)
return -EINVAL;
/* We make sure that we don't pass unsupported values in to the PHY */
cmd->advertising &= phydev->supported;
/* Verify the settings we care about. */
if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE &&
((speed != SPEED_1000 &&
speed != SPEED_100 &&
speed != SPEED_10) ||
(cmd->duplex != DUPLEX_HALF &&
cmd->duplex != DUPLEX_FULL)))
return -EINVAL;
phydev->autoneg = cmd->autoneg;
phydev->speed = speed;
phydev->advertising = cmd->advertising;
if (AUTONEG_ENABLE == cmd->autoneg)
phydev->advertising |= ADVERTISED_Autoneg;
else
phydev->advertising &= ~ADVERTISED_Autoneg;
phydev->duplex = cmd->duplex;
phydev->mdix = cmd->eth_tp_mdix_ctrl;
/* Restart the PHY */
phy_start_aneg(phydev);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_sset);
int phy_ethtool_ksettings_set(struct phy_device *phydev,
const struct ethtool_link_ksettings *cmd)
{
u8 autoneg = cmd->base.autoneg;
u8 duplex = cmd->base.duplex;
u32 speed = cmd->base.speed;
u32 advertising;
if (cmd->base.phy_address != phydev->mdio.addr)
return -EINVAL;
ethtool_convert_link_mode_to_legacy_u32(&advertising,
cmd->link_modes.advertising);
/* We make sure that we don't pass unsupported values in to the PHY */
advertising &= phydev->supported;
/* Verify the settings we care about. */
if (autoneg != AUTONEG_ENABLE && autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (autoneg == AUTONEG_ENABLE && advertising == 0)
return -EINVAL;
if (autoneg == AUTONEG_DISABLE &&
((speed != SPEED_1000 &&
speed != SPEED_100 &&
speed != SPEED_10) ||
(duplex != DUPLEX_HALF &&
duplex != DUPLEX_FULL)))
return -EINVAL;
phydev->autoneg = autoneg;
phydev->speed = speed;
phydev->advertising = advertising;
if (autoneg == AUTONEG_ENABLE)
phydev->advertising |= ADVERTISED_Autoneg;
else
phydev->advertising &= ~ADVERTISED_Autoneg;
phydev->duplex = duplex;
phydev->mdix = cmd->base.eth_tp_mdix_ctrl;
/* Restart the PHY */
phy_start_aneg(phydev);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_ksettings_set);
int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
{
cmd->supported = phydev->supported;
cmd->advertising = phydev->advertising;
cmd->lp_advertising = phydev->lp_advertising;
ethtool_cmd_speed_set(cmd, phydev->speed);
cmd->duplex = phydev->duplex;
if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
cmd->port = PORT_BNC;
else
cmd->port = PORT_MII;
cmd->phy_address = phydev->mdio.addr;
cmd->transceiver = phy_is_internal(phydev) ?
XCVR_INTERNAL : XCVR_EXTERNAL;
cmd->autoneg = phydev->autoneg;
cmd->eth_tp_mdix_ctrl = phydev->mdix;
return 0;
}
EXPORT_SYMBOL(phy_ethtool_gset);
int phy_ethtool_ksettings_get(struct phy_device *phydev,
struct ethtool_link_ksettings *cmd)
{
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
phydev->supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
phydev->advertising);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
phydev->lp_advertising);
cmd->base.speed = phydev->speed;
cmd->base.duplex = phydev->duplex;
if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
cmd->base.port = PORT_BNC;
else
cmd->base.port = PORT_MII;
cmd->base.phy_address = phydev->mdio.addr;
cmd->base.autoneg = phydev->autoneg;
cmd->base.eth_tp_mdix_ctrl = phydev->mdix;
return 0;
}
EXPORT_SYMBOL(phy_ethtool_ksettings_get);
/**
* phy_mii_ioctl - generic PHY MII ioctl interface
* @phydev: the phy_device struct
* @ifr: &struct ifreq for socket ioctl's
* @cmd: ioctl cmd to execute
*
* Note that this function is currently incompatible with the
* PHYCONTROL layer. It changes registers without regard to
* current state. Use at own risk.
*/
int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *mii_data = if_mii(ifr);
u16 val = mii_data->val_in;
bool change_autoneg = false;
switch (cmd) {
case SIOCGMIIPHY:
mii_data->phy_id = phydev->mdio.addr;
/* fall through */
case SIOCGMIIREG:
mii_data->val_out = mdiobus_read(phydev->mdio.bus,
mii_data->phy_id,
mii_data->reg_num);
return 0;
case SIOCSMIIREG:
if (mii_data->phy_id == phydev->mdio.addr) {
switch (mii_data->reg_num) {
case MII_BMCR:
if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
if (phydev->autoneg == AUTONEG_ENABLE)
change_autoneg = true;
phydev->autoneg = AUTONEG_DISABLE;
if (val & BMCR_FULLDPLX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
if (val & BMCR_SPEED1000)
phydev->speed = SPEED_1000;
else if (val & BMCR_SPEED100)
phydev->speed = SPEED_100;
else phydev->speed = SPEED_10;
}
else {
if (phydev->autoneg == AUTONEG_DISABLE)
change_autoneg = true;
phydev->autoneg = AUTONEG_ENABLE;
}
break;
case MII_ADVERTISE:
phydev->advertising = mii_adv_to_ethtool_adv_t(val);
change_autoneg = true;
break;
default:
/* do nothing */
break;
}
}
mdiobus_write(phydev->mdio.bus, mii_data->phy_id,
mii_data->reg_num, val);
if (mii_data->phy_id == phydev->mdio.addr &&
mii_data->reg_num == MII_BMCR &&
val & BMCR_RESET)
return phy_init_hw(phydev);
if (change_autoneg)
return phy_start_aneg(phydev);
return 0;
case SIOCSHWTSTAMP:
if (phydev->drv->hwtstamp)
return phydev->drv->hwtstamp(phydev, ifr);
/* fall through */
default:
return -EOPNOTSUPP;
}
}
EXPORT_SYMBOL(phy_mii_ioctl);
/**
* phy_start_aneg - start auto-negotiation for this PHY device
* @phydev: the phy_device struct
*
* Description: Sanitizes the settings (if we're not autonegotiating
* them), and then calls the driver's config_aneg function.
* If the PHYCONTROL Layer is operating, we change the state to
* reflect the beginning of Auto-negotiation or forcing.
*/
int phy_start_aneg(struct phy_device *phydev)
{
int err;
mutex_lock(&phydev->lock);
if (AUTONEG_DISABLE == phydev->autoneg)
phy_sanitize_settings(phydev);
/* Invalidate LP advertising flags */
phydev->lp_advertising = 0;
err = phydev->drv->config_aneg(phydev);
if (err < 0)
goto out_unlock;
if (phydev->state != PHY_HALTED) {
if (AUTONEG_ENABLE == phydev->autoneg) {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
} else {
phydev->state = PHY_FORCING;
phydev->link_timeout = PHY_FORCE_TIMEOUT;
}
}
out_unlock:
mutex_unlock(&phydev->lock);
return err;
}
EXPORT_SYMBOL(phy_start_aneg);
/**
* phy_start_machine - start PHY state machine tracking
* @phydev: the phy_device struct
*
* Description: The PHY infrastructure can run a state machine
* which tracks whether the PHY is starting up, negotiating,
* etc. This function starts the timer which tracks the state
* of the PHY. If you want to maintain your own state machine,
* do not call this function.
*/
void phy_start_machine(struct phy_device *phydev)
{
queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
}
/**
* phy_stop_machine - stop the PHY state machine tracking
* @phydev: target phy_device struct
*
* Description: Stops the state machine timer, sets the state to UP
* (unless it wasn't up yet). This function must be called BEFORE
* phy_detach.
*/
void phy_stop_machine(struct phy_device *phydev)
{
cancel_delayed_work_sync(&phydev->state_queue);
mutex_lock(&phydev->lock);
if (phydev->state > PHY_UP)
phydev->state = PHY_UP;
mutex_unlock(&phydev->lock);
}
/**
* phy_error - enter HALTED state for this PHY device
* @phydev: target phy_device struct
*
* Moves the PHY to the HALTED state in response to a read
* or write error, and tells the controller the link is down.
* Must not be called from interrupt context, or while the
* phydev->lock is held.
*/
static void phy_error(struct phy_device *phydev)
{
mutex_lock(&phydev->lock);
phydev->state = PHY_HALTED;
mutex_unlock(&phydev->lock);
}
/**
* phy_interrupt - PHY interrupt handler
* @irq: interrupt line
* @phy_dat: phy_device pointer
*
* Description: When a PHY interrupt occurs, the handler disables
* interrupts, and schedules a work task to clear the interrupt.
*/
static irqreturn_t phy_interrupt(int irq, void *phy_dat)
{
struct phy_device *phydev = phy_dat;
if (PHY_HALTED == phydev->state)
return IRQ_NONE; /* It can't be ours. */
/* The MDIO bus is not allowed to be written in interrupt
* context, so we need to disable the irq here. A work
* queue will write the PHY to disable and clear the
* interrupt, and then reenable the irq line.
*/
disable_irq_nosync(irq);
atomic_inc(&phydev->irq_disable);
queue_work(system_power_efficient_wq, &phydev->phy_queue);
return IRQ_HANDLED;
}
/**
* phy_enable_interrupts - Enable the interrupts from the PHY side
* @phydev: target phy_device struct
*/
static int phy_enable_interrupts(struct phy_device *phydev)
{
int err = phy_clear_interrupt(phydev);
if (err < 0)
return err;
return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
}
/**
* phy_disable_interrupts - Disable the PHY interrupts from the PHY side
* @phydev: target phy_device struct
*/
static int phy_disable_interrupts(struct phy_device *phydev)
{
int err;
/* Disable PHY interrupts */
err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
if (err)
goto phy_err;
/* Clear the interrupt */
err = phy_clear_interrupt(phydev);
if (err)
goto phy_err;
return 0;
phy_err:
phy_error(phydev);
return err;
}
/**
* phy_start_interrupts - request and enable interrupts for a PHY device
* @phydev: target phy_device struct
*
* Description: Request the interrupt for the given PHY.
* If this fails, then we set irq to PHY_POLL.
* Otherwise, we enable the interrupts in the PHY.
* This should only be called with a valid IRQ number.
* Returns 0 on success or < 0 on error.
*/
int phy_start_interrupts(struct phy_device *phydev)
{
atomic_set(&phydev->irq_disable, 0);
if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
phydev) < 0) {
pr_warn("%s: Can't get IRQ %d (PHY)\n",
phydev->mdio.bus->name, phydev->irq);
phydev->irq = PHY_POLL;
return 0;
}
return phy_enable_interrupts(phydev);
}
EXPORT_SYMBOL(phy_start_interrupts);
/**
* phy_stop_interrupts - disable interrupts from a PHY device
* @phydev: target phy_device struct
*/
int phy_stop_interrupts(struct phy_device *phydev)
{
int err = phy_disable_interrupts(phydev);
if (err)
phy_error(phydev);
free_irq(phydev->irq, phydev);
/* Cannot call flush_scheduled_work() here as desired because
* of rtnl_lock(), but we do not really care about what would
* be done, except from enable_irq(), so cancel any work
* possibly pending and take care of the matter below.
*/
cancel_work_sync(&phydev->phy_queue);
/* If work indeed has been cancelled, disable_irq() will have
* been left unbalanced from phy_interrupt() and enable_irq()
* has to be called so that other devices on the line work.
*/
while (atomic_dec_return(&phydev->irq_disable) >= 0)
enable_irq(phydev->irq);
return err;
}
EXPORT_SYMBOL(phy_stop_interrupts);
/**
* phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
* @work: work_struct that describes the work to be done
*/
void phy_change(struct work_struct *work)
{
struct phy_device *phydev =
container_of(work, struct phy_device, phy_queue);
if (phy_interrupt_is_valid(phydev)) {
if (phydev->drv->did_interrupt &&
!phydev->drv->did_interrupt(phydev))
goto ignore;
if (phy_disable_interrupts(phydev))
goto phy_err;
}
mutex_lock(&phydev->lock);
if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
phydev->state = PHY_CHANGELINK;
mutex_unlock(&phydev->lock);
if (phy_interrupt_is_valid(phydev)) {
atomic_dec(&phydev->irq_disable);
enable_irq(phydev->irq);
/* Reenable interrupts */
if (PHY_HALTED != phydev->state &&
phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
goto irq_enable_err;
}
/* reschedule state queue work to run as soon as possible */
cancel_delayed_work_sync(&phydev->state_queue);
queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
return;
ignore:
atomic_dec(&phydev->irq_disable);
enable_irq(phydev->irq);
return;
irq_enable_err:
disable_irq(phydev->irq);
atomic_inc(&phydev->irq_disable);
phy_err:
phy_error(phydev);
}
/**
* phy_stop - Bring down the PHY link, and stop checking the status
* @phydev: target phy_device struct
*/
void phy_stop(struct phy_device *phydev)
{
mutex_lock(&phydev->lock);
if (PHY_HALTED == phydev->state)
goto out_unlock;
if (phy_interrupt_is_valid(phydev)) {
/* Disable PHY Interrupts */
phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
/* Clear any pending interrupts */
phy_clear_interrupt(phydev);
}
phydev->state = PHY_HALTED;
out_unlock:
mutex_unlock(&phydev->lock);
/* Cannot call flush_scheduled_work() here as desired because
* of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
* will not reenable interrupts.
*/
}
EXPORT_SYMBOL(phy_stop);
/**
* phy_start - start or restart a PHY device
* @phydev: target phy_device struct
*
* Description: Indicates the attached device's readiness to
* handle PHY-related work. Used during startup to start the
* PHY, and after a call to phy_stop() to resume operation.
* Also used to indicate the MDIO bus has cleared an error
* condition.
*/
void phy_start(struct phy_device *phydev)
{
bool do_resume = false;
int err = 0;
mutex_lock(&phydev->lock);
switch (phydev->state) {
case PHY_STARTING:
phydev->state = PHY_PENDING;
break;
case PHY_READY:
phydev->state = PHY_UP;
break;
case PHY_HALTED:
/* make sure interrupts are re-enabled for the PHY */
if (phydev->irq != PHY_POLL) {
err = phy_enable_interrupts(phydev);
if (err < 0)
break;
}
phydev->state = PHY_RESUMING;
do_resume = true;
break;
default:
break;
}
mutex_unlock(&phydev->lock);
/* if phy was suspended, bring the physical link up again */
if (do_resume)
phy_resume(phydev);
}
EXPORT_SYMBOL(phy_start);
/**
* phy_state_machine - Handle the state machine
* @work: work_struct that describes the work to be done
*/
void phy_state_machine(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct phy_device *phydev =
container_of(dwork, struct phy_device, state_queue);
bool needs_aneg = false, do_suspend = false;
enum phy_state old_state;
int err = 0;
int old_link;
mutex_lock(&phydev->lock);
old_state = phydev->state;
if (phydev->drv->link_change_notify)
phydev->drv->link_change_notify(phydev);
switch (phydev->state) {
case PHY_DOWN:
case PHY_STARTING:
case PHY_READY:
case PHY_PENDING:
break;
case PHY_UP:
needs_aneg = true;
phydev->link_timeout = PHY_AN_TIMEOUT;
break;
case PHY_AN:
err = phy_read_status(phydev);
if (err < 0)
break;
/* If the link is down, give up on negotiation for now */
if (!phydev->link) {
phydev->state = PHY_NOLINK;
netif_carrier_off(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
break;
}
/* Check if negotiation is done. Break if there's an error */
err = phy_aneg_done(phydev);
if (err < 0)
break;
/* If AN is done, we're running */
if (err > 0) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
} else if (0 == phydev->link_timeout--)
needs_aneg = true;
break;
case PHY_NOLINK:
if (phy_interrupt_is_valid(phydev))
break;
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
if (AUTONEG_ENABLE == phydev->autoneg) {
err = phy_aneg_done(phydev);
if (err < 0)
break;
if (!err) {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
break;
}
}
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
}
break;
case PHY_FORCING:
err = genphy_update_link(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
if (0 == phydev->link_timeout--)
needs_aneg = true;
}
phydev->adjust_link(phydev->attached_dev);
break;
case PHY_RUNNING:
/* Only register a CHANGE if we are polling and link changed
* since latest checking.
*/
if (phydev->irq == PHY_POLL) {
old_link = phydev->link;
err = phy_read_status(phydev);
if (err)
break;
if (old_link != phydev->link)
phydev->state = PHY_CHANGELINK;
}
break;
case PHY_CHANGELINK:
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
netif_carrier_off(phydev->attached_dev);
}
phydev->adjust_link(phydev->attached_dev);
if (phy_interrupt_is_valid(phydev))
err = phy_config_interrupt(phydev,
PHY_INTERRUPT_ENABLED);
break;
case PHY_HALTED:
if (phydev->link) {
phydev->link = 0;
netif_carrier_off(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
do_suspend = true;
}
break;
case PHY_RESUMING:
if (AUTONEG_ENABLE == phydev->autoneg) {
err = phy_aneg_done(phydev);
if (err < 0)
break;
/* err > 0 if AN is done.
* Otherwise, it's 0, and we're still waiting for AN
*/
if (err > 0) {
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
}
phydev->adjust_link(phydev->attached_dev);
} else {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
}
} else {
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
}
phydev->adjust_link(phydev->attached_dev);
}
break;
}
mutex_unlock(&phydev->lock);
if (needs_aneg)
err = phy_start_aneg(phydev);
else if (do_suspend)
phy_suspend(phydev);
if (err < 0)
phy_error(phydev);
phydev_dbg(phydev, "PHY state change %s -> %s\n",
phy_state_to_str(old_state),
phy_state_to_str(phydev->state));
/* Only re-schedule a PHY state machine change if we are polling the
* PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving
* between states from phy_mac_interrupt()
*/
if (phydev->irq == PHY_POLL)
queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
PHY_STATE_TIME * HZ);
}
void phy_mac_interrupt(struct phy_device *phydev, int new_link)
{
phydev->link = new_link;
/* Trigger a state machine change */
queue_work(system_power_efficient_wq, &phydev->phy_queue);
}
EXPORT_SYMBOL(phy_mac_interrupt);
static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
int addr)
{
/* Write the desired MMD Devad */
bus->write(bus, addr, MII_MMD_CTRL, devad);
/* Write the desired MMD register address */
bus->write(bus, addr, MII_MMD_DATA, prtad);
/* Select the Function : DATA with no post increment */
bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
}
/**
* phy_read_mmd_indirect - reads data from the MMD registers
* @phydev: The PHY device bus
* @prtad: MMD Address
* @devad: MMD DEVAD
*
* Description: it reads data from the MMD registers (clause 22 to access to
* clause 45) of the specified phy address.
* To read these register we have:
* 1) Write reg 13 // DEVAD
* 2) Write reg 14 // MMD Address
* 3) Write reg 13 // MMD Data Command for MMD DEVAD
* 3) Read reg 14 // Read MMD data
*/
int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad)
{
struct phy_driver *phydrv = phydev->drv;
int addr = phydev->mdio.addr;
int value = -1;
if (!phydrv->read_mmd_indirect) {
struct mii_bus *bus = phydev->mdio.bus;
mutex_lock(&bus->mdio_lock);
mmd_phy_indirect(bus, prtad, devad, addr);
/* Read the content of the MMD's selected register */
value = bus->read(bus, addr, MII_MMD_DATA);
mutex_unlock(&bus->mdio_lock);
} else {
value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
}
return value;
}
EXPORT_SYMBOL(phy_read_mmd_indirect);
/**
* phy_write_mmd_indirect - writes data to the MMD registers
* @phydev: The PHY device
* @prtad: MMD Address
* @devad: MMD DEVAD
* @data: data to write in the MMD register
*
* Description: Write data from the MMD registers of the specified
* phy address.
* To write these register we have:
* 1) Write reg 13 // DEVAD
* 2) Write reg 14 // MMD Address
* 3) Write reg 13 // MMD Data Command for MMD DEVAD
* 3) Write reg 14 // Write MMD data
*/
void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
int devad, u32 data)
{
struct phy_driver *phydrv = phydev->drv;
int addr = phydev->mdio.addr;
if (!phydrv->write_mmd_indirect) {
struct mii_bus *bus = phydev->mdio.bus;
mutex_lock(&bus->mdio_lock);
mmd_phy_indirect(bus, prtad, devad, addr);
/* Write the data into MMD's selected register */
bus->write(bus, addr, MII_MMD_DATA, data);
mutex_unlock(&bus->mdio_lock);
} else {
phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
}
}
EXPORT_SYMBOL(phy_write_mmd_indirect);
/**
* phy_init_eee - init and check the EEE feature
* @phydev: target phy_device struct
* @clk_stop_enable: PHY may stop the clock during LPI
*
* Description: it checks if the Energy-Efficient Ethernet (EEE)
* is supported by looking at the MMD registers 3.20 and 7.60/61
* and it programs the MMD register 3.0 setting the "Clock stop enable"
* bit if required.
*/
int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
{
/* According to 802.3az,the EEE is supported only in full duplex-mode.
* Also EEE feature is active when core is operating with MII, GMII
* or RGMII (all kinds). Internal PHYs are also allowed to proceed and
* should return an error if they do not support EEE.
*/
if ((phydev->duplex == DUPLEX_FULL) &&
((phydev->interface == PHY_INTERFACE_MODE_MII) ||
(phydev->interface == PHY_INTERFACE_MODE_GMII) ||
phy_interface_is_rgmii(phydev) ||
phy_is_internal(phydev))) {
int eee_lp, eee_cap, eee_adv;
u32 lp, cap, adv;
int status;
/* Read phy status to properly get the right settings */
status = phy_read_status(phydev);
if (status)
return status;
/* First check if the EEE ability is supported */
eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
MDIO_MMD_PCS);
if (eee_cap <= 0)
goto eee_exit_err;
cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
if (!cap)
goto eee_exit_err;
/* Check which link settings negotiated and verify it in
* the EEE advertising registers.
*/
eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
MDIO_MMD_AN);
if (eee_lp <= 0)
goto eee_exit_err;
eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
MDIO_MMD_AN);
if (eee_adv <= 0)
goto eee_exit_err;
adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
goto eee_exit_err;
if (clk_stop_enable) {
/* Configure the PHY to stop receiving xMII
* clock while it is signaling LPI.
*/
int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
MDIO_MMD_PCS);
if (val < 0)
return val;
val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
phy_write_mmd_indirect(phydev, MDIO_CTRL1,
MDIO_MMD_PCS, val);
}
return 0; /* EEE supported */
}
eee_exit_err:
return -EPROTONOSUPPORT;
}
EXPORT_SYMBOL(phy_init_eee);
/**
* phy_get_eee_err - report the EEE wake error count
* @phydev: target phy_device struct
*
* Description: it is to report the number of time where the PHY
* failed to complete its normal wake sequence.
*/
int phy_get_eee_err(struct phy_device *phydev)
{
return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS);
}
EXPORT_SYMBOL(phy_get_eee_err);
/**
* phy_ethtool_get_eee - get EEE supported and status
* @phydev: target phy_device struct
* @data: ethtool_eee data
*
* Description: it reportes the Supported/Advertisement/LP Advertisement
* capabilities.
*/
int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
{
int val;
/* Get Supported EEE */
val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS);
if (val < 0)
return val;
data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
/* Get advertisement EEE */
val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN);
if (val < 0)
return val;
data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
/* Get LP advertisement EEE */
val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN);
if (val < 0)
return val;
data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_get_eee);
/**
* phy_ethtool_set_eee - set EEE supported and status
* @phydev: target phy_device struct
* @data: ethtool_eee data
*
* Description: it is to program the Advertisement EEE register.
*/
int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
{
int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_set_eee);
int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
{
if (phydev->drv->set_wol)
return phydev->drv->set_wol(phydev, wol);
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(phy_ethtool_set_wol);
void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
{
if (phydev->drv->get_wol)
phydev->drv->get_wol(phydev, wol);
}
EXPORT_SYMBOL(phy_ethtool_get_wol);
int phy_ethtool_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *cmd)
{
struct phy_device *phydev = ndev->phydev;
if (!phydev)
return -ENODEV;
return phy_ethtool_ksettings_get(phydev, cmd);
}
EXPORT_SYMBOL(phy_ethtool_get_link_ksettings);
int phy_ethtool_set_link_ksettings(struct net_device *ndev,
const struct ethtool_link_ksettings *cmd)
{
struct phy_device *phydev = ndev->phydev;
if (!phydev)
return -ENODEV;
return phy_ethtool_ksettings_set(phydev, cmd);
}
EXPORT_SYMBOL(phy_ethtool_set_link_ksettings);