forked from Minki/linux
2e112b4ae3
make all functions in fiji_smumgr.c static and exported by pp_smumgr_func table. Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Rex Zhu <Rex.Zhu@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2745 lines
93 KiB
C
2745 lines
93 KiB
C
/*
|
|
* Copyright 2015 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "pp_debug.h"
|
|
#include "smumgr.h"
|
|
#include "smu7_dyn_defaults.h"
|
|
#include "smu73.h"
|
|
#include "smu_ucode_xfer_vi.h"
|
|
#include "fiji_smumgr.h"
|
|
#include "fiji_ppsmc.h"
|
|
#include "smu73_discrete.h"
|
|
#include "ppatomctrl.h"
|
|
#include "smu/smu_7_1_3_d.h"
|
|
#include "smu/smu_7_1_3_sh_mask.h"
|
|
#include "gmc/gmc_8_1_d.h"
|
|
#include "gmc/gmc_8_1_sh_mask.h"
|
|
#include "oss/oss_3_0_d.h"
|
|
#include "gca/gfx_8_0_d.h"
|
|
#include "bif/bif_5_0_d.h"
|
|
#include "bif/bif_5_0_sh_mask.h"
|
|
#include "dce/dce_10_0_d.h"
|
|
#include "dce/dce_10_0_sh_mask.h"
|
|
#include "hardwaremanager.h"
|
|
#include "cgs_common.h"
|
|
#include "atombios.h"
|
|
#include "pppcielanes.h"
|
|
#include "hwmgr.h"
|
|
#include "smu7_hwmgr.h"
|
|
|
|
|
|
#define AVFS_EN_MSB 1568
|
|
#define AVFS_EN_LSB 1568
|
|
|
|
#define FIJI_SMC_SIZE 0x20000
|
|
|
|
#define VOLTAGE_SCALE 4
|
|
#define POWERTUNE_DEFAULT_SET_MAX 1
|
|
#define VOLTAGE_VID_OFFSET_SCALE1 625
|
|
#define VOLTAGE_VID_OFFSET_SCALE2 100
|
|
#define VDDC_VDDCI_DELTA 300
|
|
#define MC_CG_ARB_FREQ_F1 0x0b
|
|
|
|
/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
|
|
* not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
|
|
*/
|
|
static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
|
|
{600, 1050, 3, 0}, {600, 1050, 6, 1} };
|
|
|
|
/* [FF, SS] type, [] 4 voltage ranges, and
|
|
* [Floor Freq, Boundary Freq, VID min , VID max]
|
|
*/
|
|
static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
|
|
{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
|
|
{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
|
|
|
|
/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
|
|
* (coming from PWR_CKS_CNTL.stretch_amount reg spec)
|
|
*/
|
|
static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
|
|
{0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
|
|
|
|
static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
|
|
/*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
|
|
{1, 0xF, 0xFD,
|
|
/* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
|
|
0x19, 5, 45}
|
|
};
|
|
|
|
static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
|
|
/* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */
|
|
/* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
|
|
{ 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
|
|
{ 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }
|
|
};
|
|
|
|
static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
|
|
/* Wait for smc boot up */
|
|
/* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
|
|
RCU_UC_EVENTS, boot_seq_done, 0); */
|
|
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
|
|
|
|
result = smu7_upload_smu_firmware_image(hwmgr);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Clear status */
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_STATUS, 0);
|
|
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
|
|
|
|
/* De-assert reset */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
|
|
|
|
/* Wait for ROM firmware to initialize interrupt hendler */
|
|
/*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
|
|
SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
|
|
|
|
/* Set SMU Auto Start */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMU_INPUT_DATA, AUTO_START, 1);
|
|
|
|
/* Clear firmware interrupt enable flag */
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixFIRMWARE_FLAGS, 0);
|
|
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
|
|
INTERRUPTS_ENABLED, 1);
|
|
|
|
cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000);
|
|
cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
|
|
PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
|
|
|
|
/* Wait for done bit to be set */
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
|
|
SMU_STATUS, SMU_DONE, 0);
|
|
|
|
/* Check pass/failed indicator */
|
|
if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMU_STATUS, SMU_PASS) != 1) {
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"SMU Firmware start failed!", return -1);
|
|
}
|
|
|
|
/* Wait for firmware to initialize */
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
|
|
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
|
|
/* wait for smc boot up */
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
|
|
RCU_UC_EVENTS, boot_seq_done, 0);
|
|
|
|
/* Clear firmware interrupt enable flag */
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixFIRMWARE_FLAGS, 0);
|
|
|
|
/* Assert reset */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
|
|
|
|
result = smu7_upload_smu_firmware_image(hwmgr);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Set smc instruct start point at 0x0 */
|
|
smu7_program_jump_on_start(hwmgr);
|
|
|
|
/* Enable clock */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
|
|
|
|
/* De-assert reset */
|
|
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
|
|
|
|
/* Wait for firmware to initialize */
|
|
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
|
|
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
|
|
|
|
if (0 != smu_data->avfs.avfs_btc_param) {
|
|
if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_PerformBtc, smu_data->avfs.avfs_btc_param)) {
|
|
pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
|
|
result = -EINVAL;
|
|
}
|
|
}
|
|
/* Soft-Reset to reset the engine before loading uCode */
|
|
/* halt */
|
|
cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
|
|
/* reset everything */
|
|
cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
|
|
/* clear reset */
|
|
cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int32_t vr_config;
|
|
uint32_t table_start;
|
|
uint32_t level_addr, vr_config_addr;
|
|
uint32_t level_size = sizeof(avfs_graphics_level);
|
|
|
|
PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, DpmTable),
|
|
&table_start, 0x40000),
|
|
"[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
|
|
"communicate starting address of DPM table",
|
|
return -1;);
|
|
|
|
/* Default value for vr_config =
|
|
* VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
|
|
vr_config = 0x01000500; /* Real value:0x50001 */
|
|
|
|
vr_config_addr = table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, VRConfig);
|
|
|
|
PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
|
|
(uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
|
|
"[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
|
|
"vr_config value over to SMC",
|
|
return -1;);
|
|
|
|
level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
|
|
|
|
PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
|
|
(uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
|
|
"[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
|
|
return -1;);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr, bool smu_started)
|
|
{
|
|
struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
|
|
|
|
switch (smu_data->avfs.avfs_btc_status) {
|
|
case AVFS_BTC_COMPLETED_PREVIOUSLY:
|
|
break;
|
|
|
|
case AVFS_BTC_BOOT: /*Cold Boot State - Post SMU Start*/
|
|
if (!smu_started)
|
|
break;
|
|
smu_data->avfs.avfs_btc_status = AVFS_BTC_FAILED;
|
|
PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
|
|
"[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
|
|
" table over to SMU",
|
|
return -EINVAL;);
|
|
smu_data->avfs.avfs_btc_status = AVFS_BTC_VIRUS_FAIL;
|
|
PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
|
|
"[AVFS][fiji_avfs_event_mgr] Could not setup "
|
|
"Pwr Virus for AVFS ",
|
|
return -EINVAL;);
|
|
smu_data->avfs.avfs_btc_status = AVFS_BTC_FAILED;
|
|
PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
|
|
"[AVFS][fiji_avfs_event_mgr] Failure at "
|
|
"fiji_start_avfs_btc. AVFS Disabled",
|
|
return -EINVAL;);
|
|
|
|
smu_data->avfs.avfs_btc_status = AVFS_BTC_ENABLEAVFS;
|
|
break;
|
|
case AVFS_BTC_DISABLED: /* Do nothing */
|
|
case AVFS_BTC_NOTSUPPORTED: /* Do nothing */
|
|
case AVFS_BTC_ENABLEAVFS:
|
|
break;
|
|
default:
|
|
pr_err("AVFS failed status is %x !\n", smu_data->avfs.avfs_btc_status);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_start_smu(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
/* Only start SMC if SMC RAM is not running */
|
|
if (!(smu7_is_smc_ram_running(hwmgr)
|
|
|| cgs_is_virtualization_enabled(hwmgr->device))) {
|
|
fiji_avfs_event_mgr(hwmgr, false);
|
|
|
|
/* Check if SMU is running in protected mode */
|
|
if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
|
|
CGS_IND_REG__SMC,
|
|
SMU_FIRMWARE, SMU_MODE)) {
|
|
result = fiji_start_smu_in_non_protection_mode(hwmgr);
|
|
if (result)
|
|
return result;
|
|
} else {
|
|
result = fiji_start_smu_in_protection_mode(hwmgr);
|
|
if (result)
|
|
return result;
|
|
}
|
|
fiji_avfs_event_mgr(hwmgr, true);
|
|
}
|
|
|
|
/* To initialize all clock gating before RLC loaded and running.*/
|
|
cgs_set_clockgating_state(hwmgr->device,
|
|
AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_GATE);
|
|
cgs_set_clockgating_state(hwmgr->device,
|
|
AMD_IP_BLOCK_TYPE_GMC, AMD_CG_STATE_GATE);
|
|
cgs_set_clockgating_state(hwmgr->device,
|
|
AMD_IP_BLOCK_TYPE_SDMA, AMD_CG_STATE_GATE);
|
|
cgs_set_clockgating_state(hwmgr->device,
|
|
AMD_IP_BLOCK_TYPE_COMMON, AMD_CG_STATE_GATE);
|
|
|
|
/* Setup SoftRegsStart here for register lookup in case
|
|
* DummyBackEnd is used and ProcessFirmwareHeader is not executed
|
|
*/
|
|
smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, SoftRegisters),
|
|
&(priv->smu7_data.soft_regs_start), 0x40000);
|
|
|
|
result = smu7_request_smu_load_fw(hwmgr);
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
|
|
{
|
|
|
|
uint32_t efuse = 0;
|
|
uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1;
|
|
|
|
if (cgs_is_virtualization_enabled(hwmgr->device))
|
|
return 0;
|
|
|
|
if (!atomctrl_read_efuse(hwmgr->device, AVFS_EN_LSB, AVFS_EN_MSB,
|
|
mask, &efuse)) {
|
|
if (efuse)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int fiji_smu_init(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int i;
|
|
struct fiji_smumgr *fiji_priv = NULL;
|
|
|
|
fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
|
|
|
|
if (fiji_priv == NULL)
|
|
return -ENOMEM;
|
|
|
|
hwmgr->smu_backend = fiji_priv;
|
|
|
|
if (smu7_init(hwmgr))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
|
|
fiji_priv->activity_target[i] = 30;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
|
|
uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
|
|
{
|
|
uint32_t i;
|
|
uint16_t vddci;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
*voltage = *mvdd = 0;
|
|
|
|
|
|
/* clock - voltage dependency table is empty table */
|
|
if (dep_table->count == 0)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
/* find first sclk bigger than request */
|
|
if (dep_table->entries[i].clk >= clock) {
|
|
*voltage |= (dep_table->entries[i].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
|
|
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else if (dep_table->entries[i].vddci)
|
|
*voltage |= (dep_table->entries[i].vddci *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else {
|
|
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
|
|
(dep_table->entries[i].vddc -
|
|
VDDC_VDDCI_DELTA));
|
|
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
}
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
|
|
*mvdd = data->vbios_boot_state.mvdd_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
else if (dep_table->entries[i].mvdd)
|
|
*mvdd = (uint32_t) dep_table->entries[i].mvdd *
|
|
VOLTAGE_SCALE;
|
|
|
|
*voltage |= 1 << PHASES_SHIFT;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* sclk is bigger than max sclk in the dependence table */
|
|
*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
|
|
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
else if (dep_table->entries[i-1].vddci) {
|
|
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
|
|
(dep_table->entries[i].vddc -
|
|
VDDC_VDDCI_DELTA));
|
|
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
}
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
|
|
*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
|
|
else if (dep_table->entries[i].mvdd)
|
|
*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
|
|
{
|
|
uint32_t tmp;
|
|
tmp = raw_setting * 4096 / 100;
|
|
return (uint16_t)tmp;
|
|
}
|
|
|
|
static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
|
|
{
|
|
switch (line) {
|
|
case SMU7_I2CLineID_DDC1:
|
|
*scl = SMU7_I2C_DDC1CLK;
|
|
*sda = SMU7_I2C_DDC1DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC2:
|
|
*scl = SMU7_I2C_DDC2CLK;
|
|
*sda = SMU7_I2C_DDC2DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC3:
|
|
*scl = SMU7_I2C_DDC3CLK;
|
|
*sda = SMU7_I2C_DDC3DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC4:
|
|
*scl = SMU7_I2C_DDC4CLK;
|
|
*sda = SMU7_I2C_DDC4DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC5:
|
|
*scl = SMU7_I2C_DDC5CLK;
|
|
*sda = SMU7_I2C_DDC5DATA;
|
|
break;
|
|
case SMU7_I2CLineID_DDC6:
|
|
*scl = SMU7_I2C_DDC6CLK;
|
|
*sda = SMU7_I2C_DDC6DATA;
|
|
break;
|
|
case SMU7_I2CLineID_SCLSDA:
|
|
*scl = SMU7_I2C_SCL;
|
|
*sda = SMU7_I2C_SDA;
|
|
break;
|
|
case SMU7_I2CLineID_DDCVGA:
|
|
*scl = SMU7_I2C_DDCVGACLK;
|
|
*sda = SMU7_I2C_DDCVGADATA;
|
|
break;
|
|
default:
|
|
*scl = 0;
|
|
*sda = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
if (table_info &&
|
|
table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
|
|
table_info->cac_dtp_table->usPowerTuneDataSetID)
|
|
smu_data->power_tune_defaults =
|
|
&fiji_power_tune_data_set_array
|
|
[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
|
|
else
|
|
smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
|
|
|
|
}
|
|
|
|
static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
|
|
|
|
SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
|
|
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
|
|
struct pp_advance_fan_control_parameters *fan_table =
|
|
&hwmgr->thermal_controller.advanceFanControlParameters;
|
|
uint8_t uc_scl, uc_sda;
|
|
|
|
/* TDP number of fraction bits are changed from 8 to 7 for Fiji
|
|
* as requested by SMC team
|
|
*/
|
|
dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
|
|
(uint16_t)(cac_dtp_table->usTDP * 128));
|
|
dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
|
|
(uint16_t)(cac_dtp_table->usTDP * 128));
|
|
|
|
PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
|
|
"Target Operating Temp is out of Range!",
|
|
);
|
|
|
|
dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
|
|
dpm_table->GpuTjHyst = 8;
|
|
|
|
dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
|
|
|
|
/* The following are for new Fiji Multi-input fan/thermal control */
|
|
dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTargetOperatingTemp * 256);
|
|
dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitHotspot * 256);
|
|
dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitLiquid1 * 256);
|
|
dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitLiquid2 * 256);
|
|
dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitVrVddc * 256);
|
|
dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitVrMvdd * 256);
|
|
dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
|
|
cac_dtp_table->usTemperatureLimitPlx * 256);
|
|
|
|
dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainEdge));
|
|
dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainHotspot));
|
|
dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainLiquid));
|
|
dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainVrVddc));
|
|
dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
|
|
dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainPlx));
|
|
dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
|
|
scale_fan_gain_settings(fan_table->usFanGainHbm));
|
|
|
|
dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
|
|
dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
|
|
dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
|
|
dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
|
|
|
|
get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
|
|
dpm_table->Liquid_I2C_LineSCL = uc_scl;
|
|
dpm_table->Liquid_I2C_LineSDA = uc_sda;
|
|
|
|
get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
|
|
dpm_table->Vr_I2C_LineSCL = uc_scl;
|
|
dpm_table->Vr_I2C_LineSDA = uc_sda;
|
|
|
|
get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
|
|
dpm_table->Plx_I2C_LineSCL = uc_scl;
|
|
dpm_table->Plx_I2C_LineSDA = uc_sda;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
|
|
|
|
smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
|
|
smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
|
|
smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
|
|
smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint16_t tdc_limit;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
|
|
|
|
/* TDC number of fraction bits are changed from 8 to 7
|
|
* for Fiji as requested by SMC team
|
|
*/
|
|
tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
|
|
smu_data->power_tune_table.TDC_VDDC_PkgLimit =
|
|
CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
|
|
smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
|
|
defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
|
|
smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
|
|
uint32_t temp;
|
|
|
|
if (smu7_read_smc_sram_dword(hwmgr,
|
|
fuse_table_offset +
|
|
offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
|
|
(uint32_t *)&temp, SMC_RAM_END))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
|
|
return -EINVAL);
|
|
else {
|
|
smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
|
|
smu_data->power_tune_table.LPMLTemperatureMin =
|
|
(uint8_t)((temp >> 16) & 0xff);
|
|
smu_data->power_tune_table.LPMLTemperatureMax =
|
|
(uint8_t)((temp >> 8) & 0xff);
|
|
smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int i;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
/* Currently not used. Set all to zero. */
|
|
for (i = 0; i < 16; i++)
|
|
smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
if ((hwmgr->thermal_controller.advanceFanControlParameters.
|
|
usFanOutputSensitivity & (1 << 15)) ||
|
|
0 == hwmgr->thermal_controller.advanceFanControlParameters.
|
|
usFanOutputSensitivity)
|
|
hwmgr->thermal_controller.advanceFanControlParameters.
|
|
usFanOutputSensitivity = hwmgr->thermal_controller.
|
|
advanceFanControlParameters.usDefaultFanOutputSensitivity;
|
|
|
|
smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
|
|
PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
|
|
advanceFanControlParameters.usFanOutputSensitivity);
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int i;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
/* Currently not used. Set all to zero. */
|
|
for (i = 0; i < 16; i++)
|
|
smu_data->power_tune_table.GnbLPML[i] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
|
|
uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
|
|
struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
|
|
|
|
HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
|
|
LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
|
|
|
|
smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
|
|
CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
|
|
smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
|
|
CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t pm_fuse_table_offset;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_PowerContainment)) {
|
|
if (smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, PmFuseTable),
|
|
&pm_fuse_table_offset, SMC_RAM_END))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to get pm_fuse_table_offset Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW6 */
|
|
if (fiji_populate_svi_load_line(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate SviLoadLine Failed!",
|
|
return -EINVAL);
|
|
/* DW7 */
|
|
if (fiji_populate_tdc_limit(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate TDCLimit Failed!", return -EINVAL);
|
|
/* DW8 */
|
|
if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate TdcWaterfallCtl, "
|
|
"LPMLTemperature Min and Max Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW9-DW12 */
|
|
if (0 != fiji_populate_temperature_scaler(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate LPMLTemperatureScaler Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW13-DW14 */
|
|
if (fiji_populate_fuzzy_fan(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate Fuzzy Fan Control parameters Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW15-DW18 */
|
|
if (fiji_populate_gnb_lpml(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate GnbLPML Failed!",
|
|
return -EINVAL);
|
|
|
|
/* DW20 */
|
|
if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
|
|
"Sidd Failed!", return -EINVAL);
|
|
|
|
if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
|
|
(uint8_t *)&smu_data->power_tune_table,
|
|
sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Attempt to download PmFuseTable Failed!",
|
|
return -EINVAL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
uint32_t count;
|
|
uint8_t index;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_voltage_lookup_table *lookup_table =
|
|
table_info->vddc_lookup_table;
|
|
/* tables is already swapped, so in order to use the value from it,
|
|
* we need to swap it back.
|
|
* We are populating vddc CAC data to BapmVddc table
|
|
* in split and merged mode
|
|
*/
|
|
|
|
for (count = 0; count < lookup_table->count; count++) {
|
|
index = phm_get_voltage_index(lookup_table,
|
|
data->vddc_voltage_table.entries[count].value);
|
|
table->BapmVddcVidLoSidd[count] =
|
|
convert_to_vid(lookup_table->entries[index].us_cac_low);
|
|
table->BapmVddcVidHiSidd[count] =
|
|
convert_to_vid(lookup_table->entries[index].us_cac_high);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result;
|
|
|
|
result = fiji_populate_cac_table(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"can not populate CAC voltage tables to SMC",
|
|
return -EINVAL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_Ulv *state)
|
|
{
|
|
int result = 0;
|
|
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
state->CcPwrDynRm = 0;
|
|
state->CcPwrDynRm1 = 0;
|
|
|
|
state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
|
|
state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
|
|
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
|
|
|
|
state->VddcPhase = 1;
|
|
|
|
if (!result) {
|
|
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
|
|
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
return fiji_populate_ulv_level(hwmgr, &table->Ulv);
|
|
}
|
|
|
|
static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct smu7_dpm_table *dpm_table = &data->dpm_table;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
int i;
|
|
|
|
/* Index (dpm_table->pcie_speed_table.count)
|
|
* is reserved for PCIE boot level. */
|
|
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
|
|
table->LinkLevel[i].PcieGenSpeed =
|
|
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
|
|
table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
|
|
dpm_table->pcie_speed_table.dpm_levels[i].param1);
|
|
table->LinkLevel[i].EnabledForActivity = 1;
|
|
table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
|
|
table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
|
|
table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
|
|
}
|
|
|
|
smu_data->smc_state_table.LinkLevelCount =
|
|
(uint8_t)dpm_table->pcie_speed_table.count;
|
|
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
|
|
phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
|
|
{
|
|
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
|
|
uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
|
|
uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
|
|
uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
|
|
uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
|
|
uint32_t ref_clock;
|
|
uint32_t ref_divider;
|
|
uint32_t fbdiv;
|
|
int result;
|
|
|
|
/* get the engine clock dividers for this clock value */
|
|
result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs);
|
|
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error retrieving Engine Clock dividers from VBIOS.",
|
|
return result);
|
|
|
|
/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
|
|
ref_clock = atomctrl_get_reference_clock(hwmgr);
|
|
ref_divider = 1 + dividers.uc_pll_ref_div;
|
|
|
|
/* low 14 bits is fraction and high 12 bits is divider */
|
|
fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
|
|
|
|
/* SPLL_FUNC_CNTL setup */
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_REF_DIV, dividers.uc_pll_ref_div);
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_PDIV_A, dividers.uc_pll_post_div);
|
|
|
|
/* SPLL_FUNC_CNTL_3 setup*/
|
|
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
|
|
SPLL_FB_DIV, fbdiv);
|
|
|
|
/* set to use fractional accumulation*/
|
|
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
|
|
SPLL_DITHEN, 1);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
|
|
struct pp_atomctrl_internal_ss_info ssInfo;
|
|
|
|
uint32_t vco_freq = clock * dividers.uc_pll_post_div;
|
|
if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
|
|
vco_freq, &ssInfo)) {
|
|
/*
|
|
* ss_info.speed_spectrum_percentage -- in unit of 0.01%
|
|
* ss_info.speed_spectrum_rate -- in unit of khz
|
|
*
|
|
* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
|
|
*/
|
|
uint32_t clk_s = ref_clock * 5 /
|
|
(ref_divider * ssInfo.speed_spectrum_rate);
|
|
/* clkv = 2 * D * fbdiv / NS */
|
|
uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
|
|
fbdiv / (clk_s * 10000);
|
|
|
|
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
|
|
CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
|
|
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
|
|
CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
|
|
cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
|
|
CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
|
|
}
|
|
}
|
|
|
|
sclk->SclkFrequency = clock;
|
|
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
|
|
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
|
|
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
|
|
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
|
|
sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, uint16_t sclk_al_threshold,
|
|
struct SMU73_Discrete_GraphicsLevel *level)
|
|
{
|
|
int result;
|
|
/* PP_Clocks minClocks; */
|
|
uint32_t threshold, mvdd;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
result = fiji_calculate_sclk_params(hwmgr, clock, level);
|
|
|
|
/* populate graphics levels */
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_sclk, clock,
|
|
(uint32_t *)(&level->MinVoltage), &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find VDDC voltage value for "
|
|
"VDDC engine clock dependency table",
|
|
return result);
|
|
|
|
level->SclkFrequency = clock;
|
|
level->ActivityLevel = sclk_al_threshold;
|
|
level->CcPwrDynRm = 0;
|
|
level->CcPwrDynRm1 = 0;
|
|
level->EnabledForActivity = 0;
|
|
level->EnabledForThrottle = 1;
|
|
level->UpHyst = 10;
|
|
level->DownHyst = 0;
|
|
level->VoltageDownHyst = 0;
|
|
level->PowerThrottle = 0;
|
|
|
|
threshold = clock * data->fast_watermark_threshold / 100;
|
|
|
|
data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
|
|
level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
|
|
hwmgr->display_config.min_core_set_clock_in_sr);
|
|
|
|
|
|
/* Default to slow, highest DPM level will be
|
|
* set to PPSMC_DISPLAY_WATERMARK_LOW later.
|
|
*/
|
|
level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
struct smu7_dpm_table *dpm_table = &data->dpm_table;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
|
|
uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
|
|
int result = 0;
|
|
uint32_t array = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
|
|
uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
|
|
SMU73_MAX_LEVELS_GRAPHICS;
|
|
struct SMU73_Discrete_GraphicsLevel *levels =
|
|
smu_data->smc_state_table.GraphicsLevel;
|
|
uint32_t i, max_entry;
|
|
uint8_t hightest_pcie_level_enabled = 0,
|
|
lowest_pcie_level_enabled = 0,
|
|
mid_pcie_level_enabled = 0,
|
|
count = 0;
|
|
|
|
for (i = 0; i < dpm_table->sclk_table.count; i++) {
|
|
result = fiji_populate_single_graphic_level(hwmgr,
|
|
dpm_table->sclk_table.dpm_levels[i].value,
|
|
(uint16_t)smu_data->activity_target[i],
|
|
&levels[i]);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
|
|
if (i > 1)
|
|
levels[i].DeepSleepDivId = 0;
|
|
}
|
|
|
|
/* Only enable level 0 for now.*/
|
|
levels[0].EnabledForActivity = 1;
|
|
|
|
/* set highest level watermark to high */
|
|
levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
|
|
PPSMC_DISPLAY_WATERMARK_HIGH;
|
|
|
|
smu_data->smc_state_table.GraphicsDpmLevelCount =
|
|
(uint8_t)dpm_table->sclk_table.count;
|
|
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
|
|
phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
|
|
|
|
if (pcie_table != NULL) {
|
|
PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
|
|
"There must be 1 or more PCIE levels defined in PPTable.",
|
|
return -EINVAL);
|
|
max_entry = pcie_entry_cnt - 1;
|
|
for (i = 0; i < dpm_table->sclk_table.count; i++)
|
|
levels[i].pcieDpmLevel =
|
|
(uint8_t) ((i < max_entry) ? i : max_entry);
|
|
} else {
|
|
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << (hightest_pcie_level_enabled + 1))) != 0))
|
|
hightest_pcie_level_enabled++;
|
|
|
|
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << lowest_pcie_level_enabled)) == 0))
|
|
lowest_pcie_level_enabled++;
|
|
|
|
while ((count < hightest_pcie_level_enabled) &&
|
|
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
|
|
(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
|
|
count++;
|
|
|
|
mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
|
|
hightest_pcie_level_enabled ?
|
|
(lowest_pcie_level_enabled + 1 + count) :
|
|
hightest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to hightest_pcie_level_enabled */
|
|
for (i = 2; i < dpm_table->sclk_table.count; i++)
|
|
levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to lowest_pcie_level_enabled */
|
|
levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
|
|
|
|
/* set pcieDpmLevel to mid_pcie_level_enabled */
|
|
levels[1].pcieDpmLevel = mid_pcie_level_enabled;
|
|
}
|
|
/* level count will send to smc once at init smc table and never change */
|
|
result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
|
|
(uint32_t)array_size, SMC_RAM_END);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
* MCLK Frequency Ratio
|
|
* SEQ_CG_RESP Bit[31:24] - 0x0
|
|
* Bit[27:24] \96 DDR3 Frequency ratio
|
|
* 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
|
|
* 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
|
|
* 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
|
|
* 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
|
|
* 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
|
|
* 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
|
|
* 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
|
|
* 400 < 0x7 <= 450MHz, 800 < 0xF
|
|
*/
|
|
static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
|
|
{
|
|
if (mem_clock <= 10000)
|
|
return 0x0;
|
|
if (mem_clock <= 15000)
|
|
return 0x1;
|
|
if (mem_clock <= 20000)
|
|
return 0x2;
|
|
if (mem_clock <= 25000)
|
|
return 0x3;
|
|
if (mem_clock <= 30000)
|
|
return 0x4;
|
|
if (mem_clock <= 35000)
|
|
return 0x5;
|
|
if (mem_clock <= 40000)
|
|
return 0x6;
|
|
if (mem_clock <= 45000)
|
|
return 0x7;
|
|
if (mem_clock <= 50000)
|
|
return 0x8;
|
|
if (mem_clock <= 55000)
|
|
return 0x9;
|
|
if (mem_clock <= 60000)
|
|
return 0xa;
|
|
if (mem_clock <= 65000)
|
|
return 0xb;
|
|
if (mem_clock <= 70000)
|
|
return 0xc;
|
|
if (mem_clock <= 75000)
|
|
return 0xd;
|
|
if (mem_clock <= 80000)
|
|
return 0xe;
|
|
/* mem_clock > 800MHz */
|
|
return 0xf;
|
|
}
|
|
|
|
static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
|
|
{
|
|
struct pp_atomctrl_memory_clock_param mem_param;
|
|
int result;
|
|
|
|
result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to get Memory PLL Dividers.",
|
|
);
|
|
|
|
/* Save the result data to outpupt memory level structure */
|
|
mclk->MclkFrequency = clock;
|
|
mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
|
|
mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
|
|
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
int result = 0;
|
|
uint32_t mclk_stutter_mode_threshold = 60000;
|
|
|
|
if (table_info->vdd_dep_on_mclk) {
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_mclk, clock,
|
|
(uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find MinVddc voltage value from memory "
|
|
"VDDC voltage dependency table", return result);
|
|
}
|
|
|
|
mem_level->EnabledForThrottle = 1;
|
|
mem_level->EnabledForActivity = 0;
|
|
mem_level->UpHyst = 0;
|
|
mem_level->DownHyst = 100;
|
|
mem_level->VoltageDownHyst = 0;
|
|
mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
|
|
mem_level->StutterEnable = false;
|
|
|
|
mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
|
|
/* enable stutter mode if all the follow condition applied
|
|
* PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
|
|
* &(data->DisplayTiming.numExistingDisplays));
|
|
*/
|
|
data->display_timing.num_existing_displays = 1;
|
|
|
|
if (mclk_stutter_mode_threshold &&
|
|
(clock <= mclk_stutter_mode_threshold) &&
|
|
(!data->is_uvd_enabled) &&
|
|
(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
|
|
STUTTER_ENABLE) & 0x1))
|
|
mem_level->StutterEnable = true;
|
|
|
|
result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
|
|
if (!result) {
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct smu7_dpm_table *dpm_table = &data->dpm_table;
|
|
int result;
|
|
/* populate MCLK dpm table to SMU7 */
|
|
uint32_t array = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
|
|
uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
|
|
SMU73_MAX_LEVELS_MEMORY;
|
|
struct SMU73_Discrete_MemoryLevel *levels =
|
|
smu_data->smc_state_table.MemoryLevel;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < dpm_table->mclk_table.count; i++) {
|
|
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
|
|
"can not populate memory level as memory clock is zero",
|
|
return -EINVAL);
|
|
result = fiji_populate_single_memory_level(hwmgr,
|
|
dpm_table->mclk_table.dpm_levels[i].value,
|
|
&levels[i]);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/* Only enable level 0 for now. */
|
|
levels[0].EnabledForActivity = 1;
|
|
|
|
/* in order to prevent MC activity from stutter mode to push DPM up.
|
|
* the UVD change complements this by putting the MCLK in
|
|
* a higher state by default such that we are not effected by
|
|
* up threshold or and MCLK DPM latency.
|
|
*/
|
|
levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
|
|
CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
|
|
|
|
smu_data->smc_state_table.MemoryDpmLevelCount =
|
|
(uint8_t)dpm_table->mclk_table.count;
|
|
data->dpm_level_enable_mask.mclk_dpm_enable_mask =
|
|
phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
|
|
/* set highest level watermark to high */
|
|
levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
|
|
PPSMC_DISPLAY_WATERMARK_HIGH;
|
|
|
|
/* level count will send to smc once at init smc table and never change */
|
|
result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
|
|
(uint32_t)array_size, SMC_RAM_END);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
|
|
uint32_t mclk, SMIO_Pattern *smio_pat)
|
|
{
|
|
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint32_t i = 0;
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
|
|
/* find mvdd value which clock is more than request */
|
|
for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
|
|
if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
|
|
smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
|
|
break;
|
|
}
|
|
}
|
|
PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
|
|
"MVDD Voltage is outside the supported range.",
|
|
return -EINVAL);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = 0;
|
|
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
SMIO_Pattern vol_level;
|
|
uint32_t mvdd;
|
|
uint16_t us_mvdd;
|
|
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
|
|
uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
|
|
|
|
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
|
|
|
|
if (!data->sclk_dpm_key_disabled) {
|
|
/* Get MinVoltage and Frequency from DPM0,
|
|
* already converted to SMC_UL */
|
|
table->ACPILevel.SclkFrequency =
|
|
data->dpm_table.sclk_table.dpm_levels[0].value;
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_sclk,
|
|
table->ACPILevel.SclkFrequency,
|
|
(uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Cannot find ACPI VDDC voltage value " \
|
|
"in Clock Dependency Table",
|
|
);
|
|
} else {
|
|
table->ACPILevel.SclkFrequency =
|
|
data->vbios_boot_state.sclk_bootup_value;
|
|
table->ACPILevel.MinVoltage =
|
|
data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
|
|
}
|
|
|
|
/* get the engine clock dividers for this clock value */
|
|
result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
|
|
table->ACPILevel.SclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error retrieving Engine Clock dividers from VBIOS.",
|
|
return result);
|
|
|
|
table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
|
|
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
|
|
table->ACPILevel.DeepSleepDivId = 0;
|
|
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_PWRON, 0);
|
|
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
|
|
SPLL_RESET, 1);
|
|
spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
|
|
SCLK_MUX_SEL, 4);
|
|
|
|
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
|
|
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
|
|
table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
|
|
table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
|
|
table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
|
|
table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
|
|
table->ACPILevel.CcPwrDynRm = 0;
|
|
table->ACPILevel.CcPwrDynRm1 = 0;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
|
|
|
|
if (!data->mclk_dpm_key_disabled) {
|
|
/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
|
|
table->MemoryACPILevel.MclkFrequency =
|
|
data->dpm_table.mclk_table.dpm_levels[0].value;
|
|
result = fiji_get_dependency_volt_by_clk(hwmgr,
|
|
table_info->vdd_dep_on_mclk,
|
|
table->MemoryACPILevel.MclkFrequency,
|
|
(uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
|
|
);
|
|
} else {
|
|
table->MemoryACPILevel.MclkFrequency =
|
|
data->vbios_boot_state.mclk_bootup_value;
|
|
table->MemoryACPILevel.MinVoltage =
|
|
data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
|
|
}
|
|
|
|
us_mvdd = 0;
|
|
if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
|
|
(data->mclk_dpm_key_disabled))
|
|
us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
|
|
else {
|
|
if (!fiji_populate_mvdd_value(hwmgr,
|
|
data->dpm_table.mclk_table.dpm_levels[0].value,
|
|
&vol_level))
|
|
us_mvdd = vol_level.Voltage;
|
|
}
|
|
|
|
table->MemoryACPILevel.MinMvdd =
|
|
PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
|
|
|
|
table->MemoryACPILevel.EnabledForThrottle = 0;
|
|
table->MemoryACPILevel.EnabledForActivity = 0;
|
|
table->MemoryACPILevel.UpHyst = 0;
|
|
table->MemoryACPILevel.DownHyst = 100;
|
|
table->MemoryACPILevel.VoltageDownHyst = 0;
|
|
table->MemoryACPILevel.ActivityLevel =
|
|
PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
|
|
|
|
table->MemoryACPILevel.StutterEnable = false;
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
|
|
table->VceLevelCount = (uint8_t)(mm_table->count);
|
|
table->VceBootLevel = 0;
|
|
|
|
for (count = 0; count < table->VceLevelCount; count++) {
|
|
table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
|
|
table->VceLevel[count].MinVoltage = 0;
|
|
table->VceLevel[count].MinVoltage |=
|
|
(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->VceLevel[count].MinVoltage |=
|
|
((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
|
|
VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/*retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->VceLevel[count].Frequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for VCE engine clock",
|
|
return result);
|
|
|
|
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
|
|
table->AcpLevelCount = (uint8_t)(mm_table->count);
|
|
table->AcpBootLevel = 0;
|
|
|
|
for (count = 0; count < table->AcpLevelCount; count++) {
|
|
table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
|
|
table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
|
|
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/* retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->AcpLevel[count].Frequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for engine clock", return result);
|
|
|
|
table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
|
|
SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
|
|
table->SamuBootLevel = 0;
|
|
table->SamuLevelCount = (uint8_t)(mm_table->count);
|
|
|
|
for (count = 0; count < table->SamuLevelCount; count++) {
|
|
/* not sure whether we need evclk or not */
|
|
table->SamuLevel[count].MinVoltage = 0;
|
|
table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
|
|
table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
|
|
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/* retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->SamuLevel[count].Frequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for samu clock", return result);
|
|
|
|
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
|
|
int32_t eng_clock, int32_t mem_clock,
|
|
struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
|
|
{
|
|
uint32_t dram_timing;
|
|
uint32_t dram_timing2;
|
|
uint32_t burstTime;
|
|
ULONG state, trrds, trrdl;
|
|
int result;
|
|
|
|
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
|
|
eng_clock, mem_clock);
|
|
PP_ASSERT_WITH_CODE(result == 0,
|
|
"Error calling VBIOS to set DRAM_TIMING.", return result);
|
|
|
|
dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
|
|
dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
|
|
burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
|
|
|
|
state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
|
|
trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
|
|
trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
|
|
|
|
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
|
|
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
|
|
arb_regs->McArbBurstTime = (uint8_t)burstTime;
|
|
arb_regs->TRRDS = (uint8_t)trrds;
|
|
arb_regs->TRRDL = (uint8_t)trrdl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
|
|
uint32_t i, j;
|
|
int result = 0;
|
|
|
|
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
|
|
for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
|
|
result = fiji_populate_memory_timing_parameters(hwmgr,
|
|
data->dpm_table.sclk_table.dpm_levels[i].value,
|
|
data->dpm_table.mclk_table.dpm_levels[j].value,
|
|
&arb_regs.entries[i][j]);
|
|
if (result)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!result)
|
|
result = smu7_copy_bytes_to_smc(
|
|
hwmgr,
|
|
smu_data->smu7_data.arb_table_start,
|
|
(uint8_t *)&arb_regs,
|
|
sizeof(SMU73_Discrete_MCArbDramTimingTable),
|
|
SMC_RAM_END);
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = -EINVAL;
|
|
uint8_t count;
|
|
struct pp_atomctrl_clock_dividers_vi dividers;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
|
|
table_info->mm_dep_table;
|
|
|
|
table->UvdLevelCount = (uint8_t)(mm_table->count);
|
|
table->UvdBootLevel = 0;
|
|
|
|
for (count = 0; count < table->UvdLevelCount; count++) {
|
|
table->UvdLevel[count].MinVoltage = 0;
|
|
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
|
|
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
|
|
table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
|
|
VOLTAGE_SCALE) << VDDC_SHIFT;
|
|
table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
|
|
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
|
|
table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
|
|
|
|
/* retrieve divider value for VBIOS */
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->UvdLevel[count].VclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for Vclk clock", return result);
|
|
|
|
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
|
|
table->UvdLevel[count].DclkFrequency, ÷rs);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"can not find divide id for Dclk clock", return result);
|
|
|
|
table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
|
|
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
int result = 0;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
|
|
table->GraphicsBootLevel = 0;
|
|
table->MemoryBootLevel = 0;
|
|
|
|
/* find boot level from dpm table */
|
|
result = phm_find_boot_level(&(data->dpm_table.sclk_table),
|
|
data->vbios_boot_state.sclk_bootup_value,
|
|
(uint32_t *)&(table->GraphicsBootLevel));
|
|
|
|
result = phm_find_boot_level(&(data->dpm_table.mclk_table),
|
|
data->vbios_boot_state.mclk_bootup_value,
|
|
(uint32_t *)&(table->MemoryBootLevel));
|
|
|
|
table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
|
|
VOLTAGE_SCALE;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
uint8_t count, level;
|
|
|
|
count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
|
|
for (level = 0; level < count; level++) {
|
|
if (table_info->vdd_dep_on_sclk->entries[level].clk >=
|
|
data->vbios_boot_state.sclk_bootup_value) {
|
|
smu_data->smc_state_table.GraphicsBootLevel = level;
|
|
break;
|
|
}
|
|
}
|
|
|
|
count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
|
|
for (level = 0; level < count; level++) {
|
|
if (table_info->vdd_dep_on_mclk->entries[level].clk >=
|
|
data->vbios_boot_state.mclk_bootup_value) {
|
|
smu_data->smc_state_table.MemoryBootLevel = level;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
|
|
volt_with_cks, value;
|
|
uint16_t clock_freq_u16;
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
|
|
volt_offset = 0;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
|
|
table_info->vdd_dep_on_sclk;
|
|
|
|
stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
|
|
|
|
/* Read SMU_Eefuse to read and calculate RO and determine
|
|
* if the part is SS or FF. if RO >= 1660MHz, part is FF.
|
|
*/
|
|
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_EFUSE_0 + (146 * 4));
|
|
efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixSMU_EFUSE_0 + (148 * 4));
|
|
efuse &= 0xFF000000;
|
|
efuse = efuse >> 24;
|
|
efuse2 &= 0xF;
|
|
|
|
if (efuse2 == 1)
|
|
ro = (2300 - 1350) * efuse / 255 + 1350;
|
|
else
|
|
ro = (2500 - 1000) * efuse / 255 + 1000;
|
|
|
|
if (ro >= 1660)
|
|
type = 0;
|
|
else
|
|
type = 1;
|
|
|
|
/* Populate Stretch amount */
|
|
smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
|
|
|
|
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
|
|
for (i = 0; i < sclk_table->count; i++) {
|
|
smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
|
|
sclk_table->entries[i].cks_enable << i;
|
|
volt_without_cks = (uint32_t)((14041 *
|
|
(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
|
|
(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
|
|
volt_with_cks = (uint32_t)((13946 *
|
|
(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
|
|
(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
|
|
if (volt_without_cks >= volt_with_cks)
|
|
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
|
|
sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
|
|
smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
|
|
}
|
|
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
STRETCH_ENABLE, 0x0);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
masterReset, 0x1);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
staticEnable, 0x1);
|
|
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
|
|
masterReset, 0x0);
|
|
|
|
/* Populate CKS Lookup Table */
|
|
if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
|
|
stretch_amount2 = 0;
|
|
else if (stretch_amount == 3 || stretch_amount == 4)
|
|
stretch_amount2 = 1;
|
|
else {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ClockStretcher);
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"Stretch Amount in PPTable not supported\n",
|
|
return -EINVAL);
|
|
}
|
|
|
|
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixPWR_CKS_CNTL);
|
|
value &= 0xFFC2FF87;
|
|
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][0];
|
|
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][1];
|
|
clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
|
|
GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
|
|
SclkFrequency) / 100);
|
|
if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
|
|
clock_freq_u16 &&
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
|
|
clock_freq_u16) {
|
|
/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
|
|
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
|
|
/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
|
|
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
|
|
/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
|
|
value |= (fiji_clock_stretch_amount_conversion
|
|
[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
|
|
[stretch_amount]) << 3;
|
|
}
|
|
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
|
|
CKS_LOOKUPTableEntry[0].minFreq);
|
|
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
|
|
CKS_LOOKUPTableEntry[0].maxFreq);
|
|
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
|
|
fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
|
|
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
|
|
(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
|
|
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixPWR_CKS_CNTL, value);
|
|
|
|
/* Populate DDT Lookup Table */
|
|
for (i = 0; i < 4; i++) {
|
|
/* Assign the minimum and maximum VID stored
|
|
* in the last row of Clock Stretcher Voltage Table.
|
|
*/
|
|
smu_data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].minVID =
|
|
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
|
|
smu_data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].maxVID =
|
|
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
|
|
/* Loop through each SCLK and check the frequency
|
|
* to see if it lies within the frequency for clock stretcher.
|
|
*/
|
|
for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
|
|
cks_setting = 0;
|
|
clock_freq = PP_SMC_TO_HOST_UL(
|
|
smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
|
|
/* Check the allowed frequency against the sclk level[j].
|
|
* Sclk's endianness has already been converted,
|
|
* and it's in 10Khz unit,
|
|
* as opposed to Data table, which is in Mhz unit.
|
|
*/
|
|
if (clock_freq >=
|
|
(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
|
|
cks_setting |= 0x2;
|
|
if (clock_freq <
|
|
(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
|
|
cks_setting |= 0x1;
|
|
}
|
|
smu_data->smc_state_table.ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
|
|
}
|
|
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
|
|
ClockStretcherDataTable.
|
|
ClockStretcherDataTableEntry[i].setting);
|
|
}
|
|
|
|
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
|
|
value &= 0xFFFFFFFE;
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
|
|
struct SMU73_Discrete_DpmTable *table)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
uint16_t config;
|
|
|
|
config = VR_MERGED_WITH_VDDC;
|
|
table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
|
|
|
|
/* Set Vddc Voltage Controller */
|
|
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
|
|
config = VR_SVI2_PLANE_1;
|
|
table->VRConfig |= config;
|
|
} else {
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"VDDC should be on SVI2 control in merged mode!",
|
|
);
|
|
}
|
|
/* Set Vddci Voltage Controller */
|
|
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
|
|
config = VR_SVI2_PLANE_2; /* only in merged mode */
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
|
|
config = VR_SMIO_PATTERN_1;
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
} else {
|
|
config = VR_STATIC_VOLTAGE;
|
|
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
|
|
}
|
|
/* Set Mvdd Voltage Controller */
|
|
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
|
|
config = VR_SVI2_PLANE_2;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
|
|
config = VR_SMIO_PATTERN_2;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
} else {
|
|
config = VR_STATIC_VOLTAGE;
|
|
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t tmp;
|
|
int result;
|
|
|
|
/* This is a read-modify-write on the first byte of the ARB table.
|
|
* The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
|
|
* is the field 'current'.
|
|
* This solution is ugly, but we never write the whole table only
|
|
* individual fields in it.
|
|
* In reality this field should not be in that structure
|
|
* but in a soft register.
|
|
*/
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
|
|
|
|
if (result)
|
|
return result;
|
|
|
|
tmp &= 0x00FFFFFF;
|
|
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
|
|
|
|
return smu7_write_smc_sram_dword(hwmgr,
|
|
smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
|
|
}
|
|
|
|
static int fiji_save_default_power_profile(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct SMU73_Discrete_GraphicsLevel *levels =
|
|
data->smc_state_table.GraphicsLevel;
|
|
unsigned min_level = 1;
|
|
|
|
hwmgr->default_gfx_power_profile.activity_threshold =
|
|
be16_to_cpu(levels[0].ActivityLevel);
|
|
hwmgr->default_gfx_power_profile.up_hyst = levels[0].UpHyst;
|
|
hwmgr->default_gfx_power_profile.down_hyst = levels[0].DownHyst;
|
|
hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE;
|
|
|
|
hwmgr->default_compute_power_profile = hwmgr->default_gfx_power_profile;
|
|
hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE;
|
|
|
|
/* Workaround compute SDMA instability: disable lowest SCLK
|
|
* DPM level. Optimize compute power profile: Use only highest
|
|
* 2 power levels (if more than 2 are available), Hysteresis:
|
|
* 0ms up, 5ms down
|
|
*/
|
|
if (data->smc_state_table.GraphicsDpmLevelCount > 2)
|
|
min_level = data->smc_state_table.GraphicsDpmLevelCount - 2;
|
|
else if (data->smc_state_table.GraphicsDpmLevelCount == 2)
|
|
min_level = 1;
|
|
else
|
|
min_level = 0;
|
|
hwmgr->default_compute_power_profile.min_sclk =
|
|
be32_to_cpu(levels[min_level].SclkFrequency);
|
|
hwmgr->default_compute_power_profile.up_hyst = 0;
|
|
hwmgr->default_compute_power_profile.down_hyst = 5;
|
|
|
|
hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile;
|
|
hwmgr->compute_power_profile = hwmgr->default_compute_power_profile;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
|
|
{
|
|
pp_atomctrl_voltage_table param_led_dpm;
|
|
int result = 0;
|
|
u32 mask = 0;
|
|
|
|
result = atomctrl_get_voltage_table_v3(hwmgr,
|
|
VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
|
|
¶m_led_dpm);
|
|
if (result == 0) {
|
|
int i, j;
|
|
u32 tmp = param_led_dpm.mask_low;
|
|
|
|
for (i = 0, j = 0; i < 32; i++) {
|
|
if (tmp & 1) {
|
|
mask |= (i << (8 * j));
|
|
if (++j >= 3)
|
|
break;
|
|
}
|
|
tmp >>= 1;
|
|
}
|
|
}
|
|
if (mask)
|
|
smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_LedConfig,
|
|
mask);
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result;
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
|
|
uint8_t i;
|
|
struct pp_atomctrl_gpio_pin_assignment gpio_pin;
|
|
|
|
fiji_initialize_power_tune_defaults(hwmgr);
|
|
|
|
if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
|
|
fiji_populate_smc_voltage_tables(hwmgr, table);
|
|
|
|
table->SystemFlags = 0;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition))
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StepVddc))
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
|
|
|
|
if (data->is_memory_gddr5)
|
|
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
|
|
|
|
if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
|
|
result = fiji_populate_ulv_state(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ULV state!", return result);
|
|
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
|
|
ixCG_ULV_PARAMETER, 0x40035);
|
|
}
|
|
|
|
result = fiji_populate_smc_link_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Link Level!", return result);
|
|
|
|
result = fiji_populate_all_graphic_levels(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Graphics Level!", return result);
|
|
|
|
result = fiji_populate_all_memory_levels(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Memory Level!", return result);
|
|
|
|
result = fiji_populate_smc_acpi_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ACPI Level!", return result);
|
|
|
|
result = fiji_populate_smc_vce_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize VCE Level!", return result);
|
|
|
|
result = fiji_populate_smc_acp_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize ACP Level!", return result);
|
|
|
|
result = fiji_populate_smc_samu_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize SAMU Level!", return result);
|
|
|
|
/* Since only the initial state is completely set up at this point
|
|
* (the other states are just copies of the boot state) we only
|
|
* need to populate the ARB settings for the initial state.
|
|
*/
|
|
result = fiji_program_memory_timing_parameters(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to Write ARB settings for the initial state.", return result);
|
|
|
|
result = fiji_populate_smc_uvd_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize UVD Level!", return result);
|
|
|
|
result = fiji_populate_smc_boot_level(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Boot Level!", return result);
|
|
|
|
result = fiji_populate_smc_initailial_state(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to initialize Boot State!", return result);
|
|
|
|
result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate BAPM Parameters!", return result);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ClockStretcher)) {
|
|
result = fiji_populate_clock_stretcher_data_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate Clock Stretcher Data Table!",
|
|
return result);
|
|
}
|
|
|
|
table->GraphicsVoltageChangeEnable = 1;
|
|
table->GraphicsThermThrottleEnable = 1;
|
|
table->GraphicsInterval = 1;
|
|
table->VoltageInterval = 1;
|
|
table->ThermalInterval = 1;
|
|
table->TemperatureLimitHigh =
|
|
table_info->cac_dtp_table->usTargetOperatingTemp *
|
|
SMU7_Q88_FORMAT_CONVERSION_UNIT;
|
|
table->TemperatureLimitLow =
|
|
(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
|
|
SMU7_Q88_FORMAT_CONVERSION_UNIT;
|
|
table->MemoryVoltageChangeEnable = 1;
|
|
table->MemoryInterval = 1;
|
|
table->VoltageResponseTime = 0;
|
|
table->PhaseResponseTime = 0;
|
|
table->MemoryThermThrottleEnable = 1;
|
|
table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
|
|
table->PCIeGenInterval = 1;
|
|
table->VRConfig = 0;
|
|
|
|
result = fiji_populate_vr_config(hwmgr, table);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate VRConfig setting!", return result);
|
|
|
|
table->ThermGpio = 17;
|
|
table->SclkStepSize = 0x4000;
|
|
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
|
|
table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot);
|
|
} else {
|
|
table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot);
|
|
}
|
|
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
|
|
&gpio_pin)) {
|
|
table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition);
|
|
} else {
|
|
table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_AutomaticDCTransition);
|
|
}
|
|
|
|
/* Thermal Output GPIO */
|
|
if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
|
|
&gpio_pin)) {
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ThermalOutGPIO);
|
|
|
|
table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
|
|
|
|
/* For porlarity read GPIOPAD_A with assigned Gpio pin
|
|
* since VBIOS will program this register to set 'inactive state',
|
|
* driver can then determine 'active state' from this and
|
|
* program SMU with correct polarity
|
|
*/
|
|
table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
|
|
(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
|
|
|
|
/* if required, combine VRHot/PCC with thermal out GPIO */
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_RegulatorHot) &&
|
|
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_CombinePCCWithThermalSignal))
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
|
|
} else {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ThermalOutGPIO);
|
|
table->ThermOutGpio = 17;
|
|
table->ThermOutPolarity = 1;
|
|
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
|
|
}
|
|
|
|
for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
|
|
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
|
|
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
|
|
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
|
|
|
|
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
|
|
result = smu7_copy_bytes_to_smc(hwmgr,
|
|
smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, SystemFlags),
|
|
(uint8_t *)&(table->SystemFlags),
|
|
sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
|
|
SMC_RAM_END);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to upload dpm data to SMC memory!", return result);
|
|
|
|
result = fiji_init_arb_table_index(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to upload arb data to SMC memory!", return result);
|
|
|
|
result = fiji_populate_pm_fuses(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to populate PM fuses to SMC memory!", return result);
|
|
|
|
result = fiji_setup_dpm_led_config(hwmgr);
|
|
PP_ASSERT_WITH_CODE(0 == result,
|
|
"Failed to setup dpm led config", return result);
|
|
|
|
fiji_save_default_power_profile(hwmgr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
|
|
uint32_t duty100;
|
|
uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
|
|
uint16_t fdo_min, slope1, slope2;
|
|
uint32_t reference_clock;
|
|
int res;
|
|
uint64_t tmp64;
|
|
|
|
if (hwmgr->thermal_controller.fanInfo.bNoFan) {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
return 0;
|
|
}
|
|
|
|
if (smu_data->smu7_data.fan_table_start == 0) {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
return 0;
|
|
}
|
|
|
|
duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
|
|
CG_FDO_CTRL1, FMAX_DUTY100);
|
|
|
|
if (duty100 == 0) {
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
return 0;
|
|
}
|
|
|
|
tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
|
|
usPWMMin * duty100;
|
|
do_div(tmp64, 10000);
|
|
fdo_min = (uint16_t)tmp64;
|
|
|
|
t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
|
|
t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
|
|
|
|
pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
|
|
pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
|
|
|
|
slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
|
|
slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
|
|
|
|
fan_table.TempMin = cpu_to_be16((50 + hwmgr->
|
|
thermal_controller.advanceFanControlParameters.usTMin) / 100);
|
|
fan_table.TempMed = cpu_to_be16((50 + hwmgr->
|
|
thermal_controller.advanceFanControlParameters.usTMed) / 100);
|
|
fan_table.TempMax = cpu_to_be16((50 + hwmgr->
|
|
thermal_controller.advanceFanControlParameters.usTMax) / 100);
|
|
|
|
fan_table.Slope1 = cpu_to_be16(slope1);
|
|
fan_table.Slope2 = cpu_to_be16(slope2);
|
|
|
|
fan_table.FdoMin = cpu_to_be16(fdo_min);
|
|
|
|
fan_table.HystDown = cpu_to_be16(hwmgr->
|
|
thermal_controller.advanceFanControlParameters.ucTHyst);
|
|
|
|
fan_table.HystUp = cpu_to_be16(1);
|
|
|
|
fan_table.HystSlope = cpu_to_be16(1);
|
|
|
|
fan_table.TempRespLim = cpu_to_be16(5);
|
|
|
|
reference_clock = smu7_get_xclk(hwmgr);
|
|
|
|
fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
|
|
thermal_controller.advanceFanControlParameters.ulCycleDelay *
|
|
reference_clock) / 1600);
|
|
|
|
fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
|
|
|
|
fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
|
|
hwmgr->device, CGS_IND_REG__SMC,
|
|
CG_MULT_THERMAL_CTRL, TEMP_SEL);
|
|
|
|
res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
|
|
(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
|
|
SMC_RAM_END);
|
|
|
|
if (!res && hwmgr->thermal_controller.
|
|
advanceFanControlParameters.ucMinimumPWMLimit)
|
|
res = smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_SetFanMinPwm,
|
|
hwmgr->thermal_controller.
|
|
advanceFanControlParameters.ucMinimumPWMLimit);
|
|
|
|
if (!res && hwmgr->thermal_controller.
|
|
advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
|
|
res = smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_SetFanSclkTarget,
|
|
hwmgr->thermal_controller.
|
|
advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
|
|
|
|
if (res)
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int ret;
|
|
struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
|
|
|
|
if (smu_data->avfs.avfs_btc_status != AVFS_BTC_ENABLEAVFS)
|
|
return 0;
|
|
|
|
ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
|
|
|
|
if (!ret)
|
|
/* If this param is not changed, this function could fire unnecessarily */
|
|
smu_data->avfs.avfs_btc_status = AVFS_BTC_COMPLETED_PREVIOUSLY;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
|
|
if (data->need_update_smu7_dpm_table &
|
|
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
|
|
return fiji_program_memory_timing_parameters(hwmgr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
|
|
int result = 0;
|
|
uint32_t low_sclk_interrupt_threshold = 0;
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_SclkThrottleLowNotification)
|
|
&& (hwmgr->gfx_arbiter.sclk_threshold !=
|
|
data->low_sclk_interrupt_threshold)) {
|
|
data->low_sclk_interrupt_threshold =
|
|
hwmgr->gfx_arbiter.sclk_threshold;
|
|
low_sclk_interrupt_threshold =
|
|
data->low_sclk_interrupt_threshold;
|
|
|
|
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
|
|
|
|
result = smu7_copy_bytes_to_smc(
|
|
hwmgr,
|
|
smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable,
|
|
LowSclkInterruptThreshold),
|
|
(uint8_t *)&low_sclk_interrupt_threshold,
|
|
sizeof(uint32_t),
|
|
SMC_RAM_END);
|
|
}
|
|
result = fiji_program_mem_timing_parameters(hwmgr);
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"Failed to program memory timing parameters!",
|
|
);
|
|
return result;
|
|
}
|
|
|
|
static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
|
|
{
|
|
switch (type) {
|
|
case SMU_SoftRegisters:
|
|
switch (member) {
|
|
case HandshakeDisables:
|
|
return offsetof(SMU73_SoftRegisters, HandshakeDisables);
|
|
case VoltageChangeTimeout:
|
|
return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
|
|
case AverageGraphicsActivity:
|
|
return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
|
|
case PreVBlankGap:
|
|
return offsetof(SMU73_SoftRegisters, PreVBlankGap);
|
|
case VBlankTimeout:
|
|
return offsetof(SMU73_SoftRegisters, VBlankTimeout);
|
|
case UcodeLoadStatus:
|
|
return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
|
|
case DRAM_LOG_ADDR_H:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
|
|
case DRAM_LOG_ADDR_L:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
|
|
case DRAM_LOG_PHY_ADDR_H:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
|
|
case DRAM_LOG_PHY_ADDR_L:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
|
|
case DRAM_LOG_BUFF_SIZE:
|
|
return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
|
|
}
|
|
case SMU_Discrete_DpmTable:
|
|
switch (member) {
|
|
case UvdBootLevel:
|
|
return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
|
|
case VceBootLevel:
|
|
return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
|
|
case SamuBootLevel:
|
|
return offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
|
|
case LowSclkInterruptThreshold:
|
|
return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
|
|
}
|
|
}
|
|
pr_warn("can't get the offset of type %x member %x\n", type, member);
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t fiji_get_mac_definition(uint32_t value)
|
|
{
|
|
switch (value) {
|
|
case SMU_MAX_LEVELS_GRAPHICS:
|
|
return SMU73_MAX_LEVELS_GRAPHICS;
|
|
case SMU_MAX_LEVELS_MEMORY:
|
|
return SMU73_MAX_LEVELS_MEMORY;
|
|
case SMU_MAX_LEVELS_LINK:
|
|
return SMU73_MAX_LEVELS_LINK;
|
|
case SMU_MAX_ENTRIES_SMIO:
|
|
return SMU73_MAX_ENTRIES_SMIO;
|
|
case SMU_MAX_LEVELS_VDDC:
|
|
return SMU73_MAX_LEVELS_VDDC;
|
|
case SMU_MAX_LEVELS_VDDGFX:
|
|
return SMU73_MAX_LEVELS_VDDGFX;
|
|
case SMU_MAX_LEVELS_VDDCI:
|
|
return SMU73_MAX_LEVELS_VDDCI;
|
|
case SMU_MAX_LEVELS_MVDD:
|
|
return SMU73_MAX_LEVELS_MVDD;
|
|
}
|
|
|
|
pr_warn("can't get the mac of %x\n", value);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t mm_boot_level_offset, mm_boot_level_value;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
smu_data->smc_state_table.UvdBootLevel = 0;
|
|
if (table_info->mm_dep_table->count > 0)
|
|
smu_data->smc_state_table.UvdBootLevel =
|
|
(uint8_t) (table_info->mm_dep_table->count - 1);
|
|
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
|
|
UvdBootLevel);
|
|
mm_boot_level_offset /= 4;
|
|
mm_boot_level_offset *= 4;
|
|
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset);
|
|
mm_boot_level_value &= 0x00FFFFFF;
|
|
mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
|
|
cgs_write_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
|
|
|
|
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_UVDDPM) ||
|
|
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StablePState))
|
|
smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_UVDDPM_SetEnabledMask,
|
|
(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t mm_boot_level_offset, mm_boot_level_value;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StablePState))
|
|
smu_data->smc_state_table.VceBootLevel =
|
|
(uint8_t) (table_info->mm_dep_table->count - 1);
|
|
else
|
|
smu_data->smc_state_table.VceBootLevel = 0;
|
|
|
|
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
|
|
mm_boot_level_offset /= 4;
|
|
mm_boot_level_offset *= 4;
|
|
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset);
|
|
mm_boot_level_value &= 0xFF00FFFF;
|
|
mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
|
|
cgs_write_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
|
|
smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_VCEDPM_SetEnabledMask,
|
|
(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_update_samu_smc_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t mm_boot_level_offset, mm_boot_level_value;
|
|
|
|
|
|
smu_data->smc_state_table.SamuBootLevel = 0;
|
|
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
|
|
|
|
mm_boot_level_offset /= 4;
|
|
mm_boot_level_offset *= 4;
|
|
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset);
|
|
mm_boot_level_value &= 0xFFFFFF00;
|
|
mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
|
|
cgs_write_ind_register(hwmgr->device,
|
|
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
|
|
|
|
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_StablePState))
|
|
smum_send_msg_to_smc_with_parameter(hwmgr,
|
|
PPSMC_MSG_SAMUDPM_SetEnabledMask,
|
|
(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
|
|
{
|
|
switch (type) {
|
|
case SMU_UVD_TABLE:
|
|
fiji_update_uvd_smc_table(hwmgr);
|
|
break;
|
|
case SMU_VCE_TABLE:
|
|
fiji_update_vce_smc_table(hwmgr);
|
|
break;
|
|
case SMU_SAMU_TABLE:
|
|
fiji_update_samu_smc_table(hwmgr);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
|
|
{
|
|
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
|
|
uint32_t tmp;
|
|
int result;
|
|
bool error = false;
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, DpmTable),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (0 == result)
|
|
smu_data->smu7_data.dpm_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, SoftRegisters),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result) {
|
|
data->soft_regs_start = tmp;
|
|
smu_data->smu7_data.soft_regs_start = tmp;
|
|
}
|
|
|
|
error |= (0 != result);
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, mcRegisterTable),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result)
|
|
smu_data->smu7_data.mc_reg_table_start = tmp;
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, FanTable),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result)
|
|
smu_data->smu7_data.fan_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result)
|
|
smu_data->smu7_data.arb_table_start = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
result = smu7_read_smc_sram_dword(hwmgr,
|
|
SMU7_FIRMWARE_HEADER_LOCATION +
|
|
offsetof(SMU73_Firmware_Header, Version),
|
|
&tmp, SMC_RAM_END);
|
|
|
|
if (!result)
|
|
hwmgr->microcode_version_info.SMC = tmp;
|
|
|
|
error |= (0 != result);
|
|
|
|
return error ? -1 : 0;
|
|
}
|
|
|
|
static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
|
|
/* Program additional LP registers
|
|
* that are no longer programmed by VBIOS
|
|
*/
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
|
|
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
|
|
cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
|
|
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
|
|
? true : false;
|
|
}
|
|
|
|
static int fiji_populate_requested_graphic_levels(struct pp_hwmgr *hwmgr,
|
|
struct amd_pp_profile *request)
|
|
{
|
|
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
|
|
(hwmgr->smu_backend);
|
|
struct SMU73_Discrete_GraphicsLevel *levels =
|
|
smu_data->smc_state_table.GraphicsLevel;
|
|
uint32_t array = smu_data->smu7_data.dpm_table_start +
|
|
offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
|
|
uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
|
|
SMU73_MAX_LEVELS_GRAPHICS;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
|
|
levels[i].ActivityLevel =
|
|
cpu_to_be16(request->activity_threshold);
|
|
levels[i].EnabledForActivity = 1;
|
|
levels[i].UpHyst = request->up_hyst;
|
|
levels[i].DownHyst = request->down_hyst;
|
|
}
|
|
|
|
return smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
|
|
array_size, SMC_RAM_END);
|
|
}
|
|
|
|
const struct pp_smumgr_func fiji_smu_funcs = {
|
|
.smu_init = &fiji_smu_init,
|
|
.smu_fini = &smu7_smu_fini,
|
|
.start_smu = &fiji_start_smu,
|
|
.check_fw_load_finish = &smu7_check_fw_load_finish,
|
|
.request_smu_load_fw = &smu7_reload_firmware,
|
|
.request_smu_load_specific_fw = NULL,
|
|
.send_msg_to_smc = &smu7_send_msg_to_smc,
|
|
.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
|
|
.download_pptable_settings = NULL,
|
|
.upload_pptable_settings = NULL,
|
|
.update_smc_table = fiji_update_smc_table,
|
|
.get_offsetof = fiji_get_offsetof,
|
|
.process_firmware_header = fiji_process_firmware_header,
|
|
.init_smc_table = fiji_init_smc_table,
|
|
.update_sclk_threshold = fiji_update_sclk_threshold,
|
|
.thermal_setup_fan_table = fiji_thermal_setup_fan_table,
|
|
.thermal_avfs_enable = fiji_thermal_avfs_enable,
|
|
.populate_all_graphic_levels = fiji_populate_all_graphic_levels,
|
|
.populate_all_memory_levels = fiji_populate_all_memory_levels,
|
|
.get_mac_definition = fiji_get_mac_definition,
|
|
.initialize_mc_reg_table = fiji_initialize_mc_reg_table,
|
|
.is_dpm_running = fiji_is_dpm_running,
|
|
.populate_requested_graphic_levels = fiji_populate_requested_graphic_levels,
|
|
.is_hw_avfs_present = fiji_is_hw_avfs_present,
|
|
};
|