forked from Minki/linux
8ff6daa17b
Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
1196 lines
32 KiB
C
1196 lines
32 KiB
C
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* Copyright (c) 2016 Christoph Hellwig.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include <linux/iomap.h>
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_iomap.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_dquot_item.h"
|
|
#include "xfs_dquot.h"
|
|
#include "xfs_reflink.h"
|
|
|
|
|
|
#define XFS_WRITEIO_ALIGN(mp,off) (((off) >> mp->m_writeio_log) \
|
|
<< mp->m_writeio_log)
|
|
|
|
void
|
|
xfs_bmbt_to_iomap(
|
|
struct xfs_inode *ip,
|
|
struct iomap *iomap,
|
|
struct xfs_bmbt_irec *imap)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
if (imap->br_startblock == HOLESTARTBLOCK) {
|
|
iomap->blkno = IOMAP_NULL_BLOCK;
|
|
iomap->type = IOMAP_HOLE;
|
|
} else if (imap->br_startblock == DELAYSTARTBLOCK) {
|
|
iomap->blkno = IOMAP_NULL_BLOCK;
|
|
iomap->type = IOMAP_DELALLOC;
|
|
} else {
|
|
iomap->blkno = xfs_fsb_to_db(ip, imap->br_startblock);
|
|
if (imap->br_state == XFS_EXT_UNWRITTEN)
|
|
iomap->type = IOMAP_UNWRITTEN;
|
|
else
|
|
iomap->type = IOMAP_MAPPED;
|
|
}
|
|
iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
|
|
iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
|
|
iomap->bdev = xfs_find_bdev_for_inode(VFS_I(ip));
|
|
}
|
|
|
|
xfs_extlen_t
|
|
xfs_eof_alignment(
|
|
struct xfs_inode *ip,
|
|
xfs_extlen_t extsize)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_extlen_t align = 0;
|
|
|
|
if (!XFS_IS_REALTIME_INODE(ip)) {
|
|
/*
|
|
* Round up the allocation request to a stripe unit
|
|
* (m_dalign) boundary if the file size is >= stripe unit
|
|
* size, and we are allocating past the allocation eof.
|
|
*
|
|
* If mounted with the "-o swalloc" option the alignment is
|
|
* increased from the strip unit size to the stripe width.
|
|
*/
|
|
if (mp->m_swidth && (mp->m_flags & XFS_MOUNT_SWALLOC))
|
|
align = mp->m_swidth;
|
|
else if (mp->m_dalign)
|
|
align = mp->m_dalign;
|
|
|
|
if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
|
|
align = 0;
|
|
}
|
|
|
|
/*
|
|
* Always round up the allocation request to an extent boundary
|
|
* (when file on a real-time subvolume or has di_extsize hint).
|
|
*/
|
|
if (extsize) {
|
|
if (align)
|
|
align = roundup_64(align, extsize);
|
|
else
|
|
align = extsize;
|
|
}
|
|
|
|
return align;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_iomap_eof_align_last_fsb(
|
|
struct xfs_inode *ip,
|
|
xfs_extlen_t extsize,
|
|
xfs_fileoff_t *last_fsb)
|
|
{
|
|
xfs_extlen_t align = xfs_eof_alignment(ip, extsize);
|
|
|
|
if (align) {
|
|
xfs_fileoff_t new_last_fsb = roundup_64(*last_fsb, align);
|
|
int eof, error;
|
|
|
|
error = xfs_bmap_eof(ip, new_last_fsb, XFS_DATA_FORK, &eof);
|
|
if (error)
|
|
return error;
|
|
if (eof)
|
|
*last_fsb = new_last_fsb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_alert_fsblock_zero(
|
|
xfs_inode_t *ip,
|
|
xfs_bmbt_irec_t *imap)
|
|
{
|
|
xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
|
|
"Access to block zero in inode %llu "
|
|
"start_block: %llx start_off: %llx "
|
|
"blkcnt: %llx extent-state: %x",
|
|
(unsigned long long)ip->i_ino,
|
|
(unsigned long long)imap->br_startblock,
|
|
(unsigned long long)imap->br_startoff,
|
|
(unsigned long long)imap->br_blockcount,
|
|
imap->br_state);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
int
|
|
xfs_iomap_write_direct(
|
|
xfs_inode_t *ip,
|
|
xfs_off_t offset,
|
|
size_t count,
|
|
xfs_bmbt_irec_t *imap,
|
|
int nmaps)
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb;
|
|
xfs_fileoff_t last_fsb;
|
|
xfs_filblks_t count_fsb, resaligned;
|
|
xfs_fsblock_t firstfsb;
|
|
xfs_extlen_t extsz, temp;
|
|
int nimaps;
|
|
int quota_flag;
|
|
int rt;
|
|
xfs_trans_t *tp;
|
|
struct xfs_defer_ops dfops;
|
|
uint qblocks, resblks, resrtextents;
|
|
int error;
|
|
int lockmode;
|
|
int bmapi_flags = XFS_BMAPI_PREALLOC;
|
|
uint tflags = 0;
|
|
|
|
rt = XFS_IS_REALTIME_INODE(ip);
|
|
extsz = xfs_get_extsz_hint(ip);
|
|
lockmode = XFS_ILOCK_SHARED; /* locked by caller */
|
|
|
|
ASSERT(xfs_isilocked(ip, lockmode));
|
|
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
last_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)(offset + count)));
|
|
if ((offset + count) > XFS_ISIZE(ip)) {
|
|
/*
|
|
* Assert that the in-core extent list is present since this can
|
|
* call xfs_iread_extents() and we only have the ilock shared.
|
|
* This should be safe because the lock was held around a bmapi
|
|
* call in the caller and we only need it to access the in-core
|
|
* list.
|
|
*/
|
|
ASSERT(XFS_IFORK_PTR(ip, XFS_DATA_FORK)->if_flags &
|
|
XFS_IFEXTENTS);
|
|
error = xfs_iomap_eof_align_last_fsb(ip, extsz, &last_fsb);
|
|
if (error)
|
|
goto out_unlock;
|
|
} else {
|
|
if (nmaps && (imap->br_startblock == HOLESTARTBLOCK))
|
|
last_fsb = MIN(last_fsb, (xfs_fileoff_t)
|
|
imap->br_blockcount +
|
|
imap->br_startoff);
|
|
}
|
|
count_fsb = last_fsb - offset_fsb;
|
|
ASSERT(count_fsb > 0);
|
|
|
|
resaligned = count_fsb;
|
|
if (unlikely(extsz)) {
|
|
if ((temp = do_mod(offset_fsb, extsz)))
|
|
resaligned += temp;
|
|
if ((temp = do_mod(resaligned, extsz)))
|
|
resaligned += extsz - temp;
|
|
}
|
|
|
|
if (unlikely(rt)) {
|
|
resrtextents = qblocks = resaligned;
|
|
resrtextents /= mp->m_sb.sb_rextsize;
|
|
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
|
|
quota_flag = XFS_QMOPT_RES_RTBLKS;
|
|
} else {
|
|
resrtextents = 0;
|
|
resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
|
|
quota_flag = XFS_QMOPT_RES_REGBLKS;
|
|
}
|
|
|
|
/*
|
|
* Drop the shared lock acquired by the caller, attach the dquot if
|
|
* necessary and move on to transaction setup.
|
|
*/
|
|
xfs_iunlock(ip, lockmode);
|
|
error = xfs_qm_dqattach(ip, 0);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* For DAX, we do not allocate unwritten extents, but instead we zero
|
|
* the block before we commit the transaction. Ideally we'd like to do
|
|
* this outside the transaction context, but if we commit and then crash
|
|
* we may not have zeroed the blocks and this will be exposed on
|
|
* recovery of the allocation. Hence we must zero before commit.
|
|
*
|
|
* Further, if we are mapping unwritten extents here, we need to zero
|
|
* and convert them to written so that we don't need an unwritten extent
|
|
* callback for DAX. This also means that we need to be able to dip into
|
|
* the reserve block pool for bmbt block allocation if there is no space
|
|
* left but we need to do unwritten extent conversion.
|
|
*/
|
|
if (IS_DAX(VFS_I(ip))) {
|
|
bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
|
|
if (ISUNWRITTEN(imap)) {
|
|
tflags |= XFS_TRANS_RESERVE;
|
|
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
|
|
}
|
|
}
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, resrtextents,
|
|
tflags, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
lockmode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, lockmode);
|
|
|
|
error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_trans_ijoin(tp, ip, 0);
|
|
|
|
/*
|
|
* From this point onwards we overwrite the imap pointer that the
|
|
* caller gave to us.
|
|
*/
|
|
xfs_defer_init(&dfops, &firstfsb);
|
|
nimaps = 1;
|
|
error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
|
|
bmapi_flags, &firstfsb, resblks, imap,
|
|
&nimaps, &dfops);
|
|
if (error)
|
|
goto out_bmap_cancel;
|
|
|
|
/*
|
|
* Complete the transaction
|
|
*/
|
|
error = xfs_defer_finish(&tp, &dfops, NULL);
|
|
if (error)
|
|
goto out_bmap_cancel;
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Copy any maps to caller's array and return any error.
|
|
*/
|
|
if (nimaps == 0) {
|
|
error = -ENOSPC;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!(imap->br_startblock || XFS_IS_REALTIME_INODE(ip)))
|
|
error = xfs_alert_fsblock_zero(ip, imap);
|
|
|
|
out_unlock:
|
|
xfs_iunlock(ip, lockmode);
|
|
return error;
|
|
|
|
out_bmap_cancel:
|
|
xfs_defer_cancel(&dfops);
|
|
xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
goto out_unlock;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_quota_need_throttle(
|
|
struct xfs_inode *ip,
|
|
int type,
|
|
xfs_fsblock_t alloc_blocks)
|
|
{
|
|
struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
|
|
|
|
if (!dq || !xfs_this_quota_on(ip->i_mount, type))
|
|
return false;
|
|
|
|
/* no hi watermark, no throttle */
|
|
if (!dq->q_prealloc_hi_wmark)
|
|
return false;
|
|
|
|
/* under the lo watermark, no throttle */
|
|
if (dq->q_res_bcount + alloc_blocks < dq->q_prealloc_lo_wmark)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_quota_calc_throttle(
|
|
struct xfs_inode *ip,
|
|
int type,
|
|
xfs_fsblock_t *qblocks,
|
|
int *qshift,
|
|
int64_t *qfreesp)
|
|
{
|
|
int64_t freesp;
|
|
int shift = 0;
|
|
struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
|
|
|
|
/* no dq, or over hi wmark, squash the prealloc completely */
|
|
if (!dq || dq->q_res_bcount >= dq->q_prealloc_hi_wmark) {
|
|
*qblocks = 0;
|
|
*qfreesp = 0;
|
|
return;
|
|
}
|
|
|
|
freesp = dq->q_prealloc_hi_wmark - dq->q_res_bcount;
|
|
if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
|
|
shift = 2;
|
|
if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
|
|
shift += 2;
|
|
if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
|
|
shift += 2;
|
|
}
|
|
|
|
if (freesp < *qfreesp)
|
|
*qfreesp = freesp;
|
|
|
|
/* only overwrite the throttle values if we are more aggressive */
|
|
if ((freesp >> shift) < (*qblocks >> *qshift)) {
|
|
*qblocks = freesp;
|
|
*qshift = shift;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are doing a write at the end of the file and there are no allocations
|
|
* past this one, then extend the allocation out to the file system's write
|
|
* iosize.
|
|
*
|
|
* If we don't have a user specified preallocation size, dynamically increase
|
|
* the preallocation size as the size of the file grows. Cap the maximum size
|
|
* at a single extent or less if the filesystem is near full. The closer the
|
|
* filesystem is to full, the smaller the maximum prealocation.
|
|
*
|
|
* As an exception we don't do any preallocation at all if the file is smaller
|
|
* than the minimum preallocation and we are using the default dynamic
|
|
* preallocation scheme, as it is likely this is the only write to the file that
|
|
* is going to be done.
|
|
*
|
|
* We clean up any extra space left over when the file is closed in
|
|
* xfs_inactive().
|
|
*/
|
|
STATIC xfs_fsblock_t
|
|
xfs_iomap_prealloc_size(
|
|
struct xfs_inode *ip,
|
|
loff_t offset,
|
|
loff_t count,
|
|
xfs_extnum_t idx)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
struct xfs_bmbt_irec prev;
|
|
int shift = 0;
|
|
int64_t freesp;
|
|
xfs_fsblock_t qblocks;
|
|
int qshift = 0;
|
|
xfs_fsblock_t alloc_blocks = 0;
|
|
|
|
if (offset + count <= XFS_ISIZE(ip))
|
|
return 0;
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) &&
|
|
(XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_writeio_blocks)))
|
|
return 0;
|
|
|
|
/*
|
|
* If an explicit allocsize is set, the file is small, or we
|
|
* are writing behind a hole, then use the minimum prealloc:
|
|
*/
|
|
if ((mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) ||
|
|
XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
|
|
!xfs_iext_get_extent(ifp, idx - 1, &prev) ||
|
|
prev.br_startoff + prev.br_blockcount < offset_fsb)
|
|
return mp->m_writeio_blocks;
|
|
|
|
/*
|
|
* Determine the initial size of the preallocation. We are beyond the
|
|
* current EOF here, but we need to take into account whether this is
|
|
* a sparse write or an extending write when determining the
|
|
* preallocation size. Hence we need to look up the extent that ends
|
|
* at the current write offset and use the result to determine the
|
|
* preallocation size.
|
|
*
|
|
* If the extent is a hole, then preallocation is essentially disabled.
|
|
* Otherwise we take the size of the preceding data extent as the basis
|
|
* for the preallocation size. If the size of the extent is greater than
|
|
* half the maximum extent length, then use the current offset as the
|
|
* basis. This ensures that for large files the preallocation size
|
|
* always extends to MAXEXTLEN rather than falling short due to things
|
|
* like stripe unit/width alignment of real extents.
|
|
*/
|
|
if (prev.br_blockcount <= (MAXEXTLEN >> 1))
|
|
alloc_blocks = prev.br_blockcount << 1;
|
|
else
|
|
alloc_blocks = XFS_B_TO_FSB(mp, offset);
|
|
if (!alloc_blocks)
|
|
goto check_writeio;
|
|
qblocks = alloc_blocks;
|
|
|
|
/*
|
|
* MAXEXTLEN is not a power of two value but we round the prealloc down
|
|
* to the nearest power of two value after throttling. To prevent the
|
|
* round down from unconditionally reducing the maximum supported prealloc
|
|
* size, we round up first, apply appropriate throttling, round down and
|
|
* cap the value to MAXEXTLEN.
|
|
*/
|
|
alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN),
|
|
alloc_blocks);
|
|
|
|
freesp = percpu_counter_read_positive(&mp->m_fdblocks);
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
|
|
shift = 2;
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
|
|
shift++;
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
|
|
shift++;
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
|
|
shift++;
|
|
if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
|
|
shift++;
|
|
}
|
|
|
|
/*
|
|
* Check each quota to cap the prealloc size, provide a shift value to
|
|
* throttle with and adjust amount of available space.
|
|
*/
|
|
if (xfs_quota_need_throttle(ip, XFS_DQ_USER, alloc_blocks))
|
|
xfs_quota_calc_throttle(ip, XFS_DQ_USER, &qblocks, &qshift,
|
|
&freesp);
|
|
if (xfs_quota_need_throttle(ip, XFS_DQ_GROUP, alloc_blocks))
|
|
xfs_quota_calc_throttle(ip, XFS_DQ_GROUP, &qblocks, &qshift,
|
|
&freesp);
|
|
if (xfs_quota_need_throttle(ip, XFS_DQ_PROJ, alloc_blocks))
|
|
xfs_quota_calc_throttle(ip, XFS_DQ_PROJ, &qblocks, &qshift,
|
|
&freesp);
|
|
|
|
/*
|
|
* The final prealloc size is set to the minimum of free space available
|
|
* in each of the quotas and the overall filesystem.
|
|
*
|
|
* The shift throttle value is set to the maximum value as determined by
|
|
* the global low free space values and per-quota low free space values.
|
|
*/
|
|
alloc_blocks = MIN(alloc_blocks, qblocks);
|
|
shift = MAX(shift, qshift);
|
|
|
|
if (shift)
|
|
alloc_blocks >>= shift;
|
|
/*
|
|
* rounddown_pow_of_two() returns an undefined result if we pass in
|
|
* alloc_blocks = 0.
|
|
*/
|
|
if (alloc_blocks)
|
|
alloc_blocks = rounddown_pow_of_two(alloc_blocks);
|
|
if (alloc_blocks > MAXEXTLEN)
|
|
alloc_blocks = MAXEXTLEN;
|
|
|
|
/*
|
|
* If we are still trying to allocate more space than is
|
|
* available, squash the prealloc hard. This can happen if we
|
|
* have a large file on a small filesystem and the above
|
|
* lowspace thresholds are smaller than MAXEXTLEN.
|
|
*/
|
|
while (alloc_blocks && alloc_blocks >= freesp)
|
|
alloc_blocks >>= 4;
|
|
check_writeio:
|
|
if (alloc_blocks < mp->m_writeio_blocks)
|
|
alloc_blocks = mp->m_writeio_blocks;
|
|
trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
|
|
mp->m_writeio_blocks);
|
|
return alloc_blocks;
|
|
}
|
|
|
|
static int
|
|
xfs_file_iomap_begin_delay(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t count,
|
|
unsigned flags,
|
|
struct iomap *iomap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t maxbytes_fsb =
|
|
XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
|
|
xfs_fileoff_t end_fsb;
|
|
int error = 0, eof = 0;
|
|
struct xfs_bmbt_irec got;
|
|
xfs_extnum_t idx;
|
|
xfs_fsblock_t prealloc_blocks = 0;
|
|
|
|
ASSERT(!XFS_IS_REALTIME_INODE(ip));
|
|
ASSERT(!xfs_get_extsz_hint(ip));
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
|
|
if (unlikely(XFS_TEST_ERROR(
|
|
(XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_EXTENTS &&
|
|
XFS_IFORK_FORMAT(ip, XFS_DATA_FORK) != XFS_DINODE_FMT_BTREE),
|
|
mp, XFS_ERRTAG_BMAPIFORMAT, XFS_RANDOM_BMAPIFORMAT))) {
|
|
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
|
|
error = -EFSCORRUPTED;
|
|
goto out_unlock;
|
|
}
|
|
|
|
XFS_STATS_INC(mp, xs_blk_mapw);
|
|
|
|
if (!(ifp->if_flags & XFS_IFEXTENTS)) {
|
|
error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
|
|
if (error)
|
|
goto out_unlock;
|
|
}
|
|
|
|
eof = !xfs_iext_lookup_extent(ip, ifp, offset_fsb, &idx, &got);
|
|
if (!eof && got.br_startoff <= offset_fsb) {
|
|
if (xfs_is_reflink_inode(ip)) {
|
|
bool shared;
|
|
|
|
end_fsb = min(XFS_B_TO_FSB(mp, offset + count),
|
|
maxbytes_fsb);
|
|
xfs_trim_extent(&got, offset_fsb, end_fsb - offset_fsb);
|
|
error = xfs_reflink_reserve_cow(ip, &got, &shared);
|
|
if (error)
|
|
goto out_unlock;
|
|
}
|
|
|
|
trace_xfs_iomap_found(ip, offset, count, 0, &got);
|
|
goto done;
|
|
}
|
|
|
|
error = xfs_qm_dqattach_locked(ip, 0);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* We cap the maximum length we map here to MAX_WRITEBACK_PAGES pages
|
|
* to keep the chunks of work done where somewhat symmetric with the
|
|
* work writeback does. This is a completely arbitrary number pulled
|
|
* out of thin air as a best guess for initial testing.
|
|
*
|
|
* Note that the values needs to be less than 32-bits wide until
|
|
* the lower level functions are updated.
|
|
*/
|
|
count = min_t(loff_t, count, 1024 * PAGE_SIZE);
|
|
end_fsb = min(XFS_B_TO_FSB(mp, offset + count), maxbytes_fsb);
|
|
|
|
if (eof) {
|
|
prealloc_blocks = xfs_iomap_prealloc_size(ip, offset, count, idx);
|
|
if (prealloc_blocks) {
|
|
xfs_extlen_t align;
|
|
xfs_off_t end_offset;
|
|
xfs_fileoff_t p_end_fsb;
|
|
|
|
end_offset = XFS_WRITEIO_ALIGN(mp, offset + count - 1);
|
|
p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
|
|
prealloc_blocks;
|
|
|
|
align = xfs_eof_alignment(ip, 0);
|
|
if (align)
|
|
p_end_fsb = roundup_64(p_end_fsb, align);
|
|
|
|
p_end_fsb = min(p_end_fsb, maxbytes_fsb);
|
|
ASSERT(p_end_fsb > offset_fsb);
|
|
prealloc_blocks = p_end_fsb - end_fsb;
|
|
}
|
|
}
|
|
|
|
retry:
|
|
error = xfs_bmapi_reserve_delalloc(ip, XFS_DATA_FORK, offset_fsb,
|
|
end_fsb - offset_fsb, prealloc_blocks, &got, &idx, eof);
|
|
switch (error) {
|
|
case 0:
|
|
break;
|
|
case -ENOSPC:
|
|
case -EDQUOT:
|
|
/* retry without any preallocation */
|
|
trace_xfs_delalloc_enospc(ip, offset, count);
|
|
if (prealloc_blocks) {
|
|
prealloc_blocks = 0;
|
|
goto retry;
|
|
}
|
|
/*FALLTHRU*/
|
|
default:
|
|
goto out_unlock;
|
|
}
|
|
|
|
trace_xfs_iomap_alloc(ip, offset, count, 0, &got);
|
|
done:
|
|
if (isnullstartblock(got.br_startblock))
|
|
got.br_startblock = DELAYSTARTBLOCK;
|
|
|
|
if (!got.br_startblock) {
|
|
error = xfs_alert_fsblock_zero(ip, &got);
|
|
if (error)
|
|
goto out_unlock;
|
|
}
|
|
|
|
xfs_bmbt_to_iomap(ip, iomap, &got);
|
|
|
|
out_unlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Pass in a delayed allocate extent, convert it to real extents;
|
|
* return to the caller the extent we create which maps on top of
|
|
* the originating callers request.
|
|
*
|
|
* Called without a lock on the inode.
|
|
*
|
|
* We no longer bother to look at the incoming map - all we have to
|
|
* guarantee is that whatever we allocate fills the required range.
|
|
*/
|
|
int
|
|
xfs_iomap_write_allocate(
|
|
xfs_inode_t *ip,
|
|
int whichfork,
|
|
xfs_off_t offset,
|
|
xfs_bmbt_irec_t *imap)
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb, last_block;
|
|
xfs_fileoff_t end_fsb, map_start_fsb;
|
|
xfs_fsblock_t first_block;
|
|
struct xfs_defer_ops dfops;
|
|
xfs_filblks_t count_fsb;
|
|
xfs_trans_t *tp;
|
|
int nimaps;
|
|
int error = 0;
|
|
int flags = XFS_BMAPI_DELALLOC;
|
|
int nres;
|
|
|
|
if (whichfork == XFS_COW_FORK)
|
|
flags |= XFS_BMAPI_COWFORK;
|
|
|
|
/*
|
|
* Make sure that the dquots are there.
|
|
*/
|
|
error = xfs_qm_dqattach(ip, 0);
|
|
if (error)
|
|
return error;
|
|
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
count_fsb = imap->br_blockcount;
|
|
map_start_fsb = imap->br_startoff;
|
|
|
|
XFS_STATS_ADD(mp, xs_xstrat_bytes, XFS_FSB_TO_B(mp, count_fsb));
|
|
|
|
while (count_fsb != 0) {
|
|
/*
|
|
* Set up a transaction with which to allocate the
|
|
* backing store for the file. Do allocations in a
|
|
* loop until we get some space in the range we are
|
|
* interested in. The other space that might be allocated
|
|
* is in the delayed allocation extent on which we sit
|
|
* but before our buffer starts.
|
|
*/
|
|
nimaps = 0;
|
|
while (nimaps == 0) {
|
|
nres = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
|
|
/*
|
|
* We have already reserved space for the extent and any
|
|
* indirect blocks when creating the delalloc extent,
|
|
* there is no need to reserve space in this transaction
|
|
* again.
|
|
*/
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0,
|
|
0, XFS_TRANS_RESERVE, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, 0);
|
|
|
|
xfs_defer_init(&dfops, &first_block);
|
|
|
|
/*
|
|
* it is possible that the extents have changed since
|
|
* we did the read call as we dropped the ilock for a
|
|
* while. We have to be careful about truncates or hole
|
|
* punchs here - we are not allowed to allocate
|
|
* non-delalloc blocks here.
|
|
*
|
|
* The only protection against truncation is the pages
|
|
* for the range we are being asked to convert are
|
|
* locked and hence a truncate will block on them
|
|
* first.
|
|
*
|
|
* As a result, if we go beyond the range we really
|
|
* need and hit an delalloc extent boundary followed by
|
|
* a hole while we have excess blocks in the map, we
|
|
* will fill the hole incorrectly and overrun the
|
|
* transaction reservation.
|
|
*
|
|
* Using a single map prevents this as we are forced to
|
|
* check each map we look for overlap with the desired
|
|
* range and abort as soon as we find it. Also, given
|
|
* that we only return a single map, having one beyond
|
|
* what we can return is probably a bit silly.
|
|
*
|
|
* We also need to check that we don't go beyond EOF;
|
|
* this is a truncate optimisation as a truncate sets
|
|
* the new file size before block on the pages we
|
|
* currently have locked under writeback. Because they
|
|
* are about to be tossed, we don't need to write them
|
|
* back....
|
|
*/
|
|
nimaps = 1;
|
|
end_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
|
|
error = xfs_bmap_last_offset(ip, &last_block,
|
|
XFS_DATA_FORK);
|
|
if (error)
|
|
goto trans_cancel;
|
|
|
|
last_block = XFS_FILEOFF_MAX(last_block, end_fsb);
|
|
if ((map_start_fsb + count_fsb) > last_block) {
|
|
count_fsb = last_block - map_start_fsb;
|
|
if (count_fsb == 0) {
|
|
error = -EAGAIN;
|
|
goto trans_cancel;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* From this point onwards we overwrite the imap
|
|
* pointer that the caller gave to us.
|
|
*/
|
|
error = xfs_bmapi_write(tp, ip, map_start_fsb,
|
|
count_fsb, flags, &first_block,
|
|
nres, imap, &nimaps,
|
|
&dfops);
|
|
if (error)
|
|
goto trans_cancel;
|
|
|
|
error = xfs_defer_finish(&tp, &dfops, NULL);
|
|
if (error)
|
|
goto trans_cancel;
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
}
|
|
|
|
/*
|
|
* See if we were able to allocate an extent that
|
|
* covers at least part of the callers request
|
|
*/
|
|
if (!(imap->br_startblock || XFS_IS_REALTIME_INODE(ip)))
|
|
return xfs_alert_fsblock_zero(ip, imap);
|
|
|
|
if ((offset_fsb >= imap->br_startoff) &&
|
|
(offset_fsb < (imap->br_startoff +
|
|
imap->br_blockcount))) {
|
|
XFS_STATS_INC(mp, xs_xstrat_quick);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* So far we have not mapped the requested part of the
|
|
* file, just surrounding data, try again.
|
|
*/
|
|
count_fsb -= imap->br_blockcount;
|
|
map_start_fsb = imap->br_startoff + imap->br_blockcount;
|
|
}
|
|
|
|
trans_cancel:
|
|
xfs_defer_cancel(&dfops);
|
|
xfs_trans_cancel(tp);
|
|
error0:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_iomap_write_unwritten(
|
|
xfs_inode_t *ip,
|
|
xfs_off_t offset,
|
|
xfs_off_t count)
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb;
|
|
xfs_filblks_t count_fsb;
|
|
xfs_filblks_t numblks_fsb;
|
|
xfs_fsblock_t firstfsb;
|
|
int nimaps;
|
|
xfs_trans_t *tp;
|
|
xfs_bmbt_irec_t imap;
|
|
struct xfs_defer_ops dfops;
|
|
xfs_fsize_t i_size;
|
|
uint resblks;
|
|
int error;
|
|
|
|
trace_xfs_unwritten_convert(ip, offset, count);
|
|
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
|
|
count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
|
|
|
|
/*
|
|
* Reserve enough blocks in this transaction for two complete extent
|
|
* btree splits. We may be converting the middle part of an unwritten
|
|
* extent and in this case we will insert two new extents in the btree
|
|
* each of which could cause a full split.
|
|
*
|
|
* This reservation amount will be used in the first call to
|
|
* xfs_bmbt_split() to select an AG with enough space to satisfy the
|
|
* rest of the operation.
|
|
*/
|
|
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
|
|
|
|
do {
|
|
/*
|
|
* Set up a transaction to convert the range of extents
|
|
* from unwritten to real. Do allocations in a loop until
|
|
* we have covered the range passed in.
|
|
*
|
|
* Note that we can't risk to recursing back into the filesystem
|
|
* here as we might be asked to write out the same inode that we
|
|
* complete here and might deadlock on the iolock.
|
|
*/
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
|
|
XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, 0);
|
|
|
|
/*
|
|
* Modify the unwritten extent state of the buffer.
|
|
*/
|
|
xfs_defer_init(&dfops, &firstfsb);
|
|
nimaps = 1;
|
|
error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
|
|
XFS_BMAPI_CONVERT, &firstfsb, resblks,
|
|
&imap, &nimaps, &dfops);
|
|
if (error)
|
|
goto error_on_bmapi_transaction;
|
|
|
|
/*
|
|
* Log the updated inode size as we go. We have to be careful
|
|
* to only log it up to the actual write offset if it is
|
|
* halfway into a block.
|
|
*/
|
|
i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
|
|
if (i_size > offset + count)
|
|
i_size = offset + count;
|
|
|
|
i_size = xfs_new_eof(ip, i_size);
|
|
if (i_size) {
|
|
ip->i_d.di_size = i_size;
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
}
|
|
|
|
error = xfs_defer_finish(&tp, &dfops, NULL);
|
|
if (error)
|
|
goto error_on_bmapi_transaction;
|
|
|
|
error = xfs_trans_commit(tp);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
if (error)
|
|
return error;
|
|
|
|
if (!(imap.br_startblock || XFS_IS_REALTIME_INODE(ip)))
|
|
return xfs_alert_fsblock_zero(ip, &imap);
|
|
|
|
if ((numblks_fsb = imap.br_blockcount) == 0) {
|
|
/*
|
|
* The numblks_fsb value should always get
|
|
* smaller, otherwise the loop is stuck.
|
|
*/
|
|
ASSERT(imap.br_blockcount);
|
|
break;
|
|
}
|
|
offset_fsb += numblks_fsb;
|
|
count_fsb -= numblks_fsb;
|
|
} while (count_fsb > 0);
|
|
|
|
return 0;
|
|
|
|
error_on_bmapi_transaction:
|
|
xfs_defer_cancel(&dfops);
|
|
xfs_trans_cancel(tp);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
static inline bool imap_needs_alloc(struct inode *inode,
|
|
struct xfs_bmbt_irec *imap, int nimaps)
|
|
{
|
|
return !nimaps ||
|
|
imap->br_startblock == HOLESTARTBLOCK ||
|
|
imap->br_startblock == DELAYSTARTBLOCK ||
|
|
(IS_DAX(inode) && ISUNWRITTEN(imap));
|
|
}
|
|
|
|
static inline bool need_excl_ilock(struct xfs_inode *ip, unsigned flags)
|
|
{
|
|
/*
|
|
* COW writes will allocate delalloc space, so we need to make sure
|
|
* to take the lock exclusively here.
|
|
*/
|
|
if (xfs_is_reflink_inode(ip) && (flags & (IOMAP_WRITE | IOMAP_ZERO)))
|
|
return true;
|
|
if ((flags & IOMAP_DIRECT) && (flags & IOMAP_WRITE))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int
|
|
xfs_file_iomap_begin(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t length,
|
|
unsigned flags,
|
|
struct iomap *iomap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_bmbt_irec imap;
|
|
xfs_fileoff_t offset_fsb, end_fsb;
|
|
int nimaps = 1, error = 0;
|
|
bool shared = false, trimmed = false;
|
|
unsigned lockmode;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
if (((flags & (IOMAP_WRITE | IOMAP_DIRECT)) == IOMAP_WRITE) &&
|
|
!IS_DAX(inode) && !xfs_get_extsz_hint(ip)) {
|
|
/* Reserve delalloc blocks for regular writeback. */
|
|
return xfs_file_iomap_begin_delay(inode, offset, length, flags,
|
|
iomap);
|
|
}
|
|
|
|
if (need_excl_ilock(ip, flags)) {
|
|
lockmode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
} else {
|
|
lockmode = xfs_ilock_data_map_shared(ip);
|
|
}
|
|
|
|
ASSERT(offset <= mp->m_super->s_maxbytes);
|
|
if ((xfs_fsize_t)offset + length > mp->m_super->s_maxbytes)
|
|
length = mp->m_super->s_maxbytes - offset;
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
end_fsb = XFS_B_TO_FSB(mp, offset + length);
|
|
|
|
if (xfs_is_reflink_inode(ip) &&
|
|
(flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT)) {
|
|
shared = xfs_reflink_find_cow_mapping(ip, offset, &imap);
|
|
if (shared) {
|
|
xfs_iunlock(ip, lockmode);
|
|
goto alloc_done;
|
|
}
|
|
ASSERT(!isnullstartblock(imap.br_startblock));
|
|
}
|
|
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
|
|
&nimaps, 0);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
if ((flags & IOMAP_REPORT) ||
|
|
(xfs_is_reflink_inode(ip) &&
|
|
(flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT))) {
|
|
/* Trim the mapping to the nearest shared extent boundary. */
|
|
error = xfs_reflink_trim_around_shared(ip, &imap, &shared,
|
|
&trimmed);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* We're here because we're trying to do a directio write to a
|
|
* region that isn't aligned to a filesystem block. If the
|
|
* extent is shared, fall back to buffered mode to handle the
|
|
* RMW.
|
|
*/
|
|
if (!(flags & IOMAP_REPORT) && shared) {
|
|
trace_xfs_reflink_bounce_dio_write(ip, &imap);
|
|
error = -EREMCHG;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if ((flags & (IOMAP_WRITE | IOMAP_ZERO)) && xfs_is_reflink_inode(ip)) {
|
|
error = xfs_reflink_reserve_cow(ip, &imap, &shared);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
end_fsb = imap.br_startoff + imap.br_blockcount;
|
|
length = XFS_FSB_TO_B(mp, end_fsb) - offset;
|
|
}
|
|
|
|
if ((flags & IOMAP_WRITE) && imap_needs_alloc(inode, &imap, nimaps)) {
|
|
/*
|
|
* We cap the maximum length we map here to MAX_WRITEBACK_PAGES
|
|
* pages to keep the chunks of work done where somewhat symmetric
|
|
* with the work writeback does. This is a completely arbitrary
|
|
* number pulled out of thin air as a best guess for initial
|
|
* testing.
|
|
*
|
|
* Note that the values needs to be less than 32-bits wide until
|
|
* the lower level functions are updated.
|
|
*/
|
|
length = min_t(loff_t, length, 1024 * PAGE_SIZE);
|
|
/*
|
|
* xfs_iomap_write_direct() expects the shared lock. It
|
|
* is unlocked on return.
|
|
*/
|
|
if (lockmode == XFS_ILOCK_EXCL)
|
|
xfs_ilock_demote(ip, lockmode);
|
|
error = xfs_iomap_write_direct(ip, offset, length, &imap,
|
|
nimaps);
|
|
if (error)
|
|
return error;
|
|
|
|
alloc_done:
|
|
iomap->flags = IOMAP_F_NEW;
|
|
trace_xfs_iomap_alloc(ip, offset, length, 0, &imap);
|
|
} else {
|
|
ASSERT(nimaps);
|
|
|
|
xfs_iunlock(ip, lockmode);
|
|
trace_xfs_iomap_found(ip, offset, length, 0, &imap);
|
|
}
|
|
|
|
xfs_bmbt_to_iomap(ip, iomap, &imap);
|
|
if (shared)
|
|
iomap->flags |= IOMAP_F_SHARED;
|
|
return 0;
|
|
out_unlock:
|
|
xfs_iunlock(ip, lockmode);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_file_iomap_end_delalloc(
|
|
struct xfs_inode *ip,
|
|
loff_t offset,
|
|
loff_t length,
|
|
ssize_t written)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t start_fsb;
|
|
xfs_fileoff_t end_fsb;
|
|
int error = 0;
|
|
|
|
start_fsb = XFS_B_TO_FSB(mp, offset + written);
|
|
end_fsb = XFS_B_TO_FSB(mp, offset + length);
|
|
|
|
/*
|
|
* Trim back delalloc blocks if we didn't manage to write the whole
|
|
* range reserved.
|
|
*
|
|
* We don't need to care about racing delalloc as we hold i_mutex
|
|
* across the reserve/allocate/unreserve calls. If there are delalloc
|
|
* blocks in the range, they are ours.
|
|
*/
|
|
if (start_fsb < end_fsb) {
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
|
|
end_fsb - start_fsb);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
if (error && !XFS_FORCED_SHUTDOWN(mp)) {
|
|
xfs_alert(mp, "%s: unable to clean up ino %lld",
|
|
__func__, ip->i_ino);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xfs_file_iomap_end(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t length,
|
|
ssize_t written,
|
|
unsigned flags,
|
|
struct iomap *iomap)
|
|
{
|
|
if ((flags & IOMAP_WRITE) && iomap->type == IOMAP_DELALLOC)
|
|
return xfs_file_iomap_end_delalloc(XFS_I(inode), offset,
|
|
length, written);
|
|
return 0;
|
|
}
|
|
|
|
const struct iomap_ops xfs_iomap_ops = {
|
|
.iomap_begin = xfs_file_iomap_begin,
|
|
.iomap_end = xfs_file_iomap_end,
|
|
};
|
|
|
|
static int
|
|
xfs_xattr_iomap_begin(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
loff_t length,
|
|
unsigned flags,
|
|
struct iomap *iomap)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
|
|
struct xfs_bmbt_irec imap;
|
|
int nimaps = 1, error = 0;
|
|
unsigned lockmode;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
lockmode = xfs_ilock_data_map_shared(ip);
|
|
|
|
/* if there are no attribute fork or extents, return ENOENT */
|
|
if (XFS_IFORK_Q(ip) || !ip->i_d.di_anextents) {
|
|
error = -ENOENT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ASSERT(ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL);
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
|
|
&nimaps, XFS_BMAPI_ENTIRE | XFS_BMAPI_ATTRFORK);
|
|
out_unlock:
|
|
xfs_iunlock(ip, lockmode);
|
|
|
|
if (!error) {
|
|
ASSERT(nimaps);
|
|
xfs_bmbt_to_iomap(ip, iomap, &imap);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
const struct iomap_ops xfs_xattr_iomap_ops = {
|
|
.iomap_begin = xfs_xattr_iomap_begin,
|
|
};
|