forked from Minki/linux
e0c1a921f6
Initial bad blocks are normal but the messages look like errors. Make the messages less scary, make the main message an informational message not a warning, make the message displaying registers a debug message and include the address there instead of in the informational message. Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
4134 lines
107 KiB
C
4134 lines
107 KiB
C
/*
|
|
* linux/drivers/mtd/onenand/onenand_base.c
|
|
*
|
|
* Copyright © 2005-2009 Samsung Electronics
|
|
* Copyright © 2007 Nokia Corporation
|
|
*
|
|
* Kyungmin Park <kyungmin.park@samsung.com>
|
|
*
|
|
* Credits:
|
|
* Adrian Hunter <ext-adrian.hunter@nokia.com>:
|
|
* auto-placement support, read-while load support, various fixes
|
|
*
|
|
* Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
|
|
* Flex-OneNAND support
|
|
* Amul Kumar Saha <amul.saha at samsung.com>
|
|
* OTP support
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/onenand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
/*
|
|
* Multiblock erase if number of blocks to erase is 2 or more.
|
|
* Maximum number of blocks for simultaneous erase is 64.
|
|
*/
|
|
#define MB_ERASE_MIN_BLK_COUNT 2
|
|
#define MB_ERASE_MAX_BLK_COUNT 64
|
|
|
|
/* Default Flex-OneNAND boundary and lock respectively */
|
|
static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
|
|
|
|
module_param_array(flex_bdry, int, NULL, 0400);
|
|
MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
|
|
"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
|
|
"DIE_BDRY: SLC boundary of the die"
|
|
"LOCK: Locking information for SLC boundary"
|
|
" : 0->Set boundary in unlocked status"
|
|
" : 1->Set boundary in locked status");
|
|
|
|
/* Default OneNAND/Flex-OneNAND OTP options*/
|
|
static int otp;
|
|
|
|
module_param(otp, int, 0400);
|
|
MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
|
|
"Syntax : otp=LOCK_TYPE"
|
|
"LOCK_TYPE : Keys issued, for specific OTP Lock type"
|
|
" : 0 -> Default (No Blocks Locked)"
|
|
" : 1 -> OTP Block lock"
|
|
" : 2 -> 1st Block lock"
|
|
" : 3 -> BOTH OTP Block and 1st Block lock");
|
|
|
|
/**
|
|
* onenand_oob_128 - oob info for Flex-Onenand with 4KB page
|
|
* For now, we expose only 64 out of 80 ecc bytes
|
|
*/
|
|
static struct nand_ecclayout onenand_oob_128 = {
|
|
.eccbytes = 64,
|
|
.eccpos = {
|
|
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
|
|
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
|
|
102, 103, 104, 105
|
|
},
|
|
.oobfree = {
|
|
{2, 4}, {18, 4}, {34, 4}, {50, 4},
|
|
{66, 4}, {82, 4}, {98, 4}, {114, 4}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* onenand_oob_64 - oob info for large (2KB) page
|
|
*/
|
|
static struct nand_ecclayout onenand_oob_64 = {
|
|
.eccbytes = 20,
|
|
.eccpos = {
|
|
8, 9, 10, 11, 12,
|
|
24, 25, 26, 27, 28,
|
|
40, 41, 42, 43, 44,
|
|
56, 57, 58, 59, 60,
|
|
},
|
|
.oobfree = {
|
|
{2, 3}, {14, 2}, {18, 3}, {30, 2},
|
|
{34, 3}, {46, 2}, {50, 3}, {62, 2}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* onenand_oob_32 - oob info for middle (1KB) page
|
|
*/
|
|
static struct nand_ecclayout onenand_oob_32 = {
|
|
.eccbytes = 10,
|
|
.eccpos = {
|
|
8, 9, 10, 11, 12,
|
|
24, 25, 26, 27, 28,
|
|
},
|
|
.oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
|
|
};
|
|
|
|
static const unsigned char ffchars[] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
|
|
};
|
|
|
|
/**
|
|
* onenand_readw - [OneNAND Interface] Read OneNAND register
|
|
* @param addr address to read
|
|
*
|
|
* Read OneNAND register
|
|
*/
|
|
static unsigned short onenand_readw(void __iomem *addr)
|
|
{
|
|
return readw(addr);
|
|
}
|
|
|
|
/**
|
|
* onenand_writew - [OneNAND Interface] Write OneNAND register with value
|
|
* @param value value to write
|
|
* @param addr address to write
|
|
*
|
|
* Write OneNAND register with value
|
|
*/
|
|
static void onenand_writew(unsigned short value, void __iomem *addr)
|
|
{
|
|
writew(value, addr);
|
|
}
|
|
|
|
/**
|
|
* onenand_block_address - [DEFAULT] Get block address
|
|
* @param this onenand chip data structure
|
|
* @param block the block
|
|
* @return translated block address if DDP, otherwise same
|
|
*
|
|
* Setup Start Address 1 Register (F100h)
|
|
*/
|
|
static int onenand_block_address(struct onenand_chip *this, int block)
|
|
{
|
|
/* Device Flash Core select, NAND Flash Block Address */
|
|
if (block & this->density_mask)
|
|
return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
|
|
|
|
return block;
|
|
}
|
|
|
|
/**
|
|
* onenand_bufferram_address - [DEFAULT] Get bufferram address
|
|
* @param this onenand chip data structure
|
|
* @param block the block
|
|
* @return set DBS value if DDP, otherwise 0
|
|
*
|
|
* Setup Start Address 2 Register (F101h) for DDP
|
|
*/
|
|
static int onenand_bufferram_address(struct onenand_chip *this, int block)
|
|
{
|
|
/* Device BufferRAM Select */
|
|
if (block & this->density_mask)
|
|
return ONENAND_DDP_CHIP1;
|
|
|
|
return ONENAND_DDP_CHIP0;
|
|
}
|
|
|
|
/**
|
|
* onenand_page_address - [DEFAULT] Get page address
|
|
* @param page the page address
|
|
* @param sector the sector address
|
|
* @return combined page and sector address
|
|
*
|
|
* Setup Start Address 8 Register (F107h)
|
|
*/
|
|
static int onenand_page_address(int page, int sector)
|
|
{
|
|
/* Flash Page Address, Flash Sector Address */
|
|
int fpa, fsa;
|
|
|
|
fpa = page & ONENAND_FPA_MASK;
|
|
fsa = sector & ONENAND_FSA_MASK;
|
|
|
|
return ((fpa << ONENAND_FPA_SHIFT) | fsa);
|
|
}
|
|
|
|
/**
|
|
* onenand_buffer_address - [DEFAULT] Get buffer address
|
|
* @param dataram1 DataRAM index
|
|
* @param sectors the sector address
|
|
* @param count the number of sectors
|
|
* @return the start buffer value
|
|
*
|
|
* Setup Start Buffer Register (F200h)
|
|
*/
|
|
static int onenand_buffer_address(int dataram1, int sectors, int count)
|
|
{
|
|
int bsa, bsc;
|
|
|
|
/* BufferRAM Sector Address */
|
|
bsa = sectors & ONENAND_BSA_MASK;
|
|
|
|
if (dataram1)
|
|
bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
|
|
else
|
|
bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
|
|
|
|
/* BufferRAM Sector Count */
|
|
bsc = count & ONENAND_BSC_MASK;
|
|
|
|
return ((bsa << ONENAND_BSA_SHIFT) | bsc);
|
|
}
|
|
|
|
/**
|
|
* flexonenand_block- For given address return block number
|
|
* @param this - OneNAND device structure
|
|
* @param addr - Address for which block number is needed
|
|
*/
|
|
static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
|
|
{
|
|
unsigned boundary, blk, die = 0;
|
|
|
|
if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
|
|
die = 1;
|
|
addr -= this->diesize[0];
|
|
}
|
|
|
|
boundary = this->boundary[die];
|
|
|
|
blk = addr >> (this->erase_shift - 1);
|
|
if (blk > boundary)
|
|
blk = (blk + boundary + 1) >> 1;
|
|
|
|
blk += die ? this->density_mask : 0;
|
|
return blk;
|
|
}
|
|
|
|
inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
|
|
{
|
|
if (!FLEXONENAND(this))
|
|
return addr >> this->erase_shift;
|
|
return flexonenand_block(this, addr);
|
|
}
|
|
|
|
/**
|
|
* flexonenand_addr - Return address of the block
|
|
* @this: OneNAND device structure
|
|
* @block: Block number on Flex-OneNAND
|
|
*
|
|
* Return address of the block
|
|
*/
|
|
static loff_t flexonenand_addr(struct onenand_chip *this, int block)
|
|
{
|
|
loff_t ofs = 0;
|
|
int die = 0, boundary;
|
|
|
|
if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
|
|
block -= this->density_mask;
|
|
die = 1;
|
|
ofs = this->diesize[0];
|
|
}
|
|
|
|
boundary = this->boundary[die];
|
|
ofs += (loff_t)block << (this->erase_shift - 1);
|
|
if (block > (boundary + 1))
|
|
ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
|
|
return ofs;
|
|
}
|
|
|
|
loff_t onenand_addr(struct onenand_chip *this, int block)
|
|
{
|
|
if (!FLEXONENAND(this))
|
|
return (loff_t)block << this->erase_shift;
|
|
return flexonenand_addr(this, block);
|
|
}
|
|
EXPORT_SYMBOL(onenand_addr);
|
|
|
|
/**
|
|
* onenand_get_density - [DEFAULT] Get OneNAND density
|
|
* @param dev_id OneNAND device ID
|
|
*
|
|
* Get OneNAND density from device ID
|
|
*/
|
|
static inline int onenand_get_density(int dev_id)
|
|
{
|
|
int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
|
|
return (density & ONENAND_DEVICE_DENSITY_MASK);
|
|
}
|
|
|
|
/**
|
|
* flexonenand_region - [Flex-OneNAND] Return erase region of addr
|
|
* @param mtd MTD device structure
|
|
* @param addr address whose erase region needs to be identified
|
|
*/
|
|
int flexonenand_region(struct mtd_info *mtd, loff_t addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mtd->numeraseregions; i++)
|
|
if (addr < mtd->eraseregions[i].offset)
|
|
break;
|
|
return i - 1;
|
|
}
|
|
EXPORT_SYMBOL(flexonenand_region);
|
|
|
|
/**
|
|
* onenand_command - [DEFAULT] Send command to OneNAND device
|
|
* @param mtd MTD device structure
|
|
* @param cmd the command to be sent
|
|
* @param addr offset to read from or write to
|
|
* @param len number of bytes to read or write
|
|
*
|
|
* Send command to OneNAND device. This function is used for middle/large page
|
|
* devices (1KB/2KB Bytes per page)
|
|
*/
|
|
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int value, block, page;
|
|
|
|
/* Address translation */
|
|
switch (cmd) {
|
|
case ONENAND_CMD_UNLOCK:
|
|
case ONENAND_CMD_LOCK:
|
|
case ONENAND_CMD_LOCK_TIGHT:
|
|
case ONENAND_CMD_UNLOCK_ALL:
|
|
block = -1;
|
|
page = -1;
|
|
break;
|
|
|
|
case FLEXONENAND_CMD_PI_ACCESS:
|
|
/* addr contains die index */
|
|
block = addr * this->density_mask;
|
|
page = -1;
|
|
break;
|
|
|
|
case ONENAND_CMD_ERASE:
|
|
case ONENAND_CMD_MULTIBLOCK_ERASE:
|
|
case ONENAND_CMD_ERASE_VERIFY:
|
|
case ONENAND_CMD_BUFFERRAM:
|
|
case ONENAND_CMD_OTP_ACCESS:
|
|
block = onenand_block(this, addr);
|
|
page = -1;
|
|
break;
|
|
|
|
case FLEXONENAND_CMD_READ_PI:
|
|
cmd = ONENAND_CMD_READ;
|
|
block = addr * this->density_mask;
|
|
page = 0;
|
|
break;
|
|
|
|
default:
|
|
block = onenand_block(this, addr);
|
|
if (FLEXONENAND(this))
|
|
page = (int) (addr - onenand_addr(this, block))>>\
|
|
this->page_shift;
|
|
else
|
|
page = (int) (addr >> this->page_shift);
|
|
if (ONENAND_IS_2PLANE(this)) {
|
|
/* Make the even block number */
|
|
block &= ~1;
|
|
/* Is it the odd plane? */
|
|
if (addr & this->writesize)
|
|
block++;
|
|
page >>= 1;
|
|
}
|
|
page &= this->page_mask;
|
|
break;
|
|
}
|
|
|
|
/* NOTE: The setting order of the registers is very important! */
|
|
if (cmd == ONENAND_CMD_BUFFERRAM) {
|
|
/* Select DataRAM for DDP */
|
|
value = onenand_bufferram_address(this, block);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
|
|
|
|
if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
|
|
/* It is always BufferRAM0 */
|
|
ONENAND_SET_BUFFERRAM0(this);
|
|
else
|
|
/* Switch to the next data buffer */
|
|
ONENAND_SET_NEXT_BUFFERRAM(this);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (block != -1) {
|
|
/* Write 'DFS, FBA' of Flash */
|
|
value = onenand_block_address(this, block);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
|
|
|
|
/* Select DataRAM for DDP */
|
|
value = onenand_bufferram_address(this, block);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
|
|
}
|
|
|
|
if (page != -1) {
|
|
/* Now we use page size operation */
|
|
int sectors = 0, count = 0;
|
|
int dataram;
|
|
|
|
switch (cmd) {
|
|
case FLEXONENAND_CMD_RECOVER_LSB:
|
|
case ONENAND_CMD_READ:
|
|
case ONENAND_CMD_READOOB:
|
|
if (ONENAND_IS_4KB_PAGE(this))
|
|
/* It is always BufferRAM0 */
|
|
dataram = ONENAND_SET_BUFFERRAM0(this);
|
|
else
|
|
dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
|
|
break;
|
|
|
|
default:
|
|
if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
|
|
cmd = ONENAND_CMD_2X_PROG;
|
|
dataram = ONENAND_CURRENT_BUFFERRAM(this);
|
|
break;
|
|
}
|
|
|
|
/* Write 'FPA, FSA' of Flash */
|
|
value = onenand_page_address(page, sectors);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
|
|
|
|
/* Write 'BSA, BSC' of DataRAM */
|
|
value = onenand_buffer_address(dataram, sectors, count);
|
|
this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
|
|
}
|
|
|
|
/* Interrupt clear */
|
|
this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
|
|
|
|
/* Write command */
|
|
this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_read_ecc - return ecc status
|
|
* @param this onenand chip structure
|
|
*/
|
|
static inline int onenand_read_ecc(struct onenand_chip *this)
|
|
{
|
|
int ecc, i, result = 0;
|
|
|
|
if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
|
|
return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
|
|
if (likely(!ecc))
|
|
continue;
|
|
if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
|
|
return ONENAND_ECC_2BIT_ALL;
|
|
else
|
|
result = ONENAND_ECC_1BIT_ALL;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* onenand_wait - [DEFAULT] wait until the command is done
|
|
* @param mtd MTD device structure
|
|
* @param state state to select the max. timeout value
|
|
*
|
|
* Wait for command done. This applies to all OneNAND command
|
|
* Read can take up to 30us, erase up to 2ms and program up to 350us
|
|
* according to general OneNAND specs
|
|
*/
|
|
static int onenand_wait(struct mtd_info *mtd, int state)
|
|
{
|
|
struct onenand_chip * this = mtd->priv;
|
|
unsigned long timeout;
|
|
unsigned int flags = ONENAND_INT_MASTER;
|
|
unsigned int interrupt = 0;
|
|
unsigned int ctrl;
|
|
|
|
/* The 20 msec is enough */
|
|
timeout = jiffies + msecs_to_jiffies(20);
|
|
while (time_before(jiffies, timeout)) {
|
|
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
|
|
|
|
if (interrupt & flags)
|
|
break;
|
|
|
|
if (state != FL_READING && state != FL_PREPARING_ERASE)
|
|
cond_resched();
|
|
}
|
|
/* To get correct interrupt status in timeout case */
|
|
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
|
|
|
|
ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
|
|
|
|
/*
|
|
* In the Spec. it checks the controller status first
|
|
* However if you get the correct information in case of
|
|
* power off recovery (POR) test, it should read ECC status first
|
|
*/
|
|
if (interrupt & ONENAND_INT_READ) {
|
|
int ecc = onenand_read_ecc(this);
|
|
if (ecc) {
|
|
if (ecc & ONENAND_ECC_2BIT_ALL) {
|
|
printk(KERN_ERR "%s: ECC error = 0x%04x\n",
|
|
__func__, ecc);
|
|
mtd->ecc_stats.failed++;
|
|
return -EBADMSG;
|
|
} else if (ecc & ONENAND_ECC_1BIT_ALL) {
|
|
printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
|
|
__func__, ecc);
|
|
mtd->ecc_stats.corrected++;
|
|
}
|
|
}
|
|
} else if (state == FL_READING) {
|
|
printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
|
|
__func__, ctrl, interrupt);
|
|
return -EIO;
|
|
}
|
|
|
|
if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
|
|
printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
|
|
__func__, ctrl, interrupt);
|
|
return -EIO;
|
|
}
|
|
|
|
if (!(interrupt & ONENAND_INT_MASTER)) {
|
|
printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
|
|
__func__, ctrl, interrupt);
|
|
return -EIO;
|
|
}
|
|
|
|
/* If there's controller error, it's a real error */
|
|
if (ctrl & ONENAND_CTRL_ERROR) {
|
|
printk(KERN_ERR "%s: controller error = 0x%04x\n",
|
|
__func__, ctrl);
|
|
if (ctrl & ONENAND_CTRL_LOCK)
|
|
printk(KERN_ERR "%s: it's locked error.\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* onenand_interrupt - [DEFAULT] onenand interrupt handler
|
|
* @param irq onenand interrupt number
|
|
* @param dev_id interrupt data
|
|
*
|
|
* complete the work
|
|
*/
|
|
static irqreturn_t onenand_interrupt(int irq, void *data)
|
|
{
|
|
struct onenand_chip *this = data;
|
|
|
|
/* To handle shared interrupt */
|
|
if (!this->complete.done)
|
|
complete(&this->complete);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* onenand_interrupt_wait - [DEFAULT] wait until the command is done
|
|
* @param mtd MTD device structure
|
|
* @param state state to select the max. timeout value
|
|
*
|
|
* Wait for command done.
|
|
*/
|
|
static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
|
|
wait_for_completion(&this->complete);
|
|
|
|
return onenand_wait(mtd, state);
|
|
}
|
|
|
|
/*
|
|
* onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
|
|
* @param mtd MTD device structure
|
|
* @param state state to select the max. timeout value
|
|
*
|
|
* Try interrupt based wait (It is used one-time)
|
|
*/
|
|
static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
unsigned long remain, timeout;
|
|
|
|
/* We use interrupt wait first */
|
|
this->wait = onenand_interrupt_wait;
|
|
|
|
timeout = msecs_to_jiffies(100);
|
|
remain = wait_for_completion_timeout(&this->complete, timeout);
|
|
if (!remain) {
|
|
printk(KERN_INFO "OneNAND: There's no interrupt. "
|
|
"We use the normal wait\n");
|
|
|
|
/* Release the irq */
|
|
free_irq(this->irq, this);
|
|
|
|
this->wait = onenand_wait;
|
|
}
|
|
|
|
return onenand_wait(mtd, state);
|
|
}
|
|
|
|
/*
|
|
* onenand_setup_wait - [OneNAND Interface] setup onenand wait method
|
|
* @param mtd MTD device structure
|
|
*
|
|
* There's two method to wait onenand work
|
|
* 1. polling - read interrupt status register
|
|
* 2. interrupt - use the kernel interrupt method
|
|
*/
|
|
static void onenand_setup_wait(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int syscfg;
|
|
|
|
init_completion(&this->complete);
|
|
|
|
if (this->irq <= 0) {
|
|
this->wait = onenand_wait;
|
|
return;
|
|
}
|
|
|
|
if (request_irq(this->irq, &onenand_interrupt,
|
|
IRQF_SHARED, "onenand", this)) {
|
|
/* If we can't get irq, use the normal wait */
|
|
this->wait = onenand_wait;
|
|
return;
|
|
}
|
|
|
|
/* Enable interrupt */
|
|
syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
|
|
syscfg |= ONENAND_SYS_CFG1_IOBE;
|
|
this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
|
|
|
|
this->wait = onenand_try_interrupt_wait;
|
|
}
|
|
|
|
/**
|
|
* onenand_bufferram_offset - [DEFAULT] BufferRAM offset
|
|
* @param mtd MTD data structure
|
|
* @param area BufferRAM area
|
|
* @return offset given area
|
|
*
|
|
* Return BufferRAM offset given area
|
|
*/
|
|
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
|
|
if (ONENAND_CURRENT_BUFFERRAM(this)) {
|
|
/* Note: the 'this->writesize' is a real page size */
|
|
if (area == ONENAND_DATARAM)
|
|
return this->writesize;
|
|
if (area == ONENAND_SPARERAM)
|
|
return mtd->oobsize;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
|
|
* @param mtd MTD data structure
|
|
* @param area BufferRAM area
|
|
* @param buffer the databuffer to put/get data
|
|
* @param offset offset to read from or write to
|
|
* @param count number of bytes to read/write
|
|
*
|
|
* Read the BufferRAM area
|
|
*/
|
|
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
|
|
unsigned char *buffer, int offset, size_t count)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
void __iomem *bufferram;
|
|
|
|
bufferram = this->base + area;
|
|
|
|
bufferram += onenand_bufferram_offset(mtd, area);
|
|
|
|
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
|
|
unsigned short word;
|
|
|
|
/* Align with word(16-bit) size */
|
|
count--;
|
|
|
|
/* Read word and save byte */
|
|
word = this->read_word(bufferram + offset + count);
|
|
buffer[count] = (word & 0xff);
|
|
}
|
|
|
|
memcpy(buffer, bufferram + offset, count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
|
|
* @param mtd MTD data structure
|
|
* @param area BufferRAM area
|
|
* @param buffer the databuffer to put/get data
|
|
* @param offset offset to read from or write to
|
|
* @param count number of bytes to read/write
|
|
*
|
|
* Read the BufferRAM area with Sync. Burst Mode
|
|
*/
|
|
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
|
|
unsigned char *buffer, int offset, size_t count)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
void __iomem *bufferram;
|
|
|
|
bufferram = this->base + area;
|
|
|
|
bufferram += onenand_bufferram_offset(mtd, area);
|
|
|
|
this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
|
|
|
|
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
|
|
unsigned short word;
|
|
|
|
/* Align with word(16-bit) size */
|
|
count--;
|
|
|
|
/* Read word and save byte */
|
|
word = this->read_word(bufferram + offset + count);
|
|
buffer[count] = (word & 0xff);
|
|
}
|
|
|
|
memcpy(buffer, bufferram + offset, count);
|
|
|
|
this->mmcontrol(mtd, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
|
|
* @param mtd MTD data structure
|
|
* @param area BufferRAM area
|
|
* @param buffer the databuffer to put/get data
|
|
* @param offset offset to read from or write to
|
|
* @param count number of bytes to read/write
|
|
*
|
|
* Write the BufferRAM area
|
|
*/
|
|
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
|
|
const unsigned char *buffer, int offset, size_t count)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
void __iomem *bufferram;
|
|
|
|
bufferram = this->base + area;
|
|
|
|
bufferram += onenand_bufferram_offset(mtd, area);
|
|
|
|
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
|
|
unsigned short word;
|
|
int byte_offset;
|
|
|
|
/* Align with word(16-bit) size */
|
|
count--;
|
|
|
|
/* Calculate byte access offset */
|
|
byte_offset = offset + count;
|
|
|
|
/* Read word and save byte */
|
|
word = this->read_word(bufferram + byte_offset);
|
|
word = (word & ~0xff) | buffer[count];
|
|
this->write_word(word, bufferram + byte_offset);
|
|
}
|
|
|
|
memcpy(bufferram + offset, buffer, count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
|
|
* @param mtd MTD data structure
|
|
* @param addr address to check
|
|
* @return blockpage address
|
|
*
|
|
* Get blockpage address at 2x program mode
|
|
*/
|
|
static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int blockpage, block, page;
|
|
|
|
/* Calculate the even block number */
|
|
block = (int) (addr >> this->erase_shift) & ~1;
|
|
/* Is it the odd plane? */
|
|
if (addr & this->writesize)
|
|
block++;
|
|
page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
|
|
blockpage = (block << 7) | page;
|
|
|
|
return blockpage;
|
|
}
|
|
|
|
/**
|
|
* onenand_check_bufferram - [GENERIC] Check BufferRAM information
|
|
* @param mtd MTD data structure
|
|
* @param addr address to check
|
|
* @return 1 if there are valid data, otherwise 0
|
|
*
|
|
* Check bufferram if there is data we required
|
|
*/
|
|
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int blockpage, found = 0;
|
|
unsigned int i;
|
|
|
|
if (ONENAND_IS_2PLANE(this))
|
|
blockpage = onenand_get_2x_blockpage(mtd, addr);
|
|
else
|
|
blockpage = (int) (addr >> this->page_shift);
|
|
|
|
/* Is there valid data? */
|
|
i = ONENAND_CURRENT_BUFFERRAM(this);
|
|
if (this->bufferram[i].blockpage == blockpage)
|
|
found = 1;
|
|
else {
|
|
/* Check another BufferRAM */
|
|
i = ONENAND_NEXT_BUFFERRAM(this);
|
|
if (this->bufferram[i].blockpage == blockpage) {
|
|
ONENAND_SET_NEXT_BUFFERRAM(this);
|
|
found = 1;
|
|
}
|
|
}
|
|
|
|
if (found && ONENAND_IS_DDP(this)) {
|
|
/* Select DataRAM for DDP */
|
|
int block = onenand_block(this, addr);
|
|
int value = onenand_bufferram_address(this, block);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/**
|
|
* onenand_update_bufferram - [GENERIC] Update BufferRAM information
|
|
* @param mtd MTD data structure
|
|
* @param addr address to update
|
|
* @param valid valid flag
|
|
*
|
|
* Update BufferRAM information
|
|
*/
|
|
static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
|
|
int valid)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int blockpage;
|
|
unsigned int i;
|
|
|
|
if (ONENAND_IS_2PLANE(this))
|
|
blockpage = onenand_get_2x_blockpage(mtd, addr);
|
|
else
|
|
blockpage = (int) (addr >> this->page_shift);
|
|
|
|
/* Invalidate another BufferRAM */
|
|
i = ONENAND_NEXT_BUFFERRAM(this);
|
|
if (this->bufferram[i].blockpage == blockpage)
|
|
this->bufferram[i].blockpage = -1;
|
|
|
|
/* Update BufferRAM */
|
|
i = ONENAND_CURRENT_BUFFERRAM(this);
|
|
if (valid)
|
|
this->bufferram[i].blockpage = blockpage;
|
|
else
|
|
this->bufferram[i].blockpage = -1;
|
|
}
|
|
|
|
/**
|
|
* onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
|
|
* @param mtd MTD data structure
|
|
* @param addr start address to invalidate
|
|
* @param len length to invalidate
|
|
*
|
|
* Invalidate BufferRAM information
|
|
*/
|
|
static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
|
|
unsigned int len)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int i;
|
|
loff_t end_addr = addr + len;
|
|
|
|
/* Invalidate BufferRAM */
|
|
for (i = 0; i < MAX_BUFFERRAM; i++) {
|
|
loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
|
|
if (buf_addr >= addr && buf_addr < end_addr)
|
|
this->bufferram[i].blockpage = -1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* onenand_get_device - [GENERIC] Get chip for selected access
|
|
* @param mtd MTD device structure
|
|
* @param new_state the state which is requested
|
|
*
|
|
* Get the device and lock it for exclusive access
|
|
*/
|
|
static int onenand_get_device(struct mtd_info *mtd, int new_state)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
/*
|
|
* Grab the lock and see if the device is available
|
|
*/
|
|
while (1) {
|
|
spin_lock(&this->chip_lock);
|
|
if (this->state == FL_READY) {
|
|
this->state = new_state;
|
|
spin_unlock(&this->chip_lock);
|
|
break;
|
|
}
|
|
if (new_state == FL_PM_SUSPENDED) {
|
|
spin_unlock(&this->chip_lock);
|
|
return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
|
|
}
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&this->wq, &wait);
|
|
spin_unlock(&this->chip_lock);
|
|
schedule();
|
|
remove_wait_queue(&this->wq, &wait);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_release_device - [GENERIC] release chip
|
|
* @param mtd MTD device structure
|
|
*
|
|
* Deselect, release chip lock and wake up anyone waiting on the device
|
|
*/
|
|
static void onenand_release_device(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
|
|
/* Release the chip */
|
|
spin_lock(&this->chip_lock);
|
|
this->state = FL_READY;
|
|
wake_up(&this->wq);
|
|
spin_unlock(&this->chip_lock);
|
|
}
|
|
|
|
/**
|
|
* onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
|
|
* @param mtd MTD device structure
|
|
* @param buf destination address
|
|
* @param column oob offset to read from
|
|
* @param thislen oob length to read
|
|
*/
|
|
static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
|
|
int thislen)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct nand_oobfree *free;
|
|
int readcol = column;
|
|
int readend = column + thislen;
|
|
int lastgap = 0;
|
|
unsigned int i;
|
|
uint8_t *oob_buf = this->oob_buf;
|
|
|
|
free = this->ecclayout->oobfree;
|
|
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
|
|
if (readcol >= lastgap)
|
|
readcol += free->offset - lastgap;
|
|
if (readend >= lastgap)
|
|
readend += free->offset - lastgap;
|
|
lastgap = free->offset + free->length;
|
|
}
|
|
this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
|
|
free = this->ecclayout->oobfree;
|
|
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
|
|
int free_end = free->offset + free->length;
|
|
if (free->offset < readend && free_end > readcol) {
|
|
int st = max_t(int,free->offset,readcol);
|
|
int ed = min_t(int,free_end,readend);
|
|
int n = ed - st;
|
|
memcpy(buf, oob_buf + st, n);
|
|
buf += n;
|
|
} else if (column == 0)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
|
|
* @param mtd MTD device structure
|
|
* @param addr address to recover
|
|
* @param status return value from onenand_wait / onenand_bbt_wait
|
|
*
|
|
* MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
|
|
* lower page address and MSB page has higher page address in paired pages.
|
|
* If power off occurs during MSB page program, the paired LSB page data can
|
|
* become corrupt. LSB page recovery read is a way to read LSB page though page
|
|
* data are corrupted. When uncorrectable error occurs as a result of LSB page
|
|
* read after power up, issue LSB page recovery read.
|
|
*/
|
|
static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int i;
|
|
|
|
/* Recovery is only for Flex-OneNAND */
|
|
if (!FLEXONENAND(this))
|
|
return status;
|
|
|
|
/* check if we failed due to uncorrectable error */
|
|
if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
|
|
return status;
|
|
|
|
/* check if address lies in MLC region */
|
|
i = flexonenand_region(mtd, addr);
|
|
if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
|
|
return status;
|
|
|
|
/* We are attempting to reread, so decrement stats.failed
|
|
* which was incremented by onenand_wait due to read failure
|
|
*/
|
|
printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
|
|
__func__);
|
|
mtd->ecc_stats.failed--;
|
|
|
|
/* Issue the LSB page recovery command */
|
|
this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
|
|
return this->wait(mtd, FL_READING);
|
|
}
|
|
|
|
/**
|
|
* onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
|
|
* @param mtd MTD device structure
|
|
* @param from offset to read from
|
|
* @param ops: oob operation description structure
|
|
*
|
|
* MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
|
|
* So, read-while-load is not present.
|
|
*/
|
|
static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct mtd_ecc_stats stats;
|
|
size_t len = ops->len;
|
|
size_t ooblen = ops->ooblen;
|
|
u_char *buf = ops->datbuf;
|
|
u_char *oobbuf = ops->oobbuf;
|
|
int read = 0, column, thislen;
|
|
int oobread = 0, oobcolumn, thisooblen, oobsize;
|
|
int ret = 0;
|
|
int writesize = this->writesize;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
|
|
__func__, (unsigned int) from, (int) len);
|
|
|
|
if (ops->mode == MTD_OOB_AUTO)
|
|
oobsize = this->ecclayout->oobavail;
|
|
else
|
|
oobsize = mtd->oobsize;
|
|
|
|
oobcolumn = from & (mtd->oobsize - 1);
|
|
|
|
/* Do not allow reads past end of device */
|
|
if (from + len > mtd->size) {
|
|
printk(KERN_ERR "%s: Attempt read beyond end of device\n",
|
|
__func__);
|
|
ops->retlen = 0;
|
|
ops->oobretlen = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
stats = mtd->ecc_stats;
|
|
|
|
while (read < len) {
|
|
cond_resched();
|
|
|
|
thislen = min_t(int, writesize, len - read);
|
|
|
|
column = from & (writesize - 1);
|
|
if (column + thislen > writesize)
|
|
thislen = writesize - column;
|
|
|
|
if (!onenand_check_bufferram(mtd, from)) {
|
|
this->command(mtd, ONENAND_CMD_READ, from, writesize);
|
|
|
|
ret = this->wait(mtd, FL_READING);
|
|
if (unlikely(ret))
|
|
ret = onenand_recover_lsb(mtd, from, ret);
|
|
onenand_update_bufferram(mtd, from, !ret);
|
|
if (ret == -EBADMSG)
|
|
ret = 0;
|
|
}
|
|
|
|
this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
|
|
if (oobbuf) {
|
|
thisooblen = oobsize - oobcolumn;
|
|
thisooblen = min_t(int, thisooblen, ooblen - oobread);
|
|
|
|
if (ops->mode == MTD_OOB_AUTO)
|
|
onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
|
|
else
|
|
this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
|
|
oobread += thisooblen;
|
|
oobbuf += thisooblen;
|
|
oobcolumn = 0;
|
|
}
|
|
|
|
read += thislen;
|
|
if (read == len)
|
|
break;
|
|
|
|
from += thislen;
|
|
buf += thislen;
|
|
}
|
|
|
|
/*
|
|
* Return success, if no ECC failures, else -EBADMSG
|
|
* fs driver will take care of that, because
|
|
* retlen == desired len and result == -EBADMSG
|
|
*/
|
|
ops->retlen = read;
|
|
ops->oobretlen = oobread;
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mtd->ecc_stats.failed - stats.failed)
|
|
return -EBADMSG;
|
|
|
|
return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
|
|
* @param mtd MTD device structure
|
|
* @param from offset to read from
|
|
* @param ops: oob operation description structure
|
|
*
|
|
* OneNAND read main and/or out-of-band data
|
|
*/
|
|
static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct mtd_ecc_stats stats;
|
|
size_t len = ops->len;
|
|
size_t ooblen = ops->ooblen;
|
|
u_char *buf = ops->datbuf;
|
|
u_char *oobbuf = ops->oobbuf;
|
|
int read = 0, column, thislen;
|
|
int oobread = 0, oobcolumn, thisooblen, oobsize;
|
|
int ret = 0, boundary = 0;
|
|
int writesize = this->writesize;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
|
|
__func__, (unsigned int) from, (int) len);
|
|
|
|
if (ops->mode == MTD_OOB_AUTO)
|
|
oobsize = this->ecclayout->oobavail;
|
|
else
|
|
oobsize = mtd->oobsize;
|
|
|
|
oobcolumn = from & (mtd->oobsize - 1);
|
|
|
|
/* Do not allow reads past end of device */
|
|
if ((from + len) > mtd->size) {
|
|
printk(KERN_ERR "%s: Attempt read beyond end of device\n",
|
|
__func__);
|
|
ops->retlen = 0;
|
|
ops->oobretlen = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
stats = mtd->ecc_stats;
|
|
|
|
/* Read-while-load method */
|
|
|
|
/* Do first load to bufferRAM */
|
|
if (read < len) {
|
|
if (!onenand_check_bufferram(mtd, from)) {
|
|
this->command(mtd, ONENAND_CMD_READ, from, writesize);
|
|
ret = this->wait(mtd, FL_READING);
|
|
onenand_update_bufferram(mtd, from, !ret);
|
|
if (ret == -EBADMSG)
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
thislen = min_t(int, writesize, len - read);
|
|
column = from & (writesize - 1);
|
|
if (column + thislen > writesize)
|
|
thislen = writesize - column;
|
|
|
|
while (!ret) {
|
|
/* If there is more to load then start next load */
|
|
from += thislen;
|
|
if (read + thislen < len) {
|
|
this->command(mtd, ONENAND_CMD_READ, from, writesize);
|
|
/*
|
|
* Chip boundary handling in DDP
|
|
* Now we issued chip 1 read and pointed chip 1
|
|
* bufferram so we have to point chip 0 bufferram.
|
|
*/
|
|
if (ONENAND_IS_DDP(this) &&
|
|
unlikely(from == (this->chipsize >> 1))) {
|
|
this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
|
|
boundary = 1;
|
|
} else
|
|
boundary = 0;
|
|
ONENAND_SET_PREV_BUFFERRAM(this);
|
|
}
|
|
/* While load is going, read from last bufferRAM */
|
|
this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
|
|
|
|
/* Read oob area if needed */
|
|
if (oobbuf) {
|
|
thisooblen = oobsize - oobcolumn;
|
|
thisooblen = min_t(int, thisooblen, ooblen - oobread);
|
|
|
|
if (ops->mode == MTD_OOB_AUTO)
|
|
onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
|
|
else
|
|
this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
|
|
oobread += thisooblen;
|
|
oobbuf += thisooblen;
|
|
oobcolumn = 0;
|
|
}
|
|
|
|
/* See if we are done */
|
|
read += thislen;
|
|
if (read == len)
|
|
break;
|
|
/* Set up for next read from bufferRAM */
|
|
if (unlikely(boundary))
|
|
this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
|
|
ONENAND_SET_NEXT_BUFFERRAM(this);
|
|
buf += thislen;
|
|
thislen = min_t(int, writesize, len - read);
|
|
column = 0;
|
|
cond_resched();
|
|
/* Now wait for load */
|
|
ret = this->wait(mtd, FL_READING);
|
|
onenand_update_bufferram(mtd, from, !ret);
|
|
if (ret == -EBADMSG)
|
|
ret = 0;
|
|
}
|
|
|
|
/*
|
|
* Return success, if no ECC failures, else -EBADMSG
|
|
* fs driver will take care of that, because
|
|
* retlen == desired len and result == -EBADMSG
|
|
*/
|
|
ops->retlen = read;
|
|
ops->oobretlen = oobread;
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mtd->ecc_stats.failed - stats.failed)
|
|
return -EBADMSG;
|
|
|
|
return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
|
|
* @param mtd MTD device structure
|
|
* @param from offset to read from
|
|
* @param ops: oob operation description structure
|
|
*
|
|
* OneNAND read out-of-band data from the spare area
|
|
*/
|
|
static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct mtd_ecc_stats stats;
|
|
int read = 0, thislen, column, oobsize;
|
|
size_t len = ops->ooblen;
|
|
mtd_oob_mode_t mode = ops->mode;
|
|
u_char *buf = ops->oobbuf;
|
|
int ret = 0, readcmd;
|
|
|
|
from += ops->ooboffs;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
|
|
__func__, (unsigned int) from, (int) len);
|
|
|
|
/* Initialize return length value */
|
|
ops->oobretlen = 0;
|
|
|
|
if (mode == MTD_OOB_AUTO)
|
|
oobsize = this->ecclayout->oobavail;
|
|
else
|
|
oobsize = mtd->oobsize;
|
|
|
|
column = from & (mtd->oobsize - 1);
|
|
|
|
if (unlikely(column >= oobsize)) {
|
|
printk(KERN_ERR "%s: Attempted to start read outside oob\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Do not allow reads past end of device */
|
|
if (unlikely(from >= mtd->size ||
|
|
column + len > ((mtd->size >> this->page_shift) -
|
|
(from >> this->page_shift)) * oobsize)) {
|
|
printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
stats = mtd->ecc_stats;
|
|
|
|
readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
|
|
|
|
while (read < len) {
|
|
cond_resched();
|
|
|
|
thislen = oobsize - column;
|
|
thislen = min_t(int, thislen, len);
|
|
|
|
this->command(mtd, readcmd, from, mtd->oobsize);
|
|
|
|
onenand_update_bufferram(mtd, from, 0);
|
|
|
|
ret = this->wait(mtd, FL_READING);
|
|
if (unlikely(ret))
|
|
ret = onenand_recover_lsb(mtd, from, ret);
|
|
|
|
if (ret && ret != -EBADMSG) {
|
|
printk(KERN_ERR "%s: read failed = 0x%x\n",
|
|
__func__, ret);
|
|
break;
|
|
}
|
|
|
|
if (mode == MTD_OOB_AUTO)
|
|
onenand_transfer_auto_oob(mtd, buf, column, thislen);
|
|
else
|
|
this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
|
|
|
|
read += thislen;
|
|
|
|
if (read == len)
|
|
break;
|
|
|
|
buf += thislen;
|
|
|
|
/* Read more? */
|
|
if (read < len) {
|
|
/* Page size */
|
|
from += mtd->writesize;
|
|
column = 0;
|
|
}
|
|
}
|
|
|
|
ops->oobretlen = read;
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mtd->ecc_stats.failed - stats.failed)
|
|
return -EBADMSG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_read - [MTD Interface] Read data from flash
|
|
* @param mtd MTD device structure
|
|
* @param from offset to read from
|
|
* @param len number of bytes to read
|
|
* @param retlen pointer to variable to store the number of read bytes
|
|
* @param buf the databuffer to put data
|
|
*
|
|
* Read with ecc
|
|
*/
|
|
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct mtd_oob_ops ops = {
|
|
.len = len,
|
|
.ooblen = 0,
|
|
.datbuf = buf,
|
|
.oobbuf = NULL,
|
|
};
|
|
int ret;
|
|
|
|
onenand_get_device(mtd, FL_READING);
|
|
ret = ONENAND_IS_4KB_PAGE(this) ?
|
|
onenand_mlc_read_ops_nolock(mtd, from, &ops) :
|
|
onenand_read_ops_nolock(mtd, from, &ops);
|
|
onenand_release_device(mtd);
|
|
|
|
*retlen = ops.retlen;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_read_oob - [MTD Interface] Read main and/or out-of-band
|
|
* @param mtd: MTD device structure
|
|
* @param from: offset to read from
|
|
* @param ops: oob operation description structure
|
|
|
|
* Read main and/or out-of-band
|
|
*/
|
|
static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int ret;
|
|
|
|
switch (ops->mode) {
|
|
case MTD_OOB_PLACE:
|
|
case MTD_OOB_AUTO:
|
|
break;
|
|
case MTD_OOB_RAW:
|
|
/* Not implemented yet */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
onenand_get_device(mtd, FL_READING);
|
|
if (ops->datbuf)
|
|
ret = ONENAND_IS_4KB_PAGE(this) ?
|
|
onenand_mlc_read_ops_nolock(mtd, from, ops) :
|
|
onenand_read_ops_nolock(mtd, from, ops);
|
|
else
|
|
ret = onenand_read_oob_nolock(mtd, from, ops);
|
|
onenand_release_device(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_bbt_wait - [DEFAULT] wait until the command is done
|
|
* @param mtd MTD device structure
|
|
* @param state state to select the max. timeout value
|
|
*
|
|
* Wait for command done.
|
|
*/
|
|
static int onenand_bbt_wait(struct mtd_info *mtd, int state)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
unsigned long timeout;
|
|
unsigned int interrupt, ctrl, ecc, addr1, addr8;
|
|
|
|
/* The 20 msec is enough */
|
|
timeout = jiffies + msecs_to_jiffies(20);
|
|
while (time_before(jiffies, timeout)) {
|
|
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
|
|
if (interrupt & ONENAND_INT_MASTER)
|
|
break;
|
|
}
|
|
/* To get correct interrupt status in timeout case */
|
|
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
|
|
ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
|
|
addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
|
|
addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
|
|
|
|
if (interrupt & ONENAND_INT_READ) {
|
|
ecc = onenand_read_ecc(this);
|
|
if (ecc & ONENAND_ECC_2BIT_ALL) {
|
|
printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
|
|
"intr 0x%04x addr1 %#x addr8 %#x\n",
|
|
__func__, ecc, ctrl, interrupt, addr1, addr8);
|
|
return ONENAND_BBT_READ_ECC_ERROR;
|
|
}
|
|
} else {
|
|
printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
|
|
"intr 0x%04x addr1 %#x addr8 %#x\n",
|
|
__func__, ctrl, interrupt, addr1, addr8);
|
|
return ONENAND_BBT_READ_FATAL_ERROR;
|
|
}
|
|
|
|
/* Initial bad block case: 0x2400 or 0x0400 */
|
|
if (ctrl & ONENAND_CTRL_ERROR) {
|
|
printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
|
|
"addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
|
|
return ONENAND_BBT_READ_ERROR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
|
|
* @param mtd MTD device structure
|
|
* @param from offset to read from
|
|
* @param ops oob operation description structure
|
|
*
|
|
* OneNAND read out-of-band data from the spare area for bbt scan
|
|
*/
|
|
int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int read = 0, thislen, column;
|
|
int ret = 0, readcmd;
|
|
size_t len = ops->ooblen;
|
|
u_char *buf = ops->oobbuf;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
|
|
__func__, (unsigned int) from, len);
|
|
|
|
/* Initialize return value */
|
|
ops->oobretlen = 0;
|
|
|
|
/* Do not allow reads past end of device */
|
|
if (unlikely((from + len) > mtd->size)) {
|
|
printk(KERN_ERR "%s: Attempt read beyond end of device\n",
|
|
__func__);
|
|
return ONENAND_BBT_READ_FATAL_ERROR;
|
|
}
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
onenand_get_device(mtd, FL_READING);
|
|
|
|
column = from & (mtd->oobsize - 1);
|
|
|
|
readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
|
|
|
|
while (read < len) {
|
|
cond_resched();
|
|
|
|
thislen = mtd->oobsize - column;
|
|
thislen = min_t(int, thislen, len);
|
|
|
|
this->command(mtd, readcmd, from, mtd->oobsize);
|
|
|
|
onenand_update_bufferram(mtd, from, 0);
|
|
|
|
ret = this->bbt_wait(mtd, FL_READING);
|
|
if (unlikely(ret))
|
|
ret = onenand_recover_lsb(mtd, from, ret);
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
|
|
read += thislen;
|
|
if (read == len)
|
|
break;
|
|
|
|
buf += thislen;
|
|
|
|
/* Read more? */
|
|
if (read < len) {
|
|
/* Update Page size */
|
|
from += this->writesize;
|
|
column = 0;
|
|
}
|
|
}
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
onenand_release_device(mtd);
|
|
|
|
ops->oobretlen = read;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
|
|
/**
|
|
* onenand_verify_oob - [GENERIC] verify the oob contents after a write
|
|
* @param mtd MTD device structure
|
|
* @param buf the databuffer to verify
|
|
* @param to offset to read from
|
|
*/
|
|
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
u_char *oob_buf = this->oob_buf;
|
|
int status, i, readcmd;
|
|
|
|
readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
|
|
|
|
this->command(mtd, readcmd, to, mtd->oobsize);
|
|
onenand_update_bufferram(mtd, to, 0);
|
|
status = this->wait(mtd, FL_READING);
|
|
if (status)
|
|
return status;
|
|
|
|
this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
|
|
for (i = 0; i < mtd->oobsize; i++)
|
|
if (buf[i] != 0xFF && buf[i] != oob_buf[i])
|
|
return -EBADMSG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_verify - [GENERIC] verify the chip contents after a write
|
|
* @param mtd MTD device structure
|
|
* @param buf the databuffer to verify
|
|
* @param addr offset to read from
|
|
* @param len number of bytes to read and compare
|
|
*/
|
|
static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int ret = 0;
|
|
int thislen, column;
|
|
|
|
while (len != 0) {
|
|
thislen = min_t(int, this->writesize, len);
|
|
column = addr & (this->writesize - 1);
|
|
if (column + thislen > this->writesize)
|
|
thislen = this->writesize - column;
|
|
|
|
this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
|
|
|
|
onenand_update_bufferram(mtd, addr, 0);
|
|
|
|
ret = this->wait(mtd, FL_READING);
|
|
if (ret)
|
|
return ret;
|
|
|
|
onenand_update_bufferram(mtd, addr, 1);
|
|
|
|
this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
|
|
|
|
if (memcmp(buf, this->verify_buf, thislen))
|
|
return -EBADMSG;
|
|
|
|
len -= thislen;
|
|
buf += thislen;
|
|
addr += thislen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define onenand_verify(...) (0)
|
|
#define onenand_verify_oob(...) (0)
|
|
#endif
|
|
|
|
#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
|
|
|
|
static void onenand_panic_wait(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
unsigned int interrupt;
|
|
int i;
|
|
|
|
for (i = 0; i < 2000; i++) {
|
|
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
|
|
if (interrupt & ONENAND_INT_MASTER)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
|
|
* @param mtd MTD device structure
|
|
* @param to offset to write to
|
|
* @param len number of bytes to write
|
|
* @param retlen pointer to variable to store the number of written bytes
|
|
* @param buf the data to write
|
|
*
|
|
* Write with ECC
|
|
*/
|
|
static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int column, subpage;
|
|
int written = 0;
|
|
int ret = 0;
|
|
|
|
if (this->state == FL_PM_SUSPENDED)
|
|
return -EBUSY;
|
|
|
|
/* Wait for any existing operation to clear */
|
|
onenand_panic_wait(mtd);
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
|
|
__func__, (unsigned int) to, (int) len);
|
|
|
|
/* Initialize retlen, in case of early exit */
|
|
*retlen = 0;
|
|
|
|
/* Do not allow writes past end of device */
|
|
if (unlikely((to + len) > mtd->size)) {
|
|
printk(KERN_ERR "%s: Attempt write to past end of device\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Reject writes, which are not page aligned */
|
|
if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
|
|
printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
column = to & (mtd->writesize - 1);
|
|
|
|
/* Loop until all data write */
|
|
while (written < len) {
|
|
int thislen = min_t(int, mtd->writesize - column, len - written);
|
|
u_char *wbuf = (u_char *) buf;
|
|
|
|
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
|
|
|
|
/* Partial page write */
|
|
subpage = thislen < mtd->writesize;
|
|
if (subpage) {
|
|
memset(this->page_buf, 0xff, mtd->writesize);
|
|
memcpy(this->page_buf + column, buf, thislen);
|
|
wbuf = this->page_buf;
|
|
}
|
|
|
|
this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
|
|
this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
|
|
|
|
this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
|
|
|
|
onenand_panic_wait(mtd);
|
|
|
|
/* In partial page write we don't update bufferram */
|
|
onenand_update_bufferram(mtd, to, !ret && !subpage);
|
|
if (ONENAND_IS_2PLANE(this)) {
|
|
ONENAND_SET_BUFFERRAM1(this);
|
|
onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
|
|
}
|
|
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
|
|
break;
|
|
}
|
|
|
|
written += thislen;
|
|
|
|
if (written == len)
|
|
break;
|
|
|
|
column = 0;
|
|
to += thislen;
|
|
buf += thislen;
|
|
}
|
|
|
|
*retlen = written;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_fill_auto_oob - [Internal] oob auto-placement transfer
|
|
* @param mtd MTD device structure
|
|
* @param oob_buf oob buffer
|
|
* @param buf source address
|
|
* @param column oob offset to write to
|
|
* @param thislen oob length to write
|
|
*/
|
|
static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
|
|
const u_char *buf, int column, int thislen)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct nand_oobfree *free;
|
|
int writecol = column;
|
|
int writeend = column + thislen;
|
|
int lastgap = 0;
|
|
unsigned int i;
|
|
|
|
free = this->ecclayout->oobfree;
|
|
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
|
|
if (writecol >= lastgap)
|
|
writecol += free->offset - lastgap;
|
|
if (writeend >= lastgap)
|
|
writeend += free->offset - lastgap;
|
|
lastgap = free->offset + free->length;
|
|
}
|
|
free = this->ecclayout->oobfree;
|
|
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
|
|
int free_end = free->offset + free->length;
|
|
if (free->offset < writeend && free_end > writecol) {
|
|
int st = max_t(int,free->offset,writecol);
|
|
int ed = min_t(int,free_end,writeend);
|
|
int n = ed - st;
|
|
memcpy(oob_buf + st, buf, n);
|
|
buf += n;
|
|
} else if (column == 0)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
|
|
* @param mtd MTD device structure
|
|
* @param to offset to write to
|
|
* @param ops oob operation description structure
|
|
*
|
|
* Write main and/or oob with ECC
|
|
*/
|
|
static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int written = 0, column, thislen = 0, subpage = 0;
|
|
int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
|
|
int oobwritten = 0, oobcolumn, thisooblen, oobsize;
|
|
size_t len = ops->len;
|
|
size_t ooblen = ops->ooblen;
|
|
const u_char *buf = ops->datbuf;
|
|
const u_char *oob = ops->oobbuf;
|
|
u_char *oobbuf;
|
|
int ret = 0, cmd;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
|
|
__func__, (unsigned int) to, (int) len);
|
|
|
|
/* Initialize retlen, in case of early exit */
|
|
ops->retlen = 0;
|
|
ops->oobretlen = 0;
|
|
|
|
/* Do not allow writes past end of device */
|
|
if (unlikely((to + len) > mtd->size)) {
|
|
printk(KERN_ERR "%s: Attempt write to past end of device\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Reject writes, which are not page aligned */
|
|
if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
|
|
printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check zero length */
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (ops->mode == MTD_OOB_AUTO)
|
|
oobsize = this->ecclayout->oobavail;
|
|
else
|
|
oobsize = mtd->oobsize;
|
|
|
|
oobcolumn = to & (mtd->oobsize - 1);
|
|
|
|
column = to & (mtd->writesize - 1);
|
|
|
|
/* Loop until all data write */
|
|
while (1) {
|
|
if (written < len) {
|
|
u_char *wbuf = (u_char *) buf;
|
|
|
|
thislen = min_t(int, mtd->writesize - column, len - written);
|
|
thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
|
|
|
|
cond_resched();
|
|
|
|
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
|
|
|
|
/* Partial page write */
|
|
subpage = thislen < mtd->writesize;
|
|
if (subpage) {
|
|
memset(this->page_buf, 0xff, mtd->writesize);
|
|
memcpy(this->page_buf + column, buf, thislen);
|
|
wbuf = this->page_buf;
|
|
}
|
|
|
|
this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
|
|
|
|
if (oob) {
|
|
oobbuf = this->oob_buf;
|
|
|
|
/* We send data to spare ram with oobsize
|
|
* to prevent byte access */
|
|
memset(oobbuf, 0xff, mtd->oobsize);
|
|
if (ops->mode == MTD_OOB_AUTO)
|
|
onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
|
|
else
|
|
memcpy(oobbuf + oobcolumn, oob, thisooblen);
|
|
|
|
oobwritten += thisooblen;
|
|
oob += thisooblen;
|
|
oobcolumn = 0;
|
|
} else
|
|
oobbuf = (u_char *) ffchars;
|
|
|
|
this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
|
|
} else
|
|
ONENAND_SET_NEXT_BUFFERRAM(this);
|
|
|
|
/*
|
|
* 2 PLANE, MLC, and Flex-OneNAND do not support
|
|
* write-while-program feature.
|
|
*/
|
|
if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
|
|
ONENAND_SET_PREV_BUFFERRAM(this);
|
|
|
|
ret = this->wait(mtd, FL_WRITING);
|
|
|
|
/* In partial page write we don't update bufferram */
|
|
onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
|
|
if (ret) {
|
|
written -= prevlen;
|
|
printk(KERN_ERR "%s: write failed %d\n",
|
|
__func__, ret);
|
|
break;
|
|
}
|
|
|
|
if (written == len) {
|
|
/* Only check verify write turn on */
|
|
ret = onenand_verify(mtd, buf - len, to - len, len);
|
|
if (ret)
|
|
printk(KERN_ERR "%s: verify failed %d\n",
|
|
__func__, ret);
|
|
break;
|
|
}
|
|
|
|
ONENAND_SET_NEXT_BUFFERRAM(this);
|
|
}
|
|
|
|
this->ongoing = 0;
|
|
cmd = ONENAND_CMD_PROG;
|
|
|
|
/* Exclude 1st OTP and OTP blocks for cache program feature */
|
|
if (ONENAND_IS_CACHE_PROGRAM(this) &&
|
|
likely(onenand_block(this, to) != 0) &&
|
|
ONENAND_IS_4KB_PAGE(this) &&
|
|
((written + thislen) < len)) {
|
|
cmd = ONENAND_CMD_2X_CACHE_PROG;
|
|
this->ongoing = 1;
|
|
}
|
|
|
|
this->command(mtd, cmd, to, mtd->writesize);
|
|
|
|
/*
|
|
* 2 PLANE, MLC, and Flex-OneNAND wait here
|
|
*/
|
|
if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
|
|
ret = this->wait(mtd, FL_WRITING);
|
|
|
|
/* In partial page write we don't update bufferram */
|
|
onenand_update_bufferram(mtd, to, !ret && !subpage);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: write failed %d\n",
|
|
__func__, ret);
|
|
break;
|
|
}
|
|
|
|
/* Only check verify write turn on */
|
|
ret = onenand_verify(mtd, buf, to, thislen);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: verify failed %d\n",
|
|
__func__, ret);
|
|
break;
|
|
}
|
|
|
|
written += thislen;
|
|
|
|
if (written == len)
|
|
break;
|
|
|
|
} else
|
|
written += thislen;
|
|
|
|
column = 0;
|
|
prev_subpage = subpage;
|
|
prev = to;
|
|
prevlen = thislen;
|
|
to += thislen;
|
|
buf += thislen;
|
|
first = 0;
|
|
}
|
|
|
|
/* In error case, clear all bufferrams */
|
|
if (written != len)
|
|
onenand_invalidate_bufferram(mtd, 0, -1);
|
|
|
|
ops->retlen = written;
|
|
ops->oobretlen = oobwritten;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
|
|
* @param mtd MTD device structure
|
|
* @param to offset to write to
|
|
* @param len number of bytes to write
|
|
* @param retlen pointer to variable to store the number of written bytes
|
|
* @param buf the data to write
|
|
* @param mode operation mode
|
|
*
|
|
* OneNAND write out-of-band
|
|
*/
|
|
static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int column, ret = 0, oobsize;
|
|
int written = 0, oobcmd;
|
|
u_char *oobbuf;
|
|
size_t len = ops->ooblen;
|
|
const u_char *buf = ops->oobbuf;
|
|
mtd_oob_mode_t mode = ops->mode;
|
|
|
|
to += ops->ooboffs;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
|
|
__func__, (unsigned int) to, (int) len);
|
|
|
|
/* Initialize retlen, in case of early exit */
|
|
ops->oobretlen = 0;
|
|
|
|
if (mode == MTD_OOB_AUTO)
|
|
oobsize = this->ecclayout->oobavail;
|
|
else
|
|
oobsize = mtd->oobsize;
|
|
|
|
column = to & (mtd->oobsize - 1);
|
|
|
|
if (unlikely(column >= oobsize)) {
|
|
printk(KERN_ERR "%s: Attempted to start write outside oob\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* For compatibility with NAND: Do not allow write past end of page */
|
|
if (unlikely(column + len > oobsize)) {
|
|
printk(KERN_ERR "%s: Attempt to write past end of page\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Do not allow reads past end of device */
|
|
if (unlikely(to >= mtd->size ||
|
|
column + len > ((mtd->size >> this->page_shift) -
|
|
(to >> this->page_shift)) * oobsize)) {
|
|
printk(KERN_ERR "%s: Attempted to write past end of device\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
oobbuf = this->oob_buf;
|
|
|
|
oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
|
|
|
|
/* Loop until all data write */
|
|
while (written < len) {
|
|
int thislen = min_t(int, oobsize, len - written);
|
|
|
|
cond_resched();
|
|
|
|
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
|
|
|
|
/* We send data to spare ram with oobsize
|
|
* to prevent byte access */
|
|
memset(oobbuf, 0xff, mtd->oobsize);
|
|
if (mode == MTD_OOB_AUTO)
|
|
onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
|
|
else
|
|
memcpy(oobbuf + column, buf, thislen);
|
|
this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
|
|
|
|
if (ONENAND_IS_4KB_PAGE(this)) {
|
|
/* Set main area of DataRAM to 0xff*/
|
|
memset(this->page_buf, 0xff, mtd->writesize);
|
|
this->write_bufferram(mtd, ONENAND_DATARAM,
|
|
this->page_buf, 0, mtd->writesize);
|
|
}
|
|
|
|
this->command(mtd, oobcmd, to, mtd->oobsize);
|
|
|
|
onenand_update_bufferram(mtd, to, 0);
|
|
if (ONENAND_IS_2PLANE(this)) {
|
|
ONENAND_SET_BUFFERRAM1(this);
|
|
onenand_update_bufferram(mtd, to + this->writesize, 0);
|
|
}
|
|
|
|
ret = this->wait(mtd, FL_WRITING);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
|
|
break;
|
|
}
|
|
|
|
ret = onenand_verify_oob(mtd, oobbuf, to);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: verify failed %d\n",
|
|
__func__, ret);
|
|
break;
|
|
}
|
|
|
|
written += thislen;
|
|
if (written == len)
|
|
break;
|
|
|
|
to += mtd->writesize;
|
|
buf += thislen;
|
|
column = 0;
|
|
}
|
|
|
|
ops->oobretlen = written;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_write - [MTD Interface] write buffer to FLASH
|
|
* @param mtd MTD device structure
|
|
* @param to offset to write to
|
|
* @param len number of bytes to write
|
|
* @param retlen pointer to variable to store the number of written bytes
|
|
* @param buf the data to write
|
|
*
|
|
* Write with ECC
|
|
*/
|
|
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct mtd_oob_ops ops = {
|
|
.len = len,
|
|
.ooblen = 0,
|
|
.datbuf = (u_char *) buf,
|
|
.oobbuf = NULL,
|
|
};
|
|
int ret;
|
|
|
|
onenand_get_device(mtd, FL_WRITING);
|
|
ret = onenand_write_ops_nolock(mtd, to, &ops);
|
|
onenand_release_device(mtd);
|
|
|
|
*retlen = ops.retlen;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
|
|
* @param mtd: MTD device structure
|
|
* @param to: offset to write
|
|
* @param ops: oob operation description structure
|
|
*/
|
|
static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
int ret;
|
|
|
|
switch (ops->mode) {
|
|
case MTD_OOB_PLACE:
|
|
case MTD_OOB_AUTO:
|
|
break;
|
|
case MTD_OOB_RAW:
|
|
/* Not implemented yet */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
onenand_get_device(mtd, FL_WRITING);
|
|
if (ops->datbuf)
|
|
ret = onenand_write_ops_nolock(mtd, to, ops);
|
|
else
|
|
ret = onenand_write_oob_nolock(mtd, to, ops);
|
|
onenand_release_device(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
|
|
* @param mtd MTD device structure
|
|
* @param ofs offset from device start
|
|
* @param allowbbt 1, if its allowed to access the bbt area
|
|
*
|
|
* Check, if the block is bad. Either by reading the bad block table or
|
|
* calling of the scan function.
|
|
*/
|
|
static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct bbm_info *bbm = this->bbm;
|
|
|
|
/* Return info from the table */
|
|
return bbm->isbad_bbt(mtd, ofs, allowbbt);
|
|
}
|
|
|
|
|
|
static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
|
|
struct erase_info *instr)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
loff_t addr = instr->addr;
|
|
int len = instr->len;
|
|
unsigned int block_size = (1 << this->erase_shift);
|
|
int ret = 0;
|
|
|
|
while (len) {
|
|
this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
|
|
ret = this->wait(mtd, FL_VERIFYING_ERASE);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: Failed verify, block %d\n",
|
|
__func__, onenand_block(this, addr));
|
|
instr->state = MTD_ERASE_FAILED;
|
|
instr->fail_addr = addr;
|
|
return -1;
|
|
}
|
|
len -= block_size;
|
|
addr += block_size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
|
|
* @param mtd MTD device structure
|
|
* @param instr erase instruction
|
|
* @param region erase region
|
|
*
|
|
* Erase one or more blocks up to 64 block at a time
|
|
*/
|
|
static int onenand_multiblock_erase(struct mtd_info *mtd,
|
|
struct erase_info *instr,
|
|
unsigned int block_size)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
loff_t addr = instr->addr;
|
|
int len = instr->len;
|
|
int eb_count = 0;
|
|
int ret = 0;
|
|
int bdry_block = 0;
|
|
|
|
instr->state = MTD_ERASING;
|
|
|
|
if (ONENAND_IS_DDP(this)) {
|
|
loff_t bdry_addr = this->chipsize >> 1;
|
|
if (addr < bdry_addr && (addr + len) > bdry_addr)
|
|
bdry_block = bdry_addr >> this->erase_shift;
|
|
}
|
|
|
|
/* Pre-check bbs */
|
|
while (len) {
|
|
/* Check if we have a bad block, we do not erase bad blocks */
|
|
if (onenand_block_isbad_nolock(mtd, addr, 0)) {
|
|
printk(KERN_WARNING "%s: attempt to erase a bad block "
|
|
"at addr 0x%012llx\n",
|
|
__func__, (unsigned long long) addr);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
return -EIO;
|
|
}
|
|
len -= block_size;
|
|
addr += block_size;
|
|
}
|
|
|
|
len = instr->len;
|
|
addr = instr->addr;
|
|
|
|
/* loop over 64 eb batches */
|
|
while (len) {
|
|
struct erase_info verify_instr = *instr;
|
|
int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
|
|
|
|
verify_instr.addr = addr;
|
|
verify_instr.len = 0;
|
|
|
|
/* do not cross chip boundary */
|
|
if (bdry_block) {
|
|
int this_block = (addr >> this->erase_shift);
|
|
|
|
if (this_block < bdry_block) {
|
|
max_eb_count = min(max_eb_count,
|
|
(bdry_block - this_block));
|
|
}
|
|
}
|
|
|
|
eb_count = 0;
|
|
|
|
while (len > block_size && eb_count < (max_eb_count - 1)) {
|
|
this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
|
|
addr, block_size);
|
|
onenand_invalidate_bufferram(mtd, addr, block_size);
|
|
|
|
ret = this->wait(mtd, FL_PREPARING_ERASE);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: Failed multiblock erase, "
|
|
"block %d\n", __func__,
|
|
onenand_block(this, addr));
|
|
instr->state = MTD_ERASE_FAILED;
|
|
instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
|
|
return -EIO;
|
|
}
|
|
|
|
len -= block_size;
|
|
addr += block_size;
|
|
eb_count++;
|
|
}
|
|
|
|
/* last block of 64-eb series */
|
|
cond_resched();
|
|
this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
|
|
onenand_invalidate_bufferram(mtd, addr, block_size);
|
|
|
|
ret = this->wait(mtd, FL_ERASING);
|
|
/* Check if it is write protected */
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: Failed erase, block %d\n",
|
|
__func__, onenand_block(this, addr));
|
|
instr->state = MTD_ERASE_FAILED;
|
|
instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
|
|
return -EIO;
|
|
}
|
|
|
|
len -= block_size;
|
|
addr += block_size;
|
|
eb_count++;
|
|
|
|
/* verify */
|
|
verify_instr.len = eb_count * block_size;
|
|
if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
|
|
instr->state = verify_instr.state;
|
|
instr->fail_addr = verify_instr.fail_addr;
|
|
return -EIO;
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
|
|
* @param mtd MTD device structure
|
|
* @param instr erase instruction
|
|
* @param region erase region
|
|
* @param block_size erase block size
|
|
*
|
|
* Erase one or more blocks one block at a time
|
|
*/
|
|
static int onenand_block_by_block_erase(struct mtd_info *mtd,
|
|
struct erase_info *instr,
|
|
struct mtd_erase_region_info *region,
|
|
unsigned int block_size)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
loff_t addr = instr->addr;
|
|
int len = instr->len;
|
|
loff_t region_end = 0;
|
|
int ret = 0;
|
|
|
|
if (region) {
|
|
/* region is set for Flex-OneNAND */
|
|
region_end = region->offset + region->erasesize * region->numblocks;
|
|
}
|
|
|
|
instr->state = MTD_ERASING;
|
|
|
|
/* Loop through the blocks */
|
|
while (len) {
|
|
cond_resched();
|
|
|
|
/* Check if we have a bad block, we do not erase bad blocks */
|
|
if (onenand_block_isbad_nolock(mtd, addr, 0)) {
|
|
printk(KERN_WARNING "%s: attempt to erase a bad block "
|
|
"at addr 0x%012llx\n",
|
|
__func__, (unsigned long long) addr);
|
|
instr->state = MTD_ERASE_FAILED;
|
|
return -EIO;
|
|
}
|
|
|
|
this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
|
|
|
|
onenand_invalidate_bufferram(mtd, addr, block_size);
|
|
|
|
ret = this->wait(mtd, FL_ERASING);
|
|
/* Check, if it is write protected */
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: Failed erase, block %d\n",
|
|
__func__, onenand_block(this, addr));
|
|
instr->state = MTD_ERASE_FAILED;
|
|
instr->fail_addr = addr;
|
|
return -EIO;
|
|
}
|
|
|
|
len -= block_size;
|
|
addr += block_size;
|
|
|
|
if (addr == region_end) {
|
|
if (!len)
|
|
break;
|
|
region++;
|
|
|
|
block_size = region->erasesize;
|
|
region_end = region->offset + region->erasesize * region->numblocks;
|
|
|
|
if (len & (block_size - 1)) {
|
|
/* FIXME: This should be handled at MTD partitioning level. */
|
|
printk(KERN_ERR "%s: Unaligned address\n",
|
|
__func__);
|
|
return -EIO;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_erase - [MTD Interface] erase block(s)
|
|
* @param mtd MTD device structure
|
|
* @param instr erase instruction
|
|
*
|
|
* Erase one or more blocks
|
|
*/
|
|
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
unsigned int block_size;
|
|
loff_t addr = instr->addr;
|
|
loff_t len = instr->len;
|
|
int ret = 0;
|
|
struct mtd_erase_region_info *region = NULL;
|
|
loff_t region_offset = 0;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
|
|
(unsigned long long) instr->addr, (unsigned long long) instr->len);
|
|
|
|
/* Do not allow erase past end of device */
|
|
if (unlikely((len + addr) > mtd->size)) {
|
|
printk(KERN_ERR "%s: Erase past end of device\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (FLEXONENAND(this)) {
|
|
/* Find the eraseregion of this address */
|
|
int i = flexonenand_region(mtd, addr);
|
|
|
|
region = &mtd->eraseregions[i];
|
|
block_size = region->erasesize;
|
|
|
|
/* Start address within region must align on block boundary.
|
|
* Erase region's start offset is always block start address.
|
|
*/
|
|
region_offset = region->offset;
|
|
} else
|
|
block_size = 1 << this->erase_shift;
|
|
|
|
/* Start address must align on block boundary */
|
|
if (unlikely((addr - region_offset) & (block_size - 1))) {
|
|
printk(KERN_ERR "%s: Unaligned address\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Length must align on block boundary */
|
|
if (unlikely(len & (block_size - 1))) {
|
|
printk(KERN_ERR "%s: Length not block aligned\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
onenand_get_device(mtd, FL_ERASING);
|
|
|
|
if (ONENAND_IS_4KB_PAGE(this) || region ||
|
|
instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
|
|
/* region is set for Flex-OneNAND (no mb erase) */
|
|
ret = onenand_block_by_block_erase(mtd, instr,
|
|
region, block_size);
|
|
} else {
|
|
ret = onenand_multiblock_erase(mtd, instr, block_size);
|
|
}
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
onenand_release_device(mtd);
|
|
|
|
/* Do call back function */
|
|
if (!ret) {
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_sync - [MTD Interface] sync
|
|
* @param mtd MTD device structure
|
|
*
|
|
* Sync is actually a wait for chip ready function
|
|
*/
|
|
static void onenand_sync(struct mtd_info *mtd)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
onenand_get_device(mtd, FL_SYNCING);
|
|
|
|
/* Release it and go back */
|
|
onenand_release_device(mtd);
|
|
}
|
|
|
|
/**
|
|
* onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
|
|
* @param mtd MTD device structure
|
|
* @param ofs offset relative to mtd start
|
|
*
|
|
* Check whether the block is bad
|
|
*/
|
|
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
int ret;
|
|
|
|
/* Check for invalid offset */
|
|
if (ofs > mtd->size)
|
|
return -EINVAL;
|
|
|
|
onenand_get_device(mtd, FL_READING);
|
|
ret = onenand_block_isbad_nolock(mtd, ofs, 0);
|
|
onenand_release_device(mtd);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_default_block_markbad - [DEFAULT] mark a block bad
|
|
* @param mtd MTD device structure
|
|
* @param ofs offset from device start
|
|
*
|
|
* This is the default implementation, which can be overridden by
|
|
* a hardware specific driver.
|
|
*/
|
|
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct bbm_info *bbm = this->bbm;
|
|
u_char buf[2] = {0, 0};
|
|
struct mtd_oob_ops ops = {
|
|
.mode = MTD_OOB_PLACE,
|
|
.ooblen = 2,
|
|
.oobbuf = buf,
|
|
.ooboffs = 0,
|
|
};
|
|
int block;
|
|
|
|
/* Get block number */
|
|
block = onenand_block(this, ofs);
|
|
if (bbm->bbt)
|
|
bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
|
|
|
|
/* We write two bytes, so we don't have to mess with 16-bit access */
|
|
ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
|
|
/* FIXME : What to do when marking SLC block in partition
|
|
* with MLC erasesize? For now, it is not advisable to
|
|
* create partitions containing both SLC and MLC regions.
|
|
*/
|
|
return onenand_write_oob_nolock(mtd, ofs, &ops);
|
|
}
|
|
|
|
/**
|
|
* onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
|
|
* @param mtd MTD device structure
|
|
* @param ofs offset relative to mtd start
|
|
*
|
|
* Mark the block as bad
|
|
*/
|
|
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int ret;
|
|
|
|
ret = onenand_block_isbad(mtd, ofs);
|
|
if (ret) {
|
|
/* If it was bad already, return success and do nothing */
|
|
if (ret > 0)
|
|
return 0;
|
|
return ret;
|
|
}
|
|
|
|
onenand_get_device(mtd, FL_WRITING);
|
|
ret = this->block_markbad(mtd, ofs);
|
|
onenand_release_device(mtd);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
|
|
* @param mtd MTD device structure
|
|
* @param ofs offset relative to mtd start
|
|
* @param len number of bytes to lock or unlock
|
|
* @param cmd lock or unlock command
|
|
*
|
|
* Lock or unlock one or more blocks
|
|
*/
|
|
static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int start, end, block, value, status;
|
|
int wp_status_mask;
|
|
|
|
start = onenand_block(this, ofs);
|
|
end = onenand_block(this, ofs + len) - 1;
|
|
|
|
if (cmd == ONENAND_CMD_LOCK)
|
|
wp_status_mask = ONENAND_WP_LS;
|
|
else
|
|
wp_status_mask = ONENAND_WP_US;
|
|
|
|
/* Continuous lock scheme */
|
|
if (this->options & ONENAND_HAS_CONT_LOCK) {
|
|
/* Set start block address */
|
|
this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
|
|
/* Set end block address */
|
|
this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
|
|
/* Write lock command */
|
|
this->command(mtd, cmd, 0, 0);
|
|
|
|
/* There's no return value */
|
|
this->wait(mtd, FL_LOCKING);
|
|
|
|
/* Sanity check */
|
|
while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
|
|
& ONENAND_CTRL_ONGO)
|
|
continue;
|
|
|
|
/* Check lock status */
|
|
status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
|
|
if (!(status & wp_status_mask))
|
|
printk(KERN_ERR "%s: wp status = 0x%x\n",
|
|
__func__, status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Block lock scheme */
|
|
for (block = start; block < end + 1; block++) {
|
|
/* Set block address */
|
|
value = onenand_block_address(this, block);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
|
|
/* Select DataRAM for DDP */
|
|
value = onenand_bufferram_address(this, block);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
|
|
/* Set start block address */
|
|
this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
|
|
/* Write lock command */
|
|
this->command(mtd, cmd, 0, 0);
|
|
|
|
/* There's no return value */
|
|
this->wait(mtd, FL_LOCKING);
|
|
|
|
/* Sanity check */
|
|
while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
|
|
& ONENAND_CTRL_ONGO)
|
|
continue;
|
|
|
|
/* Check lock status */
|
|
status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
|
|
if (!(status & wp_status_mask))
|
|
printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
|
|
__func__, block, status);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_lock - [MTD Interface] Lock block(s)
|
|
* @param mtd MTD device structure
|
|
* @param ofs offset relative to mtd start
|
|
* @param len number of bytes to unlock
|
|
*
|
|
* Lock one or more blocks
|
|
*/
|
|
static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
int ret;
|
|
|
|
onenand_get_device(mtd, FL_LOCKING);
|
|
ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
|
|
onenand_release_device(mtd);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_unlock - [MTD Interface] Unlock block(s)
|
|
* @param mtd MTD device structure
|
|
* @param ofs offset relative to mtd start
|
|
* @param len number of bytes to unlock
|
|
*
|
|
* Unlock one or more blocks
|
|
*/
|
|
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
int ret;
|
|
|
|
onenand_get_device(mtd, FL_LOCKING);
|
|
ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
|
|
onenand_release_device(mtd);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_check_lock_status - [OneNAND Interface] Check lock status
|
|
* @param this onenand chip data structure
|
|
*
|
|
* Check lock status
|
|
*/
|
|
static int onenand_check_lock_status(struct onenand_chip *this)
|
|
{
|
|
unsigned int value, block, status;
|
|
unsigned int end;
|
|
|
|
end = this->chipsize >> this->erase_shift;
|
|
for (block = 0; block < end; block++) {
|
|
/* Set block address */
|
|
value = onenand_block_address(this, block);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
|
|
/* Select DataRAM for DDP */
|
|
value = onenand_bufferram_address(this, block);
|
|
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
|
|
/* Set start block address */
|
|
this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
|
|
|
|
/* Check lock status */
|
|
status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
|
|
if (!(status & ONENAND_WP_US)) {
|
|
printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
|
|
__func__, block, status);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* onenand_unlock_all - [OneNAND Interface] unlock all blocks
|
|
* @param mtd MTD device structure
|
|
*
|
|
* Unlock all blocks
|
|
*/
|
|
static void onenand_unlock_all(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
loff_t ofs = 0;
|
|
loff_t len = mtd->size;
|
|
|
|
if (this->options & ONENAND_HAS_UNLOCK_ALL) {
|
|
/* Set start block address */
|
|
this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
|
|
/* Write unlock command */
|
|
this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
|
|
|
|
/* There's no return value */
|
|
this->wait(mtd, FL_LOCKING);
|
|
|
|
/* Sanity check */
|
|
while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
|
|
& ONENAND_CTRL_ONGO)
|
|
continue;
|
|
|
|
/* Don't check lock status */
|
|
if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
|
|
return;
|
|
|
|
/* Check lock status */
|
|
if (onenand_check_lock_status(this))
|
|
return;
|
|
|
|
/* Workaround for all block unlock in DDP */
|
|
if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
|
|
/* All blocks on another chip */
|
|
ofs = this->chipsize >> 1;
|
|
len = this->chipsize >> 1;
|
|
}
|
|
}
|
|
|
|
onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_ONENAND_OTP
|
|
|
|
/**
|
|
* onenand_otp_command - Send OTP specific command to OneNAND device
|
|
* @param mtd MTD device structure
|
|
* @param cmd the command to be sent
|
|
* @param addr offset to read from or write to
|
|
* @param len number of bytes to read or write
|
|
*/
|
|
static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
|
|
size_t len)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int value, block, page;
|
|
|
|
/* Address translation */
|
|
switch (cmd) {
|
|
case ONENAND_CMD_OTP_ACCESS:
|
|
block = (int) (addr >> this->erase_shift);
|
|
page = -1;
|
|
break;
|
|
|
|
default:
|
|
block = (int) (addr >> this->erase_shift);
|
|
page = (int) (addr >> this->page_shift);
|
|
|
|
if (ONENAND_IS_2PLANE(this)) {
|
|
/* Make the even block number */
|
|
block &= ~1;
|
|
/* Is it the odd plane? */
|
|
if (addr & this->writesize)
|
|
block++;
|
|
page >>= 1;
|
|
}
|
|
page &= this->page_mask;
|
|
break;
|
|
}
|
|
|
|
if (block != -1) {
|
|
/* Write 'DFS, FBA' of Flash */
|
|
value = onenand_block_address(this, block);
|
|
this->write_word(value, this->base +
|
|
ONENAND_REG_START_ADDRESS1);
|
|
}
|
|
|
|
if (page != -1) {
|
|
/* Now we use page size operation */
|
|
int sectors = 4, count = 4;
|
|
int dataram;
|
|
|
|
switch (cmd) {
|
|
default:
|
|
if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
|
|
cmd = ONENAND_CMD_2X_PROG;
|
|
dataram = ONENAND_CURRENT_BUFFERRAM(this);
|
|
break;
|
|
}
|
|
|
|
/* Write 'FPA, FSA' of Flash */
|
|
value = onenand_page_address(page, sectors);
|
|
this->write_word(value, this->base +
|
|
ONENAND_REG_START_ADDRESS8);
|
|
|
|
/* Write 'BSA, BSC' of DataRAM */
|
|
value = onenand_buffer_address(dataram, sectors, count);
|
|
this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
|
|
}
|
|
|
|
/* Interrupt clear */
|
|
this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
|
|
|
|
/* Write command */
|
|
this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
|
|
* @param mtd MTD device structure
|
|
* @param to offset to write to
|
|
* @param len number of bytes to write
|
|
* @param retlen pointer to variable to store the number of written bytes
|
|
* @param buf the data to write
|
|
*
|
|
* OneNAND write out-of-band only for OTP
|
|
*/
|
|
static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int column, ret = 0, oobsize;
|
|
int written = 0;
|
|
u_char *oobbuf;
|
|
size_t len = ops->ooblen;
|
|
const u_char *buf = ops->oobbuf;
|
|
int block, value, status;
|
|
|
|
to += ops->ooboffs;
|
|
|
|
/* Initialize retlen, in case of early exit */
|
|
ops->oobretlen = 0;
|
|
|
|
oobsize = mtd->oobsize;
|
|
|
|
column = to & (mtd->oobsize - 1);
|
|
|
|
oobbuf = this->oob_buf;
|
|
|
|
/* Loop until all data write */
|
|
while (written < len) {
|
|
int thislen = min_t(int, oobsize, len - written);
|
|
|
|
cond_resched();
|
|
|
|
block = (int) (to >> this->erase_shift);
|
|
/*
|
|
* Write 'DFS, FBA' of Flash
|
|
* Add: F100h DQ=DFS, FBA
|
|
*/
|
|
|
|
value = onenand_block_address(this, block);
|
|
this->write_word(value, this->base +
|
|
ONENAND_REG_START_ADDRESS1);
|
|
|
|
/*
|
|
* Select DataRAM for DDP
|
|
* Add: F101h DQ=DBS
|
|
*/
|
|
|
|
value = onenand_bufferram_address(this, block);
|
|
this->write_word(value, this->base +
|
|
ONENAND_REG_START_ADDRESS2);
|
|
ONENAND_SET_NEXT_BUFFERRAM(this);
|
|
|
|
/*
|
|
* Enter OTP access mode
|
|
*/
|
|
this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
|
|
this->wait(mtd, FL_OTPING);
|
|
|
|
/* We send data to spare ram with oobsize
|
|
* to prevent byte access */
|
|
memcpy(oobbuf + column, buf, thislen);
|
|
|
|
/*
|
|
* Write Data into DataRAM
|
|
* Add: 8th Word
|
|
* in sector0/spare/page0
|
|
* DQ=XXFCh
|
|
*/
|
|
this->write_bufferram(mtd, ONENAND_SPARERAM,
|
|
oobbuf, 0, mtd->oobsize);
|
|
|
|
onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
|
|
onenand_update_bufferram(mtd, to, 0);
|
|
if (ONENAND_IS_2PLANE(this)) {
|
|
ONENAND_SET_BUFFERRAM1(this);
|
|
onenand_update_bufferram(mtd, to + this->writesize, 0);
|
|
}
|
|
|
|
ret = this->wait(mtd, FL_WRITING);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
|
|
break;
|
|
}
|
|
|
|
/* Exit OTP access mode */
|
|
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
|
|
this->wait(mtd, FL_RESETING);
|
|
|
|
status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
|
|
status &= 0x60;
|
|
|
|
if (status == 0x60) {
|
|
printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
|
|
printk(KERN_DEBUG "1st Block\tLOCKED\n");
|
|
printk(KERN_DEBUG "OTP Block\tLOCKED\n");
|
|
} else if (status == 0x20) {
|
|
printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
|
|
printk(KERN_DEBUG "1st Block\tLOCKED\n");
|
|
printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
|
|
} else if (status == 0x40) {
|
|
printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
|
|
printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
|
|
printk(KERN_DEBUG "OTP Block\tLOCKED\n");
|
|
} else {
|
|
printk(KERN_DEBUG "Reboot to check\n");
|
|
}
|
|
|
|
written += thislen;
|
|
if (written == len)
|
|
break;
|
|
|
|
to += mtd->writesize;
|
|
buf += thislen;
|
|
column = 0;
|
|
}
|
|
|
|
ops->oobretlen = written;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Internal OTP operation */
|
|
typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
|
|
size_t *retlen, u_char *buf);
|
|
|
|
/**
|
|
* do_otp_read - [DEFAULT] Read OTP block area
|
|
* @param mtd MTD device structure
|
|
* @param from The offset to read
|
|
* @param len number of bytes to read
|
|
* @param retlen pointer to variable to store the number of readbytes
|
|
* @param buf the databuffer to put/get data
|
|
*
|
|
* Read OTP block area.
|
|
*/
|
|
static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct mtd_oob_ops ops = {
|
|
.len = len,
|
|
.ooblen = 0,
|
|
.datbuf = buf,
|
|
.oobbuf = NULL,
|
|
};
|
|
int ret;
|
|
|
|
/* Enter OTP access mode */
|
|
this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
|
|
this->wait(mtd, FL_OTPING);
|
|
|
|
ret = ONENAND_IS_4KB_PAGE(this) ?
|
|
onenand_mlc_read_ops_nolock(mtd, from, &ops) :
|
|
onenand_read_ops_nolock(mtd, from, &ops);
|
|
|
|
/* Exit OTP access mode */
|
|
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
|
|
this->wait(mtd, FL_RESETING);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* do_otp_write - [DEFAULT] Write OTP block area
|
|
* @param mtd MTD device structure
|
|
* @param to The offset to write
|
|
* @param len number of bytes to write
|
|
* @param retlen pointer to variable to store the number of write bytes
|
|
* @param buf the databuffer to put/get data
|
|
*
|
|
* Write OTP block area.
|
|
*/
|
|
static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
unsigned char *pbuf = buf;
|
|
int ret;
|
|
struct mtd_oob_ops ops;
|
|
|
|
/* Force buffer page aligned */
|
|
if (len < mtd->writesize) {
|
|
memcpy(this->page_buf, buf, len);
|
|
memset(this->page_buf + len, 0xff, mtd->writesize - len);
|
|
pbuf = this->page_buf;
|
|
len = mtd->writesize;
|
|
}
|
|
|
|
/* Enter OTP access mode */
|
|
this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
|
|
this->wait(mtd, FL_OTPING);
|
|
|
|
ops.len = len;
|
|
ops.ooblen = 0;
|
|
ops.datbuf = pbuf;
|
|
ops.oobbuf = NULL;
|
|
ret = onenand_write_ops_nolock(mtd, to, &ops);
|
|
*retlen = ops.retlen;
|
|
|
|
/* Exit OTP access mode */
|
|
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
|
|
this->wait(mtd, FL_RESETING);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* do_otp_lock - [DEFAULT] Lock OTP block area
|
|
* @param mtd MTD device structure
|
|
* @param from The offset to lock
|
|
* @param len number of bytes to lock
|
|
* @param retlen pointer to variable to store the number of lock bytes
|
|
* @param buf the databuffer to put/get data
|
|
*
|
|
* Lock OTP block area.
|
|
*/
|
|
static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
struct mtd_oob_ops ops;
|
|
int ret;
|
|
|
|
if (FLEXONENAND(this)) {
|
|
|
|
/* Enter OTP access mode */
|
|
this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
|
|
this->wait(mtd, FL_OTPING);
|
|
/*
|
|
* For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
|
|
* main area of page 49.
|
|
*/
|
|
ops.len = mtd->writesize;
|
|
ops.ooblen = 0;
|
|
ops.datbuf = buf;
|
|
ops.oobbuf = NULL;
|
|
ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
|
|
*retlen = ops.retlen;
|
|
|
|
/* Exit OTP access mode */
|
|
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
|
|
this->wait(mtd, FL_RESETING);
|
|
} else {
|
|
ops.mode = MTD_OOB_PLACE;
|
|
ops.ooblen = len;
|
|
ops.oobbuf = buf;
|
|
ops.ooboffs = 0;
|
|
ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
|
|
*retlen = ops.oobretlen;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_otp_walk - [DEFAULT] Handle OTP operation
|
|
* @param mtd MTD device structure
|
|
* @param from The offset to read/write
|
|
* @param len number of bytes to read/write
|
|
* @param retlen pointer to variable to store the number of read bytes
|
|
* @param buf the databuffer to put/get data
|
|
* @param action do given action
|
|
* @param mode specify user and factory
|
|
*
|
|
* Handle OTP operation.
|
|
*/
|
|
static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf,
|
|
otp_op_t action, int mode)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int otp_pages;
|
|
int density;
|
|
int ret = 0;
|
|
|
|
*retlen = 0;
|
|
|
|
density = onenand_get_density(this->device_id);
|
|
if (density < ONENAND_DEVICE_DENSITY_512Mb)
|
|
otp_pages = 20;
|
|
else
|
|
otp_pages = 50;
|
|
|
|
if (mode == MTD_OTP_FACTORY) {
|
|
from += mtd->writesize * otp_pages;
|
|
otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
|
|
}
|
|
|
|
/* Check User/Factory boundary */
|
|
if (mode == MTD_OTP_USER) {
|
|
if (mtd->writesize * otp_pages < from + len)
|
|
return 0;
|
|
} else {
|
|
if (mtd->writesize * otp_pages < len)
|
|
return 0;
|
|
}
|
|
|
|
onenand_get_device(mtd, FL_OTPING);
|
|
while (len > 0 && otp_pages > 0) {
|
|
if (!action) { /* OTP Info functions */
|
|
struct otp_info *otpinfo;
|
|
|
|
len -= sizeof(struct otp_info);
|
|
if (len <= 0) {
|
|
ret = -ENOSPC;
|
|
break;
|
|
}
|
|
|
|
otpinfo = (struct otp_info *) buf;
|
|
otpinfo->start = from;
|
|
otpinfo->length = mtd->writesize;
|
|
otpinfo->locked = 0;
|
|
|
|
from += mtd->writesize;
|
|
buf += sizeof(struct otp_info);
|
|
*retlen += sizeof(struct otp_info);
|
|
} else {
|
|
size_t tmp_retlen;
|
|
|
|
ret = action(mtd, from, len, &tmp_retlen, buf);
|
|
|
|
buf += tmp_retlen;
|
|
len -= tmp_retlen;
|
|
*retlen += tmp_retlen;
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
otp_pages--;
|
|
}
|
|
onenand_release_device(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
|
|
* @param mtd MTD device structure
|
|
* @param buf the databuffer to put/get data
|
|
* @param len number of bytes to read
|
|
*
|
|
* Read factory OTP info.
|
|
*/
|
|
static int onenand_get_fact_prot_info(struct mtd_info *mtd,
|
|
struct otp_info *buf, size_t len)
|
|
{
|
|
size_t retlen;
|
|
int ret;
|
|
|
|
ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
|
|
|
|
return ret ? : retlen;
|
|
}
|
|
|
|
/**
|
|
* onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
|
|
* @param mtd MTD device structure
|
|
* @param from The offset to read
|
|
* @param len number of bytes to read
|
|
* @param retlen pointer to variable to store the number of read bytes
|
|
* @param buf the databuffer to put/get data
|
|
*
|
|
* Read factory OTP area.
|
|
*/
|
|
static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
|
|
}
|
|
|
|
/**
|
|
* onenand_get_user_prot_info - [MTD Interface] Read user OTP info
|
|
* @param mtd MTD device structure
|
|
* @param buf the databuffer to put/get data
|
|
* @param len number of bytes to read
|
|
*
|
|
* Read user OTP info.
|
|
*/
|
|
static int onenand_get_user_prot_info(struct mtd_info *mtd,
|
|
struct otp_info *buf, size_t len)
|
|
{
|
|
size_t retlen;
|
|
int ret;
|
|
|
|
ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
|
|
|
|
return ret ? : retlen;
|
|
}
|
|
|
|
/**
|
|
* onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
|
|
* @param mtd MTD device structure
|
|
* @param from The offset to read
|
|
* @param len number of bytes to read
|
|
* @param retlen pointer to variable to store the number of read bytes
|
|
* @param buf the databuffer to put/get data
|
|
*
|
|
* Read user OTP area.
|
|
*/
|
|
static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
|
|
}
|
|
|
|
/**
|
|
* onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
|
|
* @param mtd MTD device structure
|
|
* @param from The offset to write
|
|
* @param len number of bytes to write
|
|
* @param retlen pointer to variable to store the number of write bytes
|
|
* @param buf the databuffer to put/get data
|
|
*
|
|
* Write user OTP area.
|
|
*/
|
|
static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
|
|
}
|
|
|
|
/**
|
|
* onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
|
|
* @param mtd MTD device structure
|
|
* @param from The offset to lock
|
|
* @param len number of bytes to unlock
|
|
*
|
|
* Write lock mark on spare area in page 0 in OTP block
|
|
*/
|
|
static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
|
|
size_t retlen;
|
|
int ret;
|
|
unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
|
|
|
|
memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
|
|
: mtd->oobsize);
|
|
/*
|
|
* Write lock mark to 8th word of sector0 of page0 of the spare0.
|
|
* We write 16 bytes spare area instead of 2 bytes.
|
|
* For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
|
|
* main area of page 49.
|
|
*/
|
|
|
|
from = 0;
|
|
len = FLEXONENAND(this) ? mtd->writesize : 16;
|
|
|
|
/*
|
|
* Note: OTP lock operation
|
|
* OTP block : 0xXXFC XX 1111 1100
|
|
* 1st block : 0xXXF3 (If chip support) XX 1111 0011
|
|
* Both : 0xXXF0 (If chip support) XX 1111 0000
|
|
*/
|
|
if (FLEXONENAND(this))
|
|
otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
|
|
|
|
/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
|
|
if (otp == 1)
|
|
buf[otp_lock_offset] = 0xFC;
|
|
else if (otp == 2)
|
|
buf[otp_lock_offset] = 0xF3;
|
|
else if (otp == 3)
|
|
buf[otp_lock_offset] = 0xF0;
|
|
else if (otp != 0)
|
|
printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
|
|
|
|
ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
|
|
|
|
return ret ? : retlen;
|
|
}
|
|
|
|
#endif /* CONFIG_MTD_ONENAND_OTP */
|
|
|
|
/**
|
|
* onenand_check_features - Check and set OneNAND features
|
|
* @param mtd MTD data structure
|
|
*
|
|
* Check and set OneNAND features
|
|
* - lock scheme
|
|
* - two plane
|
|
*/
|
|
static void onenand_check_features(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
unsigned int density, process, numbufs;
|
|
|
|
/* Lock scheme depends on density and process */
|
|
density = onenand_get_density(this->device_id);
|
|
process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
|
|
numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
|
|
|
|
/* Lock scheme */
|
|
switch (density) {
|
|
case ONENAND_DEVICE_DENSITY_4Gb:
|
|
if (ONENAND_IS_DDP(this))
|
|
this->options |= ONENAND_HAS_2PLANE;
|
|
else if (numbufs == 1) {
|
|
this->options |= ONENAND_HAS_4KB_PAGE;
|
|
this->options |= ONENAND_HAS_CACHE_PROGRAM;
|
|
}
|
|
|
|
case ONENAND_DEVICE_DENSITY_2Gb:
|
|
/* 2Gb DDP does not have 2 plane */
|
|
if (!ONENAND_IS_DDP(this))
|
|
this->options |= ONENAND_HAS_2PLANE;
|
|
this->options |= ONENAND_HAS_UNLOCK_ALL;
|
|
|
|
case ONENAND_DEVICE_DENSITY_1Gb:
|
|
/* A-Die has all block unlock */
|
|
if (process)
|
|
this->options |= ONENAND_HAS_UNLOCK_ALL;
|
|
break;
|
|
|
|
default:
|
|
/* Some OneNAND has continuous lock scheme */
|
|
if (!process)
|
|
this->options |= ONENAND_HAS_CONT_LOCK;
|
|
break;
|
|
}
|
|
|
|
/* The MLC has 4KiB pagesize. */
|
|
if (ONENAND_IS_MLC(this))
|
|
this->options |= ONENAND_HAS_4KB_PAGE;
|
|
|
|
if (ONENAND_IS_4KB_PAGE(this))
|
|
this->options &= ~ONENAND_HAS_2PLANE;
|
|
|
|
if (FLEXONENAND(this)) {
|
|
this->options &= ~ONENAND_HAS_CONT_LOCK;
|
|
this->options |= ONENAND_HAS_UNLOCK_ALL;
|
|
}
|
|
|
|
if (this->options & ONENAND_HAS_CONT_LOCK)
|
|
printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
|
|
if (this->options & ONENAND_HAS_UNLOCK_ALL)
|
|
printk(KERN_DEBUG "Chip support all block unlock\n");
|
|
if (this->options & ONENAND_HAS_2PLANE)
|
|
printk(KERN_DEBUG "Chip has 2 plane\n");
|
|
if (this->options & ONENAND_HAS_4KB_PAGE)
|
|
printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
|
|
if (this->options & ONENAND_HAS_CACHE_PROGRAM)
|
|
printk(KERN_DEBUG "Chip has cache program feature\n");
|
|
}
|
|
|
|
/**
|
|
* onenand_print_device_info - Print device & version ID
|
|
* @param device device ID
|
|
* @param version version ID
|
|
*
|
|
* Print device & version ID
|
|
*/
|
|
static void onenand_print_device_info(int device, int version)
|
|
{
|
|
int vcc, demuxed, ddp, density, flexonenand;
|
|
|
|
vcc = device & ONENAND_DEVICE_VCC_MASK;
|
|
demuxed = device & ONENAND_DEVICE_IS_DEMUX;
|
|
ddp = device & ONENAND_DEVICE_IS_DDP;
|
|
density = onenand_get_density(device);
|
|
flexonenand = device & DEVICE_IS_FLEXONENAND;
|
|
printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
|
|
demuxed ? "" : "Muxed ",
|
|
flexonenand ? "Flex-" : "",
|
|
ddp ? "(DDP)" : "",
|
|
(16 << density),
|
|
vcc ? "2.65/3.3" : "1.8",
|
|
device);
|
|
printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
|
|
}
|
|
|
|
static const struct onenand_manufacturers onenand_manuf_ids[] = {
|
|
{ONENAND_MFR_SAMSUNG, "Samsung"},
|
|
{ONENAND_MFR_NUMONYX, "Numonyx"},
|
|
};
|
|
|
|
/**
|
|
* onenand_check_maf - Check manufacturer ID
|
|
* @param manuf manufacturer ID
|
|
*
|
|
* Check manufacturer ID
|
|
*/
|
|
static int onenand_check_maf(int manuf)
|
|
{
|
|
int size = ARRAY_SIZE(onenand_manuf_ids);
|
|
char *name;
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (manuf == onenand_manuf_ids[i].id)
|
|
break;
|
|
|
|
if (i < size)
|
|
name = onenand_manuf_ids[i].name;
|
|
else
|
|
name = "Unknown";
|
|
|
|
printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
|
|
|
|
return (i == size);
|
|
}
|
|
|
|
/**
|
|
* flexonenand_get_boundary - Reads the SLC boundary
|
|
* @param onenand_info - onenand info structure
|
|
**/
|
|
static int flexonenand_get_boundary(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
unsigned die, bdry;
|
|
int ret, syscfg, locked;
|
|
|
|
/* Disable ECC */
|
|
syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
|
|
this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
|
|
|
|
for (die = 0; die < this->dies; die++) {
|
|
this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
|
|
this->wait(mtd, FL_SYNCING);
|
|
|
|
this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
|
|
ret = this->wait(mtd, FL_READING);
|
|
|
|
bdry = this->read_word(this->base + ONENAND_DATARAM);
|
|
if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
|
|
locked = 0;
|
|
else
|
|
locked = 1;
|
|
this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
|
|
|
|
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
|
|
ret = this->wait(mtd, FL_RESETING);
|
|
|
|
printk(KERN_INFO "Die %d boundary: %d%s\n", die,
|
|
this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
|
|
}
|
|
|
|
/* Enable ECC */
|
|
this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
|
|
* boundary[], diesize[], mtd->size, mtd->erasesize
|
|
* @param mtd - MTD device structure
|
|
*/
|
|
static void flexonenand_get_size(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int die, i, eraseshift, density;
|
|
int blksperdie, maxbdry;
|
|
loff_t ofs;
|
|
|
|
density = onenand_get_density(this->device_id);
|
|
blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
|
|
blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
|
|
maxbdry = blksperdie - 1;
|
|
eraseshift = this->erase_shift - 1;
|
|
|
|
mtd->numeraseregions = this->dies << 1;
|
|
|
|
/* This fills up the device boundary */
|
|
flexonenand_get_boundary(mtd);
|
|
die = ofs = 0;
|
|
i = -1;
|
|
for (; die < this->dies; die++) {
|
|
if (!die || this->boundary[die-1] != maxbdry) {
|
|
i++;
|
|
mtd->eraseregions[i].offset = ofs;
|
|
mtd->eraseregions[i].erasesize = 1 << eraseshift;
|
|
mtd->eraseregions[i].numblocks =
|
|
this->boundary[die] + 1;
|
|
ofs += mtd->eraseregions[i].numblocks << eraseshift;
|
|
eraseshift++;
|
|
} else {
|
|
mtd->numeraseregions -= 1;
|
|
mtd->eraseregions[i].numblocks +=
|
|
this->boundary[die] + 1;
|
|
ofs += (this->boundary[die] + 1) << (eraseshift - 1);
|
|
}
|
|
if (this->boundary[die] != maxbdry) {
|
|
i++;
|
|
mtd->eraseregions[i].offset = ofs;
|
|
mtd->eraseregions[i].erasesize = 1 << eraseshift;
|
|
mtd->eraseregions[i].numblocks = maxbdry ^
|
|
this->boundary[die];
|
|
ofs += mtd->eraseregions[i].numblocks << eraseshift;
|
|
eraseshift--;
|
|
} else
|
|
mtd->numeraseregions -= 1;
|
|
}
|
|
|
|
/* Expose MLC erase size except when all blocks are SLC */
|
|
mtd->erasesize = 1 << this->erase_shift;
|
|
if (mtd->numeraseregions == 1)
|
|
mtd->erasesize >>= 1;
|
|
|
|
printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
|
|
for (i = 0; i < mtd->numeraseregions; i++)
|
|
printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
|
|
" numblocks: %04u]\n",
|
|
(unsigned int) mtd->eraseregions[i].offset,
|
|
mtd->eraseregions[i].erasesize,
|
|
mtd->eraseregions[i].numblocks);
|
|
|
|
for (die = 0, mtd->size = 0; die < this->dies; die++) {
|
|
this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
|
|
this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
|
|
<< (this->erase_shift - 1);
|
|
mtd->size += this->diesize[die];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* flexonenand_check_blocks_erased - Check if blocks are erased
|
|
* @param mtd_info - mtd info structure
|
|
* @param start - first erase block to check
|
|
* @param end - last erase block to check
|
|
*
|
|
* Converting an unerased block from MLC to SLC
|
|
* causes byte values to change. Since both data and its ECC
|
|
* have changed, reads on the block give uncorrectable error.
|
|
* This might lead to the block being detected as bad.
|
|
*
|
|
* Avoid this by ensuring that the block to be converted is
|
|
* erased.
|
|
*/
|
|
static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int i, ret;
|
|
int block;
|
|
struct mtd_oob_ops ops = {
|
|
.mode = MTD_OOB_PLACE,
|
|
.ooboffs = 0,
|
|
.ooblen = mtd->oobsize,
|
|
.datbuf = NULL,
|
|
.oobbuf = this->oob_buf,
|
|
};
|
|
loff_t addr;
|
|
|
|
printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
|
|
|
|
for (block = start; block <= end; block++) {
|
|
addr = flexonenand_addr(this, block);
|
|
if (onenand_block_isbad_nolock(mtd, addr, 0))
|
|
continue;
|
|
|
|
/*
|
|
* Since main area write results in ECC write to spare,
|
|
* it is sufficient to check only ECC bytes for change.
|
|
*/
|
|
ret = onenand_read_oob_nolock(mtd, addr, &ops);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < mtd->oobsize; i++)
|
|
if (this->oob_buf[i] != 0xff)
|
|
break;
|
|
|
|
if (i != mtd->oobsize) {
|
|
printk(KERN_WARNING "%s: Block %d not erased.\n",
|
|
__func__, block);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* flexonenand_set_boundary - Writes the SLC boundary
|
|
* @param mtd - mtd info structure
|
|
*/
|
|
int flexonenand_set_boundary(struct mtd_info *mtd, int die,
|
|
int boundary, int lock)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int ret, density, blksperdie, old, new, thisboundary;
|
|
loff_t addr;
|
|
|
|
/* Change only once for SDP Flex-OneNAND */
|
|
if (die && (!ONENAND_IS_DDP(this)))
|
|
return 0;
|
|
|
|
/* boundary value of -1 indicates no required change */
|
|
if (boundary < 0 || boundary == this->boundary[die])
|
|
return 0;
|
|
|
|
density = onenand_get_density(this->device_id);
|
|
blksperdie = ((16 << density) << 20) >> this->erase_shift;
|
|
blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
|
|
|
|
if (boundary >= blksperdie) {
|
|
printk(KERN_ERR "%s: Invalid boundary value. "
|
|
"Boundary not changed.\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check if converting blocks are erased */
|
|
old = this->boundary[die] + (die * this->density_mask);
|
|
new = boundary + (die * this->density_mask);
|
|
ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: Please erase blocks "
|
|
"before boundary change\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
|
|
this->wait(mtd, FL_SYNCING);
|
|
|
|
/* Check is boundary is locked */
|
|
this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
|
|
ret = this->wait(mtd, FL_READING);
|
|
|
|
thisboundary = this->read_word(this->base + ONENAND_DATARAM);
|
|
if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
|
|
printk(KERN_ERR "%s: boundary locked\n", __func__);
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
printk(KERN_INFO "Changing die %d boundary: %d%s\n",
|
|
die, boundary, lock ? "(Locked)" : "(Unlocked)");
|
|
|
|
addr = die ? this->diesize[0] : 0;
|
|
|
|
boundary &= FLEXONENAND_PI_MASK;
|
|
boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
|
|
|
|
this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
|
|
ret = this->wait(mtd, FL_ERASING);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
|
|
__func__, die);
|
|
goto out;
|
|
}
|
|
|
|
this->write_word(boundary, this->base + ONENAND_DATARAM);
|
|
this->command(mtd, ONENAND_CMD_PROG, addr, 0);
|
|
ret = this->wait(mtd, FL_WRITING);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: Failed PI write for Die %d\n",
|
|
__func__, die);
|
|
goto out;
|
|
}
|
|
|
|
this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
|
|
ret = this->wait(mtd, FL_WRITING);
|
|
out:
|
|
this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
|
|
this->wait(mtd, FL_RESETING);
|
|
if (!ret)
|
|
/* Recalculate device size on boundary change*/
|
|
flexonenand_get_size(mtd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* onenand_chip_probe - [OneNAND Interface] The generic chip probe
|
|
* @param mtd MTD device structure
|
|
*
|
|
* OneNAND detection method:
|
|
* Compare the values from command with ones from register
|
|
*/
|
|
static int onenand_chip_probe(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int bram_maf_id, bram_dev_id, maf_id, dev_id;
|
|
int syscfg;
|
|
|
|
/* Save system configuration 1 */
|
|
syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
|
|
/* Clear Sync. Burst Read mode to read BootRAM */
|
|
this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
|
|
|
|
/* Send the command for reading device ID from BootRAM */
|
|
this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
|
|
|
|
/* Read manufacturer and device IDs from BootRAM */
|
|
bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
|
|
bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
|
|
|
|
/* Reset OneNAND to read default register values */
|
|
this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
|
|
/* Wait reset */
|
|
this->wait(mtd, FL_RESETING);
|
|
|
|
/* Restore system configuration 1 */
|
|
this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
|
|
|
|
/* Check manufacturer ID */
|
|
if (onenand_check_maf(bram_maf_id))
|
|
return -ENXIO;
|
|
|
|
/* Read manufacturer and device IDs from Register */
|
|
maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
|
|
dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
|
|
|
|
/* Check OneNAND device */
|
|
if (maf_id != bram_maf_id || dev_id != bram_dev_id)
|
|
return -ENXIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_probe - [OneNAND Interface] Probe the OneNAND device
|
|
* @param mtd MTD device structure
|
|
*/
|
|
static int onenand_probe(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
int maf_id, dev_id, ver_id;
|
|
int density;
|
|
int ret;
|
|
|
|
ret = this->chip_probe(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read manufacturer and device IDs from Register */
|
|
maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
|
|
dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
|
|
ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
|
|
this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
|
|
|
|
/* Flash device information */
|
|
onenand_print_device_info(dev_id, ver_id);
|
|
this->device_id = dev_id;
|
|
this->version_id = ver_id;
|
|
|
|
/* Check OneNAND features */
|
|
onenand_check_features(mtd);
|
|
|
|
density = onenand_get_density(dev_id);
|
|
if (FLEXONENAND(this)) {
|
|
this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
|
|
/* Maximum possible erase regions */
|
|
mtd->numeraseregions = this->dies << 1;
|
|
mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
|
|
* (this->dies << 1), GFP_KERNEL);
|
|
if (!mtd->eraseregions)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* For Flex-OneNAND, chipsize represents maximum possible device size.
|
|
* mtd->size represents the actual device size.
|
|
*/
|
|
this->chipsize = (16 << density) << 20;
|
|
|
|
/* OneNAND page size & block size */
|
|
/* The data buffer size is equal to page size */
|
|
mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
|
|
/* We use the full BufferRAM */
|
|
if (ONENAND_IS_4KB_PAGE(this))
|
|
mtd->writesize <<= 1;
|
|
|
|
mtd->oobsize = mtd->writesize >> 5;
|
|
/* Pages per a block are always 64 in OneNAND */
|
|
mtd->erasesize = mtd->writesize << 6;
|
|
/*
|
|
* Flex-OneNAND SLC area has 64 pages per block.
|
|
* Flex-OneNAND MLC area has 128 pages per block.
|
|
* Expose MLC erase size to find erase_shift and page_mask.
|
|
*/
|
|
if (FLEXONENAND(this))
|
|
mtd->erasesize <<= 1;
|
|
|
|
this->erase_shift = ffs(mtd->erasesize) - 1;
|
|
this->page_shift = ffs(mtd->writesize) - 1;
|
|
this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
|
|
/* Set density mask. it is used for DDP */
|
|
if (ONENAND_IS_DDP(this))
|
|
this->density_mask = this->chipsize >> (this->erase_shift + 1);
|
|
/* It's real page size */
|
|
this->writesize = mtd->writesize;
|
|
|
|
/* REVISIT: Multichip handling */
|
|
|
|
if (FLEXONENAND(this))
|
|
flexonenand_get_size(mtd);
|
|
else
|
|
mtd->size = this->chipsize;
|
|
|
|
/*
|
|
* We emulate the 4KiB page and 256KiB erase block size
|
|
* But oobsize is still 64 bytes.
|
|
* It is only valid if you turn on 2X program support,
|
|
* Otherwise it will be ignored by compiler.
|
|
*/
|
|
if (ONENAND_IS_2PLANE(this)) {
|
|
mtd->writesize <<= 1;
|
|
mtd->erasesize <<= 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_suspend - [MTD Interface] Suspend the OneNAND flash
|
|
* @param mtd MTD device structure
|
|
*/
|
|
static int onenand_suspend(struct mtd_info *mtd)
|
|
{
|
|
return onenand_get_device(mtd, FL_PM_SUSPENDED);
|
|
}
|
|
|
|
/**
|
|
* onenand_resume - [MTD Interface] Resume the OneNAND flash
|
|
* @param mtd MTD device structure
|
|
*/
|
|
static void onenand_resume(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
|
|
if (this->state == FL_PM_SUSPENDED)
|
|
onenand_release_device(mtd);
|
|
else
|
|
printk(KERN_ERR "%s: resume() called for the chip which is not "
|
|
"in suspended state\n", __func__);
|
|
}
|
|
|
|
/**
|
|
* onenand_scan - [OneNAND Interface] Scan for the OneNAND device
|
|
* @param mtd MTD device structure
|
|
* @param maxchips Number of chips to scan for
|
|
*
|
|
* This fills out all the not initialized function pointers
|
|
* with the defaults.
|
|
* The flash ID is read and the mtd/chip structures are
|
|
* filled with the appropriate values.
|
|
*/
|
|
int onenand_scan(struct mtd_info *mtd, int maxchips)
|
|
{
|
|
int i, ret;
|
|
struct onenand_chip *this = mtd->priv;
|
|
|
|
if (!this->read_word)
|
|
this->read_word = onenand_readw;
|
|
if (!this->write_word)
|
|
this->write_word = onenand_writew;
|
|
|
|
if (!this->command)
|
|
this->command = onenand_command;
|
|
if (!this->wait)
|
|
onenand_setup_wait(mtd);
|
|
if (!this->bbt_wait)
|
|
this->bbt_wait = onenand_bbt_wait;
|
|
if (!this->unlock_all)
|
|
this->unlock_all = onenand_unlock_all;
|
|
|
|
if (!this->chip_probe)
|
|
this->chip_probe = onenand_chip_probe;
|
|
|
|
if (!this->read_bufferram)
|
|
this->read_bufferram = onenand_read_bufferram;
|
|
if (!this->write_bufferram)
|
|
this->write_bufferram = onenand_write_bufferram;
|
|
|
|
if (!this->block_markbad)
|
|
this->block_markbad = onenand_default_block_markbad;
|
|
if (!this->scan_bbt)
|
|
this->scan_bbt = onenand_default_bbt;
|
|
|
|
if (onenand_probe(mtd))
|
|
return -ENXIO;
|
|
|
|
/* Set Sync. Burst Read after probing */
|
|
if (this->mmcontrol) {
|
|
printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
|
|
this->read_bufferram = onenand_sync_read_bufferram;
|
|
}
|
|
|
|
/* Allocate buffers, if necessary */
|
|
if (!this->page_buf) {
|
|
this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
|
|
if (!this->page_buf) {
|
|
printk(KERN_ERR "%s: Can't allocate page_buf\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
|
|
this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
|
|
if (!this->verify_buf) {
|
|
kfree(this->page_buf);
|
|
return -ENOMEM;
|
|
}
|
|
#endif
|
|
this->options |= ONENAND_PAGEBUF_ALLOC;
|
|
}
|
|
if (!this->oob_buf) {
|
|
this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
|
|
if (!this->oob_buf) {
|
|
printk(KERN_ERR "%s: Can't allocate oob_buf\n",
|
|
__func__);
|
|
if (this->options & ONENAND_PAGEBUF_ALLOC) {
|
|
this->options &= ~ONENAND_PAGEBUF_ALLOC;
|
|
kfree(this->page_buf);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
this->options |= ONENAND_OOBBUF_ALLOC;
|
|
}
|
|
|
|
this->state = FL_READY;
|
|
init_waitqueue_head(&this->wq);
|
|
spin_lock_init(&this->chip_lock);
|
|
|
|
/*
|
|
* Allow subpage writes up to oobsize.
|
|
*/
|
|
switch (mtd->oobsize) {
|
|
case 128:
|
|
this->ecclayout = &onenand_oob_128;
|
|
mtd->subpage_sft = 0;
|
|
break;
|
|
case 64:
|
|
this->ecclayout = &onenand_oob_64;
|
|
mtd->subpage_sft = 2;
|
|
break;
|
|
|
|
case 32:
|
|
this->ecclayout = &onenand_oob_32;
|
|
mtd->subpage_sft = 1;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
|
|
__func__, mtd->oobsize);
|
|
mtd->subpage_sft = 0;
|
|
/* To prevent kernel oops */
|
|
this->ecclayout = &onenand_oob_32;
|
|
break;
|
|
}
|
|
|
|
this->subpagesize = mtd->writesize >> mtd->subpage_sft;
|
|
|
|
/*
|
|
* The number of bytes available for a client to place data into
|
|
* the out of band area
|
|
*/
|
|
this->ecclayout->oobavail = 0;
|
|
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
|
|
this->ecclayout->oobfree[i].length; i++)
|
|
this->ecclayout->oobavail +=
|
|
this->ecclayout->oobfree[i].length;
|
|
mtd->oobavail = this->ecclayout->oobavail;
|
|
|
|
mtd->ecclayout = this->ecclayout;
|
|
|
|
/* Fill in remaining MTD driver data */
|
|
mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
|
|
mtd->flags = MTD_CAP_NANDFLASH;
|
|
mtd->erase = onenand_erase;
|
|
mtd->point = NULL;
|
|
mtd->unpoint = NULL;
|
|
mtd->read = onenand_read;
|
|
mtd->write = onenand_write;
|
|
mtd->read_oob = onenand_read_oob;
|
|
mtd->write_oob = onenand_write_oob;
|
|
mtd->panic_write = onenand_panic_write;
|
|
#ifdef CONFIG_MTD_ONENAND_OTP
|
|
mtd->get_fact_prot_info = onenand_get_fact_prot_info;
|
|
mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
|
|
mtd->get_user_prot_info = onenand_get_user_prot_info;
|
|
mtd->read_user_prot_reg = onenand_read_user_prot_reg;
|
|
mtd->write_user_prot_reg = onenand_write_user_prot_reg;
|
|
mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
|
|
#endif
|
|
mtd->sync = onenand_sync;
|
|
mtd->lock = onenand_lock;
|
|
mtd->unlock = onenand_unlock;
|
|
mtd->suspend = onenand_suspend;
|
|
mtd->resume = onenand_resume;
|
|
mtd->block_isbad = onenand_block_isbad;
|
|
mtd->block_markbad = onenand_block_markbad;
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
/* Unlock whole block */
|
|
this->unlock_all(mtd);
|
|
|
|
ret = this->scan_bbt(mtd);
|
|
if ((!FLEXONENAND(this)) || ret)
|
|
return ret;
|
|
|
|
/* Change Flex-OneNAND boundaries if required */
|
|
for (i = 0; i < MAX_DIES; i++)
|
|
flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
|
|
flex_bdry[(2 * i) + 1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
|
|
* @param mtd MTD device structure
|
|
*/
|
|
void onenand_release(struct mtd_info *mtd)
|
|
{
|
|
struct onenand_chip *this = mtd->priv;
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
/* Deregister partitions */
|
|
del_mtd_partitions (mtd);
|
|
#endif
|
|
/* Deregister the device */
|
|
del_mtd_device (mtd);
|
|
|
|
/* Free bad block table memory, if allocated */
|
|
if (this->bbm) {
|
|
struct bbm_info *bbm = this->bbm;
|
|
kfree(bbm->bbt);
|
|
kfree(this->bbm);
|
|
}
|
|
/* Buffers allocated by onenand_scan */
|
|
if (this->options & ONENAND_PAGEBUF_ALLOC) {
|
|
kfree(this->page_buf);
|
|
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
|
|
kfree(this->verify_buf);
|
|
#endif
|
|
}
|
|
if (this->options & ONENAND_OOBBUF_ALLOC)
|
|
kfree(this->oob_buf);
|
|
kfree(mtd->eraseregions);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(onenand_scan);
|
|
EXPORT_SYMBOL_GPL(onenand_release);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
|
|
MODULE_DESCRIPTION("Generic OneNAND flash driver code");
|